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Abstract: Food insecurity (FI) is associated with several known hepatocellular carcinoma
(HCC) risk factors, but few studies have directly examined FI in association with HCC risk.
We aimed to investigate whether county-level FI is associated with HCC risk. We used data
from 21 registries in the Surveillance Epidemiology and End Results database to obtain
county-level counts of HCC cases from 2018 to 2021. We obtained the county-level FI rates
for 2018–2021 from Feeding America’s Map the Meal Gap. We used multi-level Poisson
regression models with robust standard errors to calculate incidence rate ratios (IRRs)
and 95% confidence intervals (CIs). Overall, a one-standard-deviation (SD) increase in
county-level FI was associated with an 8% increase in HCC risk in the fully adjusted model
(IRR = 1.08, 95% CI = 1.06, 1.10). When stratified by age at diagnosis, a one-SD increase
in county-level FI was associated with a 2% higher risk of HCC in the ≥65 age group
(IRR = 1.02, 95% CI = 1.00, 1.05) and a 15% higher risk in the <65 age group (IRR = 1.15, 95%
CI = 1.11, 1.19; interaction p-value < 0.001). If confirmed in other studies, these findings
support the need for interventions and policies addressing FI in populations at increased
risk for HCC.

Keywords: food insecurity; hepatocellular carcinoma; social determinants of health; health
disparities; Surveillance Epidemiology and End Results Program

1. Introduction
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer,

is the sixth most common cancer and the third leading cause of cancer-related deaths
worldwide [1,2]. HCC is often diagnosed at a late stage, resulting in limited treatment
options [3]; 50% of HCC patients die within 10 months [4], and nearly 80% die within five
years [5]. However, survival rates have been improving over time, partly due to an increase
in early-stage HCC cases detected through regular surveillance efforts [6]. In the U. S., HCC
incidence rates have tripled over the past 20 years [7,8] and continue to rise [9,10]. Several
well-known risk factors for HCC include hepatitis B virus (HBV), hepatitis C virus, liver
fibrosis, alcohol use, and obesity [11–13]. Yet, HCC etiology has recently shifted from a
higher proportion of viral causes to a higher proportion of non-viral causes [12,14]. Further,
up to 40% of HCC cases are unexplained by known risk factors [14,15]. Additional research
is thus needed to identify novel risk factors contributing to the increase in HCC incidence
over time.
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There are significant disparities in HCC incidence and survival, which suggests that
social determinants of health play a role in the disease. Historically, Asian and Pacific
Islanders in the U.S. had the highest rates of HCC, primarily due to the high prevalence of
HBV infection among immigrants from HBV-endemic regions [16]. However, HCC rates in
this group are now declining [17], which is attributed to lower HBV infection rates among
U.S.-born generations, the success of HBV vaccination programs, and advancements in
antiviral therapy for HBV [16]. In contrast, HCC incidence rates are increasing among
other racial and ethnic groups, including non-Hispanic Blacks and Hispanics [18,19], who
also experience shorter median survival times after HCC diagnosis [20–23]. Additionally,
lower socioeconomic status has been associated with a higher risk of HCC, limited access
to treatment, and poorer outcomes after diagnosis [24–27]. For example, a recent study
found that 48% of the difference in HCC incidence rates between non-Hispanic Black
neighborhoods and predominantly non-Hispanic White neighborhoods was attributed to
neighborhood deprivation [28]. Similarly, 15% of the disparity between Hispanic neighbor-
hoods and non-Hispanic White neighborhoods was due to neighborhood deprivation [28].
The mechanisms through which lower socioeconomic status increases HCC risk have not
been fully elucidated. Possible factors include delayed access to regular HCC surveillance
and medical care for treating underlying health conditions such as cirrhosis [29]. Financial
constraints are one of the most common patient-reported barriers associated with HCC
surveillance [30]. The link may also be due to how social factors influence known and
emerging HCC risk factors, such as alcohol consumption, diet quality, and obesity [31–33].
More research is needed to identify modifiable factors contributing to these disparities to
inform interventions aimed at reducing inequities in HCC.

We hypothesize that food insecurity (FI) may be a social determinant of health con-
tributing to disparities in HCC. FI is defined as having limited or uncertain access to enough
safe, nutritious, and acceptable food due to economic and social challenges at the household
level [34]. In high-income countries like the U.S., inequality is the main cause of FI [35].
FI is considered a downstream result of broader structural determinants of health, and
the risk for FI increases as financial hardship increases. For example, a study found that
chronic liver disease patients who were unable to pay medical bills had nearly six times
higher odds of FI compared to patients without financial hardship from medical bills [36].
FI is associated with several established and emerging risk factors for HCC, including poor
diet quality [37], diabetes [38–40], heavy alcohol use [41,42], obesity [43], and metabolic
syndrome [44,45]. Additionally, some evidence suggests that FI is common among individ-
uals with metabolic dysfunction-associated steatotic disease (MASLD) [46–51], formerly
known as non-alcohol fatty liver disease [52], a recognized risk factor for HCC [53]. A
recent study using data from the 2017–2018 National Health and Nutrition Examination
Survey (NHANES) found that FI was associated with a 42% increased odds of MASLD
(odds ratio = 1.42, 95% CI = 1.12–1.78) and a 40% increased odds of hepatic fibrosis (odds
ratio = 1.40, 95% CI = 1.04–1.88) [50]. Another longitudinal analysis of NHANES data found
that FI was independently associated with higher all-cause mortality among individuals
with chronic liver disease, even after controlling for other socioeconomic factors such as
poverty, income, and education level [54]. Despite these findings, few studies have exam-
ined whether FI is directly associated with increased HCC risk. We addressed this research
gap by conducting a cross-sectional analysis of population-based data to examine whether
county-level FI is associated with county-level HCC incidence rates in the United States.
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2. Methods
2.1. Study Population

We used data from the Surveillance, Epidemiology, and End Results (SEER) database
to obtain county-level counts of HCC cases diagnosed from 2018 to 2021 across 21 registries,
including: Atlanta (metropolitan), Connecticut, Greater California, Greater Georgia, Hawaii,
Iowa, Idaho, Illinois, Kentucky, Los Angeles, Louisiana, Massachusetts, New Jersey, New
Mexico, New York, Rural Georgia, San Franscico-Oakland, San Jose-Monterey, Seattle
(Puget Sound), Texas, and Utah. These registries cover approximately 48% of the U.S.
population, encompassing a total of 1085 counties [55]. The 2018–2021 timeframe was
selected because it aligns with the most recent period for which consistent county-level
FI measures are available (see below for more details). Ethical review and informed
consent were not required for this study because only publicly available county-level data
were used.

2.2. Hepatocellular Carcinoma

We identified HCC cases in the SEER database using the International Classification of
Diseases for Oncology, Third Edition (ICD-O-3). We included cases with a topography code
of C22.0 for primary liver cancer and ICD-O-3 histology codes 8170–8175. We excluded
cases diagnosed solely through clinical evaluation (without microscopic confirmation) or
identified only through autopsy or death certificate records. We further limited our analysis
to cases recorded as the first primary cancer.

Within each county, we stratified HCC case counts by age at diagnosis (<65 years
and ≥65 years), sex (female and male), race, and ethnicity (Hispanic, non-Hispanic Asian
or Pacific Islander, non-Hispanic Black, and non-Hispanic White). We excluded cases
diagnosed before the age of 20 years along with cases that identified as American Indian or
Alaska Native due to small case counts. Additionally, we stratified case counts by stage at
diagnosis, categorized as localized, regional, and distant, using the combined summary
stage (2004+) variable in the SEER database [56].

2.3. Food Insecurity

We obtained county-level FI rates for 2018–2021 from Feeding America’s Mapping the
Meal Gap reports (http://map.feedingamerica.org; accessed on 20 August 2023. additional
details provided elsewhere [57]). Feeding America, a national hunger relief organization
operating the largest network of food banks and pantries in the United States, conducts an
annual study measuring FI levels for every county in the United States [57].

To assess FI, Feeding America uses data from the Core Food Security Module (CFSM)
of the Current Population Survey (CPS) [57]. The Census Bureau administers the CPS for
the Bureau of Labor Statistics to gather nationally representative data on employment,
income, and poverty [58]. Each December, 50,000 households receive a version of the CPS
that includes the CFSM [59]. Households with children answer 18 F1-related questions,
while those without children answer 10 FI-related questions. Sample questions include:
“I worried whether our food would run out before we got money to buy more.”; “Did
you or the other adults in your household ever cut the size of your meals or skip meals
because there wasn’t enough money for food?”; and “Were you ever hungry but did not
eat because you couldn’t afford enough food?” [59]. The full list of questions in the CFSM
is available elsewhere [59]. Households responding “yes” to three or more CFSM questions
are classified as FI [59].

Feeding America estimates FI at the county-level using a two-step process [57,60].
First, they use Equation (1) to estimate state-level FI rates:

http://map.feedingamerica.org
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FIst = α + βUNUNst + βPOVPOVst + βMIMIst + βHISPHISPst + βBLACKBLACKst + βOWNOWNst + βDSBLDSBLst + µt + υs + εst (1)

In Equation (1), s represents a state and t represents a year. The variables are defined as
follows: UN: unemployment rate, POV: poverty rate for non-undergraduate students, MI:
median income, HISP: percentage of the population that is Hispanic, BLACK: percentage
of the population that is Black or African American, OWN: percentage of individuals
who are homeowners, DSBL: percentage of individuals reporting a disability [57]. These
variables were selected based on existing research and data availability [57]. The model
also included year (µt) and state (υs) fixed effects to account for unobserved, state- and
year-specific factors that might influence FI. State population weights were used in the
estimation [57,60].

Next, Feeding America applies the estimated coefficients from Equation (1) along with
county-level data for these same variables to calculate FI rates at the county-level, as shown
in Equation (2) [57]:

FIc = α̂+β̂UNUNc + β̂POVPOVc + β̂MIMIc + β̂HISPHISPc + β̂BLACKBLACKc + β̂OWNOWNc + β̂DSBLDSBLc + µ̂YEAR+ν̂s (2)

In Equation (2), c represents a county. The variables POVc, MIc, HISPc, BLACKc,
OWNc, and DISBLc are derived from 5-year estimates from the American Community
Survey, while UNc is based on 1-year averages from the Bureau of Labor Statistics [49].
Using Equation (2), Feeding America calculates FI rates for each county [57,60].

For this analysis, we obtained county-level annual FI rates from Feeding America for
2018-2021. We then calculated the average FI rate for each county over this period.

2.4. Covariates

We obtained additional county-level data on established HCC risk factors for
2018–2021, including rates of binge drinking (defined as consuming 4 or more drinks
for women and 5 or more drinks for men on a single occasion [61]), current cigarette smok-
ing, and obesity (body mass index ≥ 30 kg/m2). Individual-level data on these lifestyle
factors were collected by the Behavior Risk Factor Surveillance System (BRFSS) [61], and
county-level estimates were generated by the PLACES Project [62]. For each covariate, we
calculated the average rate over the 2018–2021 period.

2.5. Statistical Analysis

To evaluate the association between county-level FI and HCC risk, we used Poisson
multivariable regression models with robust variance estimation to calculate incidence
rate ratios (IRRs) and 95% confidence intervals (CIs). County population size was used
as the offset term. We used Poisson regression for this analysis because it is well-suited
for modeling count data, such as the number of HCC cases, while accounting for differing
population sizes across counties through the use of an offset term. We employed robust
variance estimation to address potential violations of the model’s assumption that the
mean and variance of the outcome are equal. Additionally, we included a random effect
to account for potential state-level clustering, such as the influence of state policies on
HCC risk. We modeled FI as both a continuous variable, standardized to a mean of zero
and standard deviation of one, and categorized into tertiles based on the study sample
distribution. To test for a linear trend across FI tertiles, we fitted a model treating the tertile
variable as continuous. We included potential confounders as covariates in the model. We
analyzed two models: Model 1 was adjusted for age at diagnosis, sex, race, and ethnicity;
Model 2 included additional adjustments for county-level rates of binge drinking, smoking,
and obesity. Both models included 17,204 observations, representing the total number of
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county-level estimates stratified by age group, sex, race, and ethnicity. To examine effect
modification by sex, age at diagnosis, race, and ethnicity, we added cross-product terms to
the models. We also analyzed models stratified by stage at diagnosis (localized, regional,
and distant). All statistical tests were two-sided, and p-values below 0.05 were considered
statistically significant. All analyses were performed using Stata 15.1 (College Station,
TX, USA).

3. Results
There were 38,679 cases of HCC in the study sample diagnosed from 2018 to 2021.

A total of 76 percent of cases were male, 48% of cases were non-Hispanic White, and
55% were aged 65 years and older at diagnosis (Table 1). The average FI rate was 12.9%
(standard deviation (SD) = 3.6%) among counties included in the analysis. Figure 1 dis-
plays the geographical distribution of county-level FI rates and HCC incidence rates per
100,000 people across counties within the SEER catchment areas in the contiguous United
States (excluding Hawaii).

Table 1. Characteristics of hepatocellular carcinoma cases, 21 SEER Registries, 2018–2021.

Sample Characteristics n (%) Mean (SD)

Patient-level characteristics
Age at diagnosis

<65 years 17,286 (45)
≥65 years 21,393 (55)

Sex
Female 9115 (24)
Male 29,564 (76)

Race and ethnicity
Hispanic 10,917 (28)

Non-Hispanic Asian or
Pacific Islander 4294 (11)

Non-Hispanic Black 4870 (12)
Non-Hispanic White 18,598 (48)

County-level
characteristics

Food insecurity rate, % 12.9 (3.6)
Binge drinking rate, % 17.6 (2.6)

Tobacco smoking rate, % 19.4 (4.3)
Obesity rate, % 36.0 (4.4)

Abbreviations: SD, standard deviation; SEER, Surveillance, Epidemiology, and End Results.

Overall, a 1-SD increase in county-level FI was associated with a 13% higher risk of
HCC, adjusting for the patient characteristics of sex, age at diagnosis, race, and ethnicity.
(Table 2, Model 1: IRR = 1.13, 95% CI = 1.08, 1.18). This association changed to an 8% higher
risk after further adjustment for county-level HCC risk factors, including binge drinking,
smoking, and obesity rates (Model 2: IRR = 1.08, 95% CI = 1.06, 1.10). When county-level FI
was categorized into tertiles, being in the highest versus lowest FI tertile was associated
with a 28% higher risk of HCC in the minimally adjusted model (Model 1: IRR = 1.28, 95%
CI = 1.10, 1.49; p-trend = 0.01), and a 12% higher risk in the fully adjusted model (Model 2:
IRR = 1.12, 95% CI = 0.96, 1.32; p-trend = 0.15).
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Figure 1. (a) County-level food insecurity rates and (b) county-level hepatocellular carcinoma
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Table 2. Association between county-level food insecurity and hepatocellular carcinoma risk esti-
mated from multi-level Poisson regression models, 21 SEER Registries, 2018–2021.

Measure of County-Level
Food Insecurity

Model 1 a Model 2 b

Cases IRR (95% CI) IRR (95% CI)

Continuous, per 1-SD c 38,679 1.13 (1.08, 1.18) 1.08 (1.06, 1.10)
Tertiles

Low (≤11.1%) 17,537 ref. ref.
Medium (>11.1 to <14.5%) 15,504 1.13 (1.00, 1.28) 1.07 (0.96, 1.19)

High (≥14.5%) 5638 1.28 (1.10, 1.49) 1.12 (0.96, 1.32)
p-trend 0.01 0.15

Abbreviations: CI, confidence interval; IRR, incidence rate ratio; Q, quartile; SD, standard deviation; SEER,
Surveillance, Epidemiology, and End Results. a Model 1 is adjusted for age at diagnosis, sex, race, and ethnicity.
b Model 2 is adjusted for Model 1 covariates and county-level rates of binge drinking, tobacco smoking, and
obesity. c SD = 3.6%.

As shown in Table 3, the association between county-level FI, modeled as a continuous
variable, and HCC risk did not statistically significantly differ by race and ethnicity (Model 2
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interaction term p-value = 0.69) or by sex (Model 2 interaction term p-value = 0.20). Higher
county-level FI was associated with higher HCC risk in all racial and ethnic groups except
for non-Hispanic Asian or Pacific Islander, as well as in both females and males. There was
a statistically significant multiplicative interaction between age at diagnosis and FI, such
that a 1-SD increase in county-level FI was associated with a 2% higher HCC risk in the
≥65 age group (Model 2: IRR = 1.02, 95% CI = 1.00, 1.05) and a 15% higher HCC risk in the
<65 age group (Model 2: IRR = 1.15, 95% CI = 1.11, 1.19; interaction term p-value < 0.001).
As shown in Figure 2, being in the highest versus lowest tertile of county-level FI was
associated with a 33% higher HCC risk in the <65 age group (Model 2: IRR = 1.33, 95%
CI = 1.15, 1.53), but no association was observed in the ≥65 age group (interaction term
p-value < 0.001).

Table 3. Association between county-level food insecurity, modeled as a continuous variable, and
hepatocellular carcinoma risk stratified by patient-level factors and estimated from multi-level Poisson
regression models, 21 SEER Registries, 2018-2021.

Stratification Group

Model 1 a Model 2 b

Interaction Term
p-Value

Interaction Term
p-ValueIRR (95% CI) c IRR (95% CI) c

Stratified by race and
ethnicity 0.51 0.69

Hispanic 1.12 (1.07, 1.18) 1.08 (1.06, 1.11)
Non-Hispanic API 1.12 (0.97, 1.28) 1.05 (0.87, 1.27)

Non-Hispanic Black 1.10 (1.03, 1.18) 1.06 (1.00, 1.11)
Non-Hispanic White 1.14 (1.06, 1.23) 1.09 (1.05, 1.13)

Stratified by sex 0.18 0.20
Female 1.11 (1.04, 1.17) 1.06 (1.02, 1.10)
Male 1.14 (1.09, 1.19) 1.09 (1.06, 1.11)

Stratified by age at
diagnosis <0.001 <0.001

<65 years 1.21 (1.16, 1.25) 1.15 (1.11, 1.19)
≥65 years 1.07 (1.02, 1.13) 1.02 (1.00, 1.05)

Abbreviations: API, Asian and Pacific Islander; CI, confidence interval; IRR, incidence rate ratio; SEER, Surveil-
lance, Epidemiology, and End Results. a Model 1 is adjusted for age at diagnosis, sex, race, and ethnicity. b Model
2 is adjusted for Model 1 covariates and county-level rates of binge drinking, tobacco smoking, and obesity.
c Effect estimates reflect the association between a 1-standard deviation change in county-level food insecurity
and hepatocellular carcinoma risk.
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Figure 2. Association between county-level food insecurity tertiles and hepatocellular carcinoma
risk stratified by age group at diagnosis and estimated from multi-level Poisson regression models,
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When stratified by stage at diagnosis, a 1-SD increase in county-level FI was associ-
ated with a 7%, 4%, and 16% higher risk of localized, regional, and distant stage HCC,
respectively, in the fully adjusted model (Table 4). Being in the highest versus lowest tertile
of county-level FI was associated with a 41% higher risk of distant stage HCC in the fully
adjusted model (Model 2: IRR = 1.41, 95% CI = 1.22, 1.62). No associations were found for
localized or regional stage HCC when FI was analyzed as a categorical variable.

Table 4. Association between county-level food insecurity and hepatocellular carcinoma risk stratified
by stage at diagnosis and estimated from multi-level Poisson regression models, 21 SEER Registries,
2018–2021.

Localized
(Cases = 19,228)

Regional
(Cases = 9990)

Distant
(Cases = 6168)

Measure of
County-Level

Food Insecurity

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

IRR (95% CI) IRR (95% CI) IRR (95% CI) IRR (95% CI) IRR (95% CI) IRR (95% CI)

Continuous,
per 1-SD c 1.10 (1.03, 1.16) 1.07 (1.02, 1.13) 1.11 (1.08, 1.13) 1.04 (1.01, 1.08) 1.24 (1.16, 1.33) 1.16 (1.11, 1.22)

Tertiles
Low (≤11.1%) ref. ref. ref. ref. ref. ref.
Medium (>11.1

to <14.5%) 1.07 (0.91, 1.26) 1.03 (0.88, 1.21) 1.11 (1.00, 1.22) 1.03 (0.94, 1.13) 1.26 (1.12, 1.42) 1.17 (1.07, 1.28)

High (≥14.5%) 1.20 (0.98, 1.46) 1.10 (0.90, 1.36) 1.19 (1.04, 1.37) 1.02 (0.86, 1.20) 1.66 (1.39, 1.99) 1.41 (1.22, 1.62)

Abbreviations: CI, confidence interval; IRR, incidence rate ratio; Q, quartile; SD, standard deviation; SEER,
Surveillance, Epidemiology, and End Results. c SD = 3.6%.

4. Discussion
This study provides some of the first data on the association between county-level FI

and HCC risk in the U. S. Overall, we observed that higher county-level FI was associated
with higher HCC risk after adjusting for patient characteristics (i.e., age at diagnosis, sex,
race, and ethnicity) and county-level HCC risk factors (i.e., binge drinking, smoking, and
obesity rates). This association was consistently observed in both males and females and
across different racial and ethnic groups. However, we found that the association differed
by age at diagnosis. Specifically, we found that higher county-level FI was associated
with higher HCC risk in the < 65 age group, but we did not find an association in the
≥65+ age group. These findings suggest that county-level FI may be a risk factor for HCC,
particularly for early-onset cases. We were unable to determine the reasons for the observed
age-specific differences in the association between FI and HCC risk due to the limitations
of the data available in our study population. One hypothesis is that these differences may
reflect the shift from a higher proportion of viral causes to a higher proportion of non-viral
causes, such as MASLD, in younger populations [12,14]. However, further research is
needed in clinically well-characterized populations to test this hypothesis. Nevertheless,
these findings support the need for enhancing food access through public and private
resources, which should be considered as part of prevention and control strategies for this
highly fatal disease.

This study provides some of the first data on the relationship between county-level FI
and HCC risk. However, previous studies have found that FI is associated with MASLD and
fibrosis, which are both established risk factors for HCC [46–51]. Although the mechanisms
by which FI may increase HCC risk are not fully understood, one key hypothesis involves
systemic inflammation. Repeated episodes of food scarcity and hunger may lead to chronic
inflammation, promoting central adiposity, insulin resistance [63], and liver damage [64,65].
Additionally, the stress of inadequate food access may elevate cortisol levels, further
increasing systemic inflammation [63]. Moreover, dietary changes associated with FI, such
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as higher consumption of fats, may alter gut microbiota [66], which can contribute to liver
inflammation and scarring [66–68]. This hypothesis is supported by evidence showing that
FI is linked to higher consumption of fats, added sugars, and total calories [69]. Studies
have also shown that lower vegetable intake [70,71] and higher saturated fat intake [72] are
associated with higher HCC risk. Further, certain dietary patterns, such as the Alternative
Healthy Eating Index-2010 (AHEI-2010), have been associated with HCC risk [73,74].
However, a previous ecological study found no association between county-level food
environments, defined by the availability of healthy and unhealthy food retailers, and HCC
risk [75], suggesting that access to healthy foods alone may not be sufficient to reduce HCC
risk. Further research is needed to better understand how FI, diet quality, and the food
environment interact to influence HCC risk.

Isolating the association between FI and HCC risk is challenging, especially in eco-
logical studies, because FI is closely intertwined with other social determinants of health
that may also contribute to HCC risk. For example, previous research has shown that
neighborhood-level poverty is associated with a higher HCC risk, even after adjusting for
race, ethnicity, and infections [76]. However, it remains unclear whether this association
is attributed to FI or influenced by other HCC-related risk factors, such as infections and
alcohol use [77]. Furthermore, poverty not only creates financial barriers to accessing
food but also limits access to essential medical resources, such as prescription medications
and preventive health care [78,79]. This lack of access is particularly important for people
with chronic liver disease, who are at increased risk for HCC [80–82]. Individuals with
greater financial resources, such as those with comprehensive health insurance, may be
more likely to access advanced screening technologies like Magnetic Resonance Imaging
with hepato-biliary contrast agents, which improve early detection of small liver tumors
and potentially lead to better outcomes [83]. This may be one potential explanation for
our finding that FI was associated only with distant-stage disease when stratified by stage
at diagnosis, potentially reflecting the impact of FI on access to quality medical care and
diagnostic delays. Additionally, underlying conditions associated with HCC risk, such as
MASLD, can themselves cause financial strain [84]. As a result, the relationship between
FI and HCC risk may be bi-directional, highlighting the need for longitudinal research to
better understand this association.

A key limitation of our study is its ecological design, which prevents us from drawing
conclusions about the relationship between FI and HCC risk at the individual level. Never-
theless, prior research supports the utility of ecological studies in identifying emerging risk
factors for cancers, like HCC, that are increasing over time [85]. Another limitation is the
potential for residual confounding, as we could not adjust for individual-level risk factors
for HCC, such as alcohol consumption, smoking, and obesity. However, we accounted for
these factors at the county-level and individual-level demographic information, including
age, sex, race, and ethnicity. We also lacked data on key precursors of HCC, such as viral
infections or MASLD; thus, we cannot determine the underlying causes of HCC in our
study population. Further research is needed to understand the mediating factors that may
explain the observed association between FI and HCC. Strengths of our study include the
large sample size of confirmed HCC cases from SEER population-based cancer registries,
which represent a substantial portion of the U.S. population. Additionally, we analyzed
data from a wide range of counties, capturing diverse levels of FI across the U.S.

5. Conclusions
In conclusion, this study supports an association between county-level FI and HCC

risk. If confirmed in other studies, these findings support the need for policies and interven-
tions that address FI, particularly in populations at increased risk for HCC. This includes
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screening for FI in health care settings, such as during routine hepatological clinical care [78].
Screening for FI [86] is essential for identifying at-risk individuals and connecting them to
local or federal food assistance programs and other community resources [87]. Community-
based initiatives, such as urban gardens [88] and tailored nutrition programs for chronic
disease management [89], could also play a key role in supporting and sustaining healthy
diets for individuals at increased risk for HCC. Such policies and practices are urgently
needed, especially as FI has become a growing public health concern in the U.S. due to
the socioeconomic impacts of the COVID-19 pandemic [90,91], which also significantly
disrupted HCC treatment and management [92].
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