Water Microbiology. Bacterial Pathogens and Water
Abstract
:1. Drinking Water as a Vehicle of Diseases
2. Cholera
2.1. The Genus Vibrio
2.2. The Species Vibrio Cholerae
2.3. Cholera
2.3.1. Characterization of the disease
2.3.2. Cholera toxin
2.3.3. Cholera pandemics and the emergence of El Tor biotype and O139 serovariety. New facts about cholera epidemiology
2.3.4. Genes for toxin and pili protein production
2.3.5. Ecology of the bacterium and the cycle of the disease
3. Salmonellosis
3.1. The Genus Salmonella. Pathogenicity of Main Serovars
3.2. Characterization of the Diseases
3.3. Ecology of Salmonellae and the Cycle of Salmonellosis
4. Shigellosis or Bacillary Dysentery
4.1. The Genus Shigella
4.2. Characterization of the Disease
4.3. Virulence Factors
4.4. Risk Factors
4.5. Shigellosis through the World
4.6. Ecology of Shigellae and the Cycle of Shigellosis
5. Pathogenic Escherichia coli Strains
5.1. Enterotoxigenic E. coli (ETEC) Strains
5.2. Enterohemorrhagic E. coli (EHEC) Strains
5.3. Enteroinvasive E. coli (EIEC) Strains
6. Emerging Waterborne Bacterial Pathogens
6.1. Mycobacterium Avium Complex (Mac)
6.2. Helicobacter Pylori
6.3. Aeromonas Hydrophyla
7. Microbiological Water Analysis
7.1. The Rationale of the Use of Fecal Indicator Bacteria
7.2. The Composition of Human and Animal Feces
7.3. Fecal Bacteria in Their Hosts and in the Environment
7.3.1. Bacteroides
7.3.2. Eubacterium
7.3.3. Bifidobacterium
7.3.4. Clostridia
7.3.5. Lactobacillus
7.3.6. Enterococci
7.3.7. Escherichia
7.3.8. Citrobacter
7.3.9. Klebsiella and Raoultella
7.3.10. Enterobacter
7.4. Origin of the Use of Fecal Indicator Bacteria
7.5. Fecal Indicator Bacteria
7.5.1. Coliforms
7.5.2. Streptococci and Enterococci
7.5.3. The use of ratios between indicator counts
7.5.4. Limitations of coliform and enterococcus counts as indicator of fecal pollution
7.5.5. Clostridium perfringens
7.5.6. Correlations between parameters used to assess fecal pollution
8. Fecal Indicator Chemical Compounds
9. Sources of Fecal Bacterial Pollution of Environmental Waters
9.1. Sources of Surface and Groundwater Contamination
9.2. Survival in Surface Water
9.3. Survival in Groundwater
10. Which Indicators of Fecal Pollution Should be Used?
11. Conclusions
- Safe drinking water for all is one of the major challenges of the 21st century.
- Microbiological control of drinking water should be the norm everywhere.
- Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by the culture methods. On-line monitoring of glucuronidase activity is currently too insensitive to replace culture based detection of E. coli but is a valuable complementary tool for high temporal resolution monitoring. Whenever financial resources are available, coliform determinations should be complemented with the quantification of enterococci.
- More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks.
- Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.
References
- WHO (World Health Organization). Guidelines for Drinking-water Quality, Incorporating 1st and 2nd Addenda, Volume 1, Recommendations, 3rd ed; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Fenwick, A. Waterborne Diseases—Could they be Consigned to History? Science 2006, 313, 1077–1081. [Google Scholar]
- George, I; Crop, P; Servais, P. Use of β-D-Galactosidase and β-D-Glucuronidase Activities for Quantitative Detection of Total and Faecal Coliforms in Wastewater. Can. J. Microbiol 2001, 47, 670–675. [Google Scholar]
- Grabow, WOK. Waterborne Diseases: Update on Water Quality Assessment and Control. Water SA 1996, 22, 193–202. [Google Scholar]
- Seas, C; Alarcon, M; Aragon, JC; Beneit, S; Quiñonez, M; Guerra, H; Gotuzzo, E. Surveillance of Bacterial Pathogens Associated with Acute Diarrhea in Lima, Peru. Int. J. Infect. Dis 2000, 4, 96–99. [Google Scholar]
- Medema, GJ; Payment, P; Dufour, A; Robertson, W; Waite, M; Hunter, P; Kirby, R; Anderson, Y. Safe drinking water: an ongoing challenge. In Assessing Microbial Safety of Drinking Water Improving Approaches and Method; WHO & OECD, IWA Publishing: London, UK, 2003; pp. 11–45. [Google Scholar]
- Farmer, JJ; Hickam-Brenner, FW. The Genus Vibrio and Phtotobacterium. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New-York, NY, USA, 2003. [Google Scholar]
- Farmer, JJ; Janda, JM; Brenner, FW; Cameron, DN; Birkhead, KM. Genus Vibrio. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; Brenner, DJ, Krieg, NR, Staley, JT, Eds.; Springer: New York, NY, USA, 2005; Volume 2, Part B, pp. 494–546. [Google Scholar]
- DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH). Bacterial Nomenclature Up-to-Date (Approved Lists; Validation Lists); DSMZ: Braunschweig, Germany, 2010; List 05/2010. [Google Scholar]
- Sack, DA; Sack, RB; Nair, GB; Siddique, AK. Cholera. Lancet 2004, 363, 223–233. [Google Scholar]
- Todar, K. Vibrio cholerae and asiatic cholera. Todar’s Online Textbook of Bacteriology. 2009. Available online: http://www.textbookofbacteriology.net/cholera.html (assessed on 4 May 2010).
- Ali, M; Emch, M; Yunus, M; Sack, RB. Are the Environmental Niches of Vibrio cholerae 0139 Different from those of Vibrio cholerae 01 El Tor? Int. J. Infect. Dis 2001, 5, 214–219. [Google Scholar]
- Ramamurthy, T; Yamasaki, S; Takeda, Y; Nair, GB. Vibrio cholerae O139 Bengal: Odyssey of a Fortuitous Variant. Microbes Infect 2003, 5, 329–344. [Google Scholar]
- Arbora, S; Crum, S. Medical Geography and Cholera in Perú; The Geographer’s Craft Project, Department of Geography, The University of Colorado at Boulder: Boulder, CO, USA, 1996. Available online: http://www.colorado.edu/geography/gcraft/warmup/cholera/cholera_f.html (assessed on 4 May 2010).
- Glass, RI; Claeson, M; Blake, PA; Waldmann, RJ; Pierce, NF. Cholera in Africa: Lessons on Transmission and Control for Latin America. Lancet 1991, 338, 791–795. [Google Scholar]
- Glass, RI; Libel, M; Brandling-Bennet, AD. Epidemic Cholera in the Americas. Science 1992, 256, 1524–1525. [Google Scholar]
- Tamplin, ML; Parodi, CC. Environmental Spread of Vibrio cholerae in Peru. Lancet 1991, 338, 1216–1217. [Google Scholar]
- Steinberg, EB; Greene, KD; Bopp, CA; Cameron, DN; Wells, JG; Mintz, ED. Cholera in the United States, 1995–2000: Trends at the End of the Twentieth Century. J. Infect. Dis 2001, 184, 799–802. [Google Scholar]
- Meibom, KL; Blokesch, M; Dolganov, NA; Wu, C-Y; Schoolnik, GK. Chitin Induces Natural Competence in Vibrio cholerae. Science 2005, 310, 1824–1827. [Google Scholar]
- Waldor, MK; Mekalanos, JJ. Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin. Science 1996, 272, 1910–1914. [Google Scholar]
- Hervio-Heath, D; Colwell, RR; Derrien, A; Robert-Pillot, A; Fournier, JM; Pommepuy, M. Occurrence of Pathogenic Vibrios in Coastal Areas of France. J. Appl. Microbiol 2002, 92, 1123–1135. [Google Scholar]
- Alam, M; Hasan, NA; Sadique, A; Bhuiyan, NA; Ahmed, KU; Nusrin, S; Nair, GB; Siddique, AK; Sack, RB; Sack, DA; Huq, A; Colwell, RR. Seasonal Cholera Caused by Vibrio cholerae Serogroups O1 and O139 in the Coastal Aquatic Environment of Bangladesh. Appl. Environ. Microbiol 2006, 72, 4096–4104. [Google Scholar]
- Bhanumathi, R; Sabeena, F; Isac, SR; Shukla, BN; Singh, DV. Molecular Characterization of Vibrio cholerae O139 Bengal Isolated from Water and the Aquatic Plant Eichhornia crassipes in the River Ganga, Varanasi, India. Appl. Environ. Microbiol 2003, 69, 2389–2394. [Google Scholar]
- Munro, PM; Colwell, RR. Fate of Vibrio cholerae O1 in Seawater Microcosms. Water Res 1996, 30, 47–50. [Google Scholar]
- Alam, M; Sultana, M; Nair, GB; Sack, RB; Sack, DA; Siddique, AK; Ali, A; Huq, A; Colwell, RR. Toxigenic Vibrio cholerae in the Aquatic Environment of Mathbaria, Bangladesh. Appl. Environ. Microbiol 2006, 72, 2849–2855. [Google Scholar]
- Chaiyanan, S; Chaiyanan, S; Huq, A; Maugel, T; Colwell, RR. Viability of the Nonculturable Vibrio cholerae O1 and O139 System. Appl. Microbiol 2001, 24, 331–341. [Google Scholar]
- Molloy, S. Biofilms in the Time of Cholera. Nature Rev. Microbiol 2007, 5, 906–907. [Google Scholar]
- Le Minor. The genus Salmonella. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New York, NY, USA, 2003. [Google Scholar]
- Popoff, MY; Le Minor, LE. Genus Salmonella. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; Brenner, DJ, Krieg, NR, Staley, JT, Eds.; Springer: New York, NY, USA, 2005; Volume 2, Part B, pp. 764–799. [Google Scholar]
- Tindall, BJ; Grimont, PAD; Garrity, GM; Euzéby, JP. Nomenclature and Taxonomy of the Genus Salmonella. Int. J. Syst. Evolut. Microbiol 2005, 55, 521–524. [Google Scholar]
- Ben Aissa, R; Al-Gallas, N; Troudi, H; Belhadj, N; Belhadj, A. Trends in Salmonella enterica Serotypes Isolated from Human, Food, Animal, and Environment in Tunisia, 1994–2004. J. Infect 2007, 55, 324–339. [Google Scholar]
- Arvanitidou, M; Kanellou, K; Vagiona, DG. Diversity of Salmonella spp. and Fungi in Northern Greek Rivers and their Correlation to Faecal Pollution Indicators. Environ. Res 2005, 99, 278–284. [Google Scholar]
- Kapperud, G; Rørvik, LM; Hasseltvedt, V; Høiby, EA; Iversen, BG; Staveland, K; Johnsen, G; Leitão, J; Herikstad, H; Andersson, Y; Langeland, G; Gondrosen, B; Lassen, J. Outbreak of Shigella sonnei Infection Traced to Imported Iceberg Lettuce. J. Clin. Microbiol 1995, 33, 609–614. [Google Scholar]
- Strockbine, NA; Maurelli, AT. Genus Shigella. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; Brenner, DJ, Krieg, NR, Staley, JT, Eds.; Springer: New York, NY, USA, 2005; Volume 2, Part B, pp. 811–823. [Google Scholar]
- Emch, M; Ali, M; Yunus, M. Risk Areas and Neighborhood-Level Risk Factors for Shigella dysenteriae 1 and Shigella flexneri. Health Place 2008, 14, 96–105. [Google Scholar]
- Germani, Y; Sansonetti, PJ. The Genus Shigella. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New York, NY, US, 2003. [Google Scholar]
- Hale, TL. Genetic Basis of Virulence in Shigella Species. Microbiol. Rev 1991, 55, 206–224. [Google Scholar]
- Todar, K. Shigella and shigellosis. Todar’s Online Textbook of Bacteriology. 2009. Available online: http://www.textbookofbacteriology.net/Shigella.html (assessed on 1 September 2010).
- Tetteh, GL; Beuchat, LR. Survival, Growth, and Inactivation of Acid-Stressed Shigella flexneri as Affected by pH and Temperature. Int. J. Food Microbiol 2003, 87, 131–138. [Google Scholar]
- Chompook, P; Todd, J; Wheeler, JG; von Seidlein, L; Clemens, J; Chaicumpa, W. Risk Factors for Shigellosis in Thailand. Int. J. Infect. Dis 2006, 10, 425–433. [Google Scholar]
- Faruque, SM; Khan, R; Kamruzzman, M; Yamasaki, S; Ahmad, QS; Azim, T; Nair, GB; Takeda, Y; Sack, DA. Isolation of Shigella dysenteriae type 1 and S. flexneri Strains from Surface Waters in Bangladesh: Comparative Molecular Analysis of Environmental Shigella Isolates versus Clinical Strains. Appl. Environ. Microbiol 2002, 68, 3908–3913. [Google Scholar]
- Bettelheim, KA. The genus Escherichia. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New York, NY, USA, 2003. [Google Scholar]
- Scheutz, F; Strockbine, NA. Genus Escherichia. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; Brenner, DJ, Krieg, NR, Staley, JT, Eds.; Springer: New York, NY, USA, 2005; Volume 2, Part B, pp. 607–623. [Google Scholar]
- World Health Organization. Enterotoxigenic Escherichia coli (ETEC). Diarrhoeal Diseases. Available online: http://www.who.int/vaccine_research/diseases/diarrhoeal/en/index4.html (assessed on 4 September 2010).
- Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document. Bacterial Waterborne Pathogens. Current and Emerging Organisms of Concern; Health Canada: Ottawa, ON, Canada, 2006. [Google Scholar]
- World Health Organization. Enterohaemorrhagic Escherichia coli (EHEC). Fact sheet N°125; Available online: http://www.who.int/mediacentre/factsheets/fs125/en/ (assessed on 4 September 2010).
- Enteroinvasive Escherichia coli (EIEC); US Department of Health & Human Services, U.S. Food and Drug Administration. Available online: http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm071298.htm (assessed on 4 September 2010).
- WHO (World Health Organization). Pathogenic Mycobacteria in Water: A Guide to Public Health Consequences, Monitoring and Management; Pedley, S, Bartram, J, Rees, G, Dufour, A, Cotruvo, J, Eds.; IWA Publishing: London, UK, 2004. [Google Scholar]
- Holtzman, A; Aronson, T; Froman, S; Berlin, OGW; Dominguez, P; Kunkel, KA; Overturf, G; Stelma, G; Smith, C; Yakrus, M. The Isolation and Identification of Mycobacterium avium Complex (MAC) Recovered from Los Angeles Potable Water, a Possible Source of Infection in AIDS Patients. Int. J. Environ. Health Res 1994, 4, 63–72. [Google Scholar]
- Von Reyn, CF; Maslow, JN; Barber, TW; Falkinham, JO; Arbeit, RD. Persistent Colonisation of Potable Water, a Source of Mycobacterium avium Infection in AIDS. Lancet 1994, 343, 1137–1141. [Google Scholar]
- Gião, MS; Azevedo, NF; Wilks, SA; Vieira, MJ; Keevil, CW. Persistence of Helicobacter pylori in Heterotrophic Drinking Water Biofilms. Appl. Environ. Microbiol 2008, 74, 5898–5904. [Google Scholar]
- Hulten, K; Han, SW; Enroth, H; Klein, PD; Opekun, AR; Gilman, RH; Evans, DG; Engstrand, L; Graham, DY; El-Zaatari, FA. Helicobacter pylori in the Drinking Water in Peru. Gastroenterology 1996, 110, 1031–1035. [Google Scholar]
- Handfield, M; Simard, P; Couillard, M; Letarte, R. Aeromonas hydrophila Isolated from Food and Drinking Water: Hemagglutination, Hemolysis, and Cytotoxicity for a Human Intestinal Cell Line (HT-29). Appl. Environ. Microbiol 1996, 62, 3459–3461. [Google Scholar]
- Daskalov, H. The Importance of Aeromonas hydrophila in Food Safety. Food Control 2006, 17, 474–483. [Google Scholar]
- Chauret, C; Volk, C; Creason, R; Jarosh, J; Robinson, J; Warnes, C. Detection of Aeromonas hydrophila in a Drinking-Water Distribution System: A Field and Pilot Study. Can. J. Microbiol 2001, 47, 782–786. [Google Scholar]
- Fernández, MC; Beatriz, N; Giampaolo, SB; Ibañez, M; Guagliardo, V; Esnaola, MM; Conca, L; Valdivia, P; Stagnaro, SM; Chiale, C; Frade, H. Aeromonas Hydrophila and its Relation with Drinking Water Indicators of Microbiological Quality in Argentine 2000. Genetica 2000, 108, 35–40. [Google Scholar]
- George, I; Servais, P. Sources et Dynamique des Coliformes dans le Basin de la Sein; Rapport de Synthèse; Programme PIREN-Seine 1998–2001, Sources et dynamique des coliformes dand le bassin de la Seine; C. N. R. S.: Paris, France, 2002. [Google Scholar]
- Gauthier, F; Archibald, F. The Ecology of “Faecal Indicator” Bacteria Commonly Found in Pulp and Paper Mill Water Systems. Water Res 2001, 35, 2207–2218. [Google Scholar]
- Wilkes, G; Edge, T; Gannon, V; Jokinen, C; Lyautey, E; Medeiros, D; Neumann, N; Ruecker, N; Topp, E; Lapena, DR. Seasonal Relationships Among Indicator Bacteria, Pathogenic Bacteria, Cryptosporidium Oocysts, Giardia Cysts, and Hydrological Indices for Surface Waters Within an Agricultural Landscape. Water Res 2009, 43, 2209–2223. [Google Scholar]
- Saarela, M; Lähteenmäki, L; Crittenden, R; Salminen, S; Mattila-Sandholm, T. Gut Bacteria and Health Foods—The European Perspective. Int. J. Food Microbiol 2002, 78, 99–117. [Google Scholar]
- Hawksworth, G; Drasar, BS; Hill, MJ. Intestinal Bacteria and the Hydrolysis of Glycoside Bonds. J. Med. Microbiol 1971, 4, 451–459. [Google Scholar]
- Hopkins, MJ; Sharp, R; Macfarlane, GT. Variation in Human Intestinal Microbiota with Age. Digest Liver Dis 2002, 34(Suppl.2), S12–S18. [Google Scholar]
- Leclerc, H; Moriamez, JC. Étude Quantitative de la Flore Fécale de l’Adulte et du Nourrison Alimenté Artificiellement. Path. Bio 1980, 28, 217–226. [Google Scholar]
- Wilson, M. Microbial Inhabitants of Humans Their Ecology and Role in Health and Disease; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Sinton, LW; Finlay, RK; Hannah, DJ. Distinguishing Human from Faecal Contamination in Water: A Review. New Zealand J. Marine Freshwater Res 1998, 32, 323–348. [Google Scholar]
- Biavati, B; Mattarelli, P. The family Bifidobacteriaceae. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New York, NY, USA, 2003. [Google Scholar]
- Hippe, H; Andreesen, JR; Gottschalk, G. The genus Clostridium—Nonmedical. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New York, NY, USA, 2003. [Google Scholar]
- Rainey, FA; Hollen, BJ; Small, A. Genus Clostridium. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; De Vos, P, Garrity, GM, Jones, D, Krieg, NR, Ludwig, W, Rainey, FA, Schleifer, K-H, Whitman, WB, Eds.; Springer: New York, NY, USA, 2009; Volume 3, pp. 738–828. [Google Scholar]
- Smith, LDS. The genus Clostridium—Medical. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New York, NY, USA, 2003. [Google Scholar]
- Bezirtzoglou, E; Panagiou, A; Savvaidis, I; Maipa, V. Distribution of Clostridium perfringens in Polluted Lake Environments. Anaerobe 1997, 3, 169–172. [Google Scholar]
- Švec, P; Devriese, LA. Genus Enterococcus. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; DE Vos, P, Garrity, GM, Jones, D, Krieg, NR, Ludwig, W, Rainey, FA, Schleifer, K-H, Whitman, WB, Eds.; Springer: New York, NY, USA, 2009; Volume 3, pp. 594–607. [Google Scholar]
- Pinto, B; Pierotti, R; Canale, G; Reali, D. Characterization of ‘Faecal Streptococci’ as Indicators of Faecal Pollution and Distribution in the Environment. Lett. Appl. Microbiol 1999, 29, 258–263. [Google Scholar]
- Bergey’s Manual of Determinative Bacteriology, 9th ed; Holt, JG; et al. (Eds.) Williams & Wilkins: Baltimore, MD, USA, 1994; pp. 175–190.
- Gordon, DM; FitzGibbon, F. The Distribution of Enteric Bacteria from Australian Mammals: Host and Geographical Effects. Microbiology 1999, 145, 2663–2671. [Google Scholar]
- Frederiksen, W; Søgaard, P. The genus Citrobacter. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New York, NY, USA, 2003. [Google Scholar]
- Frederiksen, W. Genus Citrobacter. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; Brenner, DJ, Krieg, NR, Staley, JT, Eds.; Springer: New York, NY, USA, 2005; Volume 2, Part B, pp. 651–656. [Google Scholar]
- Grimont, F; Grimont, PAD; Richard, C. The Genus Klebsiella. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New York, NY, USA, 2003. [Google Scholar]
- Grimont, PAD; Grimont, F. Genus Klebsiella. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; Brenner, DJ, Krieg, NR, Staley, JT, Eds.; Springer: New York, NY, USA, 2005; Volume 2, Part B, pp. 685–693. [Google Scholar]
- Grimont, F; Grimont, PAD. The Genus Enterobacter. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Communityelectronic release 314,, 3th ed; Dworkin, M, Falkow, S, Rosenberg, E, Eds.; Springer-Verlag: New York, NY, USA, 2003. [Google Scholar]
- Grimont, PAD; Grimont, F. Genus Enterobacter. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; Brenner, DJ, Krieg, NR, Staley, JT, Eds.; Springer: New York, NY, USA, 2005; Volume 2, Part B, pp. 661–669. [Google Scholar]
- Lockhart, SR; Abramson, MA; Beekmann, SE; Gallagher, G; Riedel, S; Diekema, DJ; Quinn, JP; Doern, GV. Antimicrobial Resistance Among Gram-negative Bacilli Causing Infections in Intensive Care Unit Patients in the United States between 1993 and 2004. J. Clin. Microbiol 2007, 45, 3352–3359. [Google Scholar]
- Hidron, AI; Edwards, JR; Patel, J; Horan, TC; Sievert, DM; Pollock, DA. NHSN Annual Update: Antimicrobial Resistant Pathogens Associated with Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol 2008, 29, 996–1011. [Google Scholar]
- Ashbolt, NJ; Grabow, OK; Snozzi, M. Indicators of microbial water quality. In Water Quality: Guidelines, Standards and Health; Fewtrell, L, Bartram, J, Eds.; World Health Organization (WHO), IWA Publishing: London, UK, 2001; pp. 289–316. [Google Scholar]
- Payment, P; Waite, M; Dufour, A. Introducing parameters for the assessment of drinking water quality. In Assessing Microbial Safety of Drinking Water Improving Approaches and Method; WHO & OECD, IWA Publishing: London, UK, 2003; pp. 47–77. [Google Scholar]
- Cabral, JP; Marques, C. Faecal Coliform Bacteria in Febros river (Northwest Portugal): Temporal Variation, Correlation with Water Parameters, and Species Identification. Environ. Monit. Assess 2006, 118, 21–36. [Google Scholar]
- Villarino, A; Toribio, AL; Brena, BM; Grimont, PAD; Bouvet, OMM. On the Relationship Between the Physiological State of Bacteria and Rapid Enzymatic Assays of Faecal Coliforms in the Environment. Biotechnol. Lett 2003, 25, 1329–1334. [Google Scholar]
- George, I; Petit, M; Servais, P. Use of Enzymatic Methods for Rapid Enumeration of Coliforms in Freshwaters. Lett. Appl. Microbiol 2000, 88, 404–413. [Google Scholar]
- George, I; Petit, M; Theate, C; Servais, P. Distribution of Coliforms in the Seine River and Estuary (France) Studied by Rapid Enzymatic Methods and Plate Counts. Estuaries 2001, 24, 994–1002. [Google Scholar]
- Nelis, H; van Poucke, S. Enzymatic Detection of Coliforms and Escherichia coli Within 4 Hours. Water, Air, and Soil Pollution 2000, 123, 43–52. [Google Scholar]
- Rompré, A; Servais, P; Baudart, J; de-Roubin, M-R; Laurent, P. Detection and Enumeration of Coliforms in Drinking Water: Current Methods and Emerging Approaches. J. Microbiol. Method 2002, 49, 31–54. [Google Scholar]
- Van Poucke, SO; Nelis, HJ. Rapid Detection of Fluorescent and Chemiluminescent Total Coliforms and Escherichia coli on Membrane Filters. J. Microbiol. Method 2000, 42, 233–244. [Google Scholar]
- Kämpfer, P; Rauhoff, O; Dott, W. Glycosidase Profiles of Members of the Family Enterobacteriaceae. J. Clin. Microbiol 1991, 29, 2877–2879. [Google Scholar]
- Kilian, M; Bülow, P. Rapid Diagnoses of Enterobacteriaceae. I. Detection of Bacterial Glycosidases. Acta Pathol. Microbiol. Scandinavica 1976, 84, 245–251. [Google Scholar]
- Muytjens, HL; van der Ros-van de Repe, J; nan Druten, HAM. Enzymatic Profiles of Enterobacter sakazakii and Related Species with Special Reference to the α-Glucosidase Reaction and Reproducibility of the Test System. J. Clin. Microbiol 1984, 20, 684–686. [Google Scholar]
- Tryland, I; Fiksdal, L. Enzyme Characteristics of β-D-Galactosidase- and β-D-Glucuronidase-Positive Bacteria and their Interference in Rapid Methods for Detection of Waterborne Coliforms and Escherichia coli. Appl. Environ. Microbiol 1998, 64, 1018–1023. [Google Scholar]
- Köster, W; Egli, T; Ashbolt, N; Botzenhart, K; Burlion, N; Endo, T; Grimont, P; Guillot, E; Mabilat, C; Newport, L; Niemi, M; Payment, P; Prescott, A; Renaud, P; Rust, A. Analytical methods for microbiological water quality testing. In Assessing Microbial Safety of Drinking Water Improving Approaches and Method; WHO & OECD, IWA Publishing: London, UK, 2003; pp. 237–292. [Google Scholar]
- Manafi, M; Kneifel, W; Bascomb, S. Fluorogenic and Chromogenic Substrates Used in Bacterial Diagnostics. Microbiol. Rev 1991, 55, 335–348. [Google Scholar]
- Geissler, K; Manafi, M; Amorós, I; Alonso, JL. Quantitative Determination of Total Coliforms and Escherichia coli in Marine Waters with Chromogenic and Fluorogenic Media. J. Appl. Microbiol 2000, 88, 280–285. [Google Scholar]
- Byamukama, D; Kansiime, F; Mach, RL; Farnleitner, AH. Determination of Escherichia coli Contamination with Chromocult Coliform Agar Showed a High Level of Discrimination Efficiency for Differing Faecal Pollution Levels in Tropical Waters of Kampala, Uganda. Appl. Environ. Microbiol 2000, 66, 864–868. [Google Scholar]
- Eccles, JP; Searle, R; Holt, D; Dennis, PJ. A Comparison of Methods Used to Enumerate Escherichia coli in Conventionally Treated Sewage Sludge. J. App. Microbiol 2004, 96, 375–383. [Google Scholar]
- Farnleitner, AH; Hocke, L; Beiwl, C; Kavka, GG; Zechmeister, T; Kirschner, AKT; Mach, RL. Rapid Enzymatic Detection of Escherichia coli Contamination in Polluted River Water. Lett. Appl. Microbiol 2001, 33, 246–250. [Google Scholar]
- Edberg, SC; Kontnick, CM. Comparison of β-Glucuronidase-Based Substrate Systems for Identification of Escherichia coli. J. Clin. Microbiol 1986, 24, 368–371. [Google Scholar]
- Leclerc, H; Mossel, DAA; Edberg, SC; Struijk, CB. Advances in the Bacteriology of the Coliform Group: their Suitability as Markers of Microbial Water Safety. Ann. Rev. Microbiol 2001, 55, 201–234. [Google Scholar]
- Klein, G. Taxonomy, Ecology and Antibiotic Resistance of Enterococci from Food and the Gastro-Intestinal Tract. Int. J. Food Microbiol 2003, 88, 123–131. [Google Scholar]
- Kühn, I; Iversen, A; Burman, LG; Olsson-Liljequist, B; Franklin, A; Finn, M; Aarestrup, F; Seyfarth, AM; Blanch, AR; Vilanova, X; Taylor, H; Caplin, J; Moreno, MA; Dominguez, L; Herrero, IA; Möllby, R. Comparison of Enterococcal Populations in Animals, Humans, and the Environment—An European Study. Int. J. Food Microbiol 2003, 88, 133–145. [Google Scholar]
- Wheeler, AL; Hartel, PG; Godfrey, DG; Hill, JL; Segars, WI. Potentital of Enterococcus faecalis as a Human Fecal Indicator for Microbial Source Tracking. J. Environ. Qual 2002, 31, 1286–1293. [Google Scholar]
- Geldreich, EE. Fecal Coliform and Fecal Streptococcus Density Relationships in Waste Discharges and Receiving Waters. Crit. Rev. Environ. Control 1976, 6, 349–369. [Google Scholar]
- Doran, JW; Linn, DM. Bacteriological Quality of Runoff Water from Pasteureland. Appl. Environ. Microbiol 1979, 37, 985–991. [Google Scholar]
- Caplenas, NJ; Kanarek, MS. Thermotolerant Non-Fecal Source of Klebsiella pneumoniae: Validity of the Fecal Coliform Test in Recreational Waters. Am. J. Public Health 1984, 74, 1273–1275. [Google Scholar]
- Gauthier, F; Neufeld, JD; Driscoll, BT; Archibald, FS. Coliform Bacteria and Nitrogen Fixation in Pulp and Paper Mill Effluent Treatment Systems. Appl. Environ. Microbiol 2000, 66, 5155–5160. [Google Scholar]
- Corso, PS; Kramer, MH; Blair, KA; Addiss, DG; Davis, JP; Haddix, AC. Cost of Illness in the 1993 Waterborne Cryptosporidium Outbreak, Milwaukee, Wisconsin. Emerg. Inf. Dis 2003, 9, 426–431. [Google Scholar]
- MacKenzie, WR; Hoxie, NJ; Proctor, ME; Gradus, MS; Blair, KA; Peterson, DE; Kazmierczak, JJ; Addiss, DG; Fox, KR; Rose, JB; Davis, JP. A Massive Outbreak in Milwaukee of Cryptosporidium Infection Transmitted Through the Public Water Supply. N. Engl. J. Med 1994, 331, 161–167. [Google Scholar]
- Vilanova, X; Manero, A; Cerdà-Cuéllar, M; Blanch, AR. The Composition and Persistence of Faecal Coliforms and Enterococcal Populations in Sewage Treatment Plants. J. Appl. Microbiol 2004, 96, 279–288. [Google Scholar]
- Araujo, M; Sueiro, RA; Gómez, MJ; Garrido, MJ. Enumeration of Clostridium perfringens Spores in Groundwater Samples: Comparison of Six Culture Media. J. Microbiol. Methods 2004, 57, 175–180. [Google Scholar]
- Charriere, G; Mossel, DAA; Beaudeau, P; Leclerc, H. Assessment of the Marker Value of Various Components of the Coli-Aerogenes Group of Enterobacteriaceae and of a Selection of Enterococcus spp. for the Official Monitoring of Drinking Water Supplies. J. Appl. Bacteriol 1994, 76, 336–344. [Google Scholar]
- Martins, MT; Sato, MIZ; Alves, MN; Stoppe, NC; Prado, VM; Sanchez, PS. Assessment of Microbiological Quality for Swimming Pools in South America. Water Res 1995, 29, 2417–2420. [Google Scholar]
- Ferguson, CM; Coote, BG; Ashbolt, NJ; Stevenson, IM. Relationships Between Indicators, Pathogens and Water Quality in an Estuary System. Water Res 1996, 30, 2045–2054. [Google Scholar]
- Medema, GJ; van Asperen, IA; Havelaar, AH. Assessment of the Exposure of Swimmers to Microbiological Contaminants in Fresh Waters. Water Sci. Technol 1997, 35, 157–163. [Google Scholar]
- Polo, F; Figueras, MJ; Inza, I; Sala, J; Fleisher, JM; Guarro, J. Relationship Between Presence of Salmonella and Indicators of Faecal Pollution in Aquatic Habitats. FEMS Microbiol. Lett 1998, 160, 253–256. [Google Scholar]
- Noble, RT; Leecaster, MK; McGee, CD; Weisberg, SB; Ritter, K. Comparison of Bacterial Indicator Analysis Methods in Stormwater-Affected Coastal Waters. Water Res 2004, 38, 1183–1188. [Google Scholar]
- Harwood, VJ; Levine, AD; Scott, TM; Chivukula, V; Lukasik, J; Farrah, SR; Rose, JB. Validity of the Indicator Organism Paradigm for Pathogen Reduction in Reclaimed Water and Public Health Protection. Appl. Environ. Microbiol 2005, 71, 3163–3170. [Google Scholar]
- Touron, A; Berthe, T; Gargala, G; Fournier, M; Ratajczak, M; Servais, P; Petit, F. Assessment of Faecal Contamination and the Relationship Between Pathogens and Faecal Bacterial Indicators in an Estuarine Environment (Seine, France). Mar. Pollut. Bull 2007, 54, 1441–1450. [Google Scholar]
- Garrido-Pérez, MC; Anfuso, E; Acevedo, A; Perales-Vargas-Machuca, JA. Microbial Indicators of Faecal Contamination in Waters and Sediments of Beach Bathing Zones. Int. J. Hyg. Environ. Health 2008, 211, 510–517. [Google Scholar]
- Ashbolt, N; Fujioka, R; Glymph, T; McGee, C; Schaub, S; Sobsey, M; Toranzos, G. Pathogen indicators, and indicators of fecal contamination. In Report of the Experts Scientific Workshop on Critical Research Needs for the Development of New or Revised Recreational Water Quality; EPA 823-R-07–006; U.S. Environmental Protection Agency, Office of Water, Office of Research and Development: Warrenton, VA, 2007; Chapter 2,; pp. 35–56. [Google Scholar]
- Ferreira, AP. Caffeine as an Environmental Indicator for Assessing Urban Aquatic Ecosystems. Cad. Saúde Pública 2005, 21, 1884–1892. [Google Scholar]
- Gardinali, PR; Zhao, X. Trace Determination of Caffeine in Surface Water Samples by Liquid Chromatography-Atmospheric Pressure Chemical Ionization–Sass spectrometry (LC-APCI-MS). Environ. Int 2002, 28, 521–528. [Google Scholar]
- Peeler, KA; Opsahl, SP; Chanton, JP. Tracking Anthropogenic Inputs Using Caffeine, Indicator Bacteria, and Nutrients in Rural Freshwater and Urban Marine Systems. Environ. Sci. Technol 2006, 40, 7616–7622. [Google Scholar]
- Scott, TM; JB; Rose, TM; Jenkins, S; Farrah, R; Lukasik, J. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol 2002, 68, 5796–5803. [Google Scholar]
- Wu, J; Yue, J; Hu, R; Yang, Z; Zhang, L. Use of Caffeine and Human Pharmaceutical Compounds to Identify Sewage Contamination. World Acad. Sci. Eng. Technol 2008, 44, 438–442. [Google Scholar]
- Isobe, KO; Tarao, M; Chiem, NH; Minh, LY; Takada, H. Effect of Environmental Factors on the Relationship between Concentrations of Coprostanol and Fecal Indicator Bacteria in Tropical (Mekong Delta) and Temperate (Tokyo) Freshwaters. Appl. Environ. Microbiol 2004, 70, 814–821. [Google Scholar]
- Medema, GJ; Shaw, S; Waite, M; Snozzi, M; Morreau, A; Grabow, W. Catchment characteristics and source water quality. In Assessing Microbial Safety of Drinking Water Improving Approaches and Method; WHO & OECD, IWA Publishing: London, UK, 2003; pp. 111–158. [Google Scholar]
- EPA. Source Water Protection Practices Bulletin. Managing Stormwater Runoff to Prevent Contamination of Drinking Water; Office of Water (4606); United States Environmental Protection Agency (EPA): Washington, DC, USA, 2009. [Google Scholar]
- Ferguson, DM; Moore, DF; Getrich, MA; Zhowandai, MH. Enumeration and Speciation of Enterococci Found in Marine and Intertidal Sediments and Coastal Water in Southern California. J. Appl. Microbiol 2005, 99, 598–608. [Google Scholar]
- Boualam, M; Mathieu, L; Fass, S; Cavard, J; Gatel, D. Relationship between Coliform Culturability and Organic Matter in Low Nutritive Waters. Water Res 2002, 36, 2618–2626. [Google Scholar]
- Boualam, M; Fass, S; Saby, S; Lahoussine, V; Cavard, J; Gatel, D; Mathieu, L. Organic Matter Quality and Survival of Coliforms in Low-Nutrient Waters. J. AWWA 2003, 95, 119–126. [Google Scholar]
- Baudišová, D. Evaluation of Escherichia coli as the Main Indicator of Faecal Pollution. Water Sci. Technol 1997, 35, 333–336. [Google Scholar]
- Edberg, SC; Rice, EW; Karlin, RJ; Allen, MJ. Escherichia coli: The Best Biological Drinking Water Indicator for Public Health Protection. J. Appl. Microbiol 2000, 88, 106S–116S. [Google Scholar]
- Byappanahalli, MN; Whitman, RL; Shively, DA; Sadowsky, MJ; Ishii, S. Population Structure, Persistence, and Seasonality of Autochthonous Escherichia coli in Temperate, Coastal Forest Soil from a Great Lakes Watershed. Environ. Microbiol 2006, 8, 504–513. [Google Scholar]
- Ishii, S; Yan, T; Shively, DA; Byappanahalli, MN; Whitman, RL; Sadowsky, MJ. Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan. Appl. Environ. Microbiol 2006, 72, 4545–4553. [Google Scholar]
- Ishii, S; Ksoll, WB; Hicks, RE; Sadowsky, MJ. Presence and Growth of Naturalized Escherichia coli in Temperate Soils from Lake Superior Watersheds. Appl. Environ. Microbiol 2006, 72, 612–621. [Google Scholar]
- Ksoll, WB; Ishii, S; Sadowsky, MJ; Hicks, RE. Presence and Sources of Fecal Coliform Bacteria in Epilithic Periphyton Communities of Lake Superior. Appl. Environ. Microbiol 2007, 73, 3771–3778. [Google Scholar]
- Hecq, P; Hulsmann, A; Hauchman, FS; McLain, JL; Schmitz, F. Drinking water regulations. In Analytical Methods for Drinking Water; Quevauviller, P, Thompson, KC, Eds.; John Wiley: London, UK, 2006; Chapter 1. [Google Scholar]
- Total Coliform Rule: A Handbook for Small Noncommunity Water Systems Serving less than 3,300 Persons; EPA 816-B-06–001; Office of Water (4606M), EPA: Washington, DC, USA, 2006.
- Espigares, M; Coca, C; Fernández-Crehuet, M; Moreno, O; Gálvez, R. Chemical and Microbiologic Indicators of Faecal Contamination in the Guadalquivir (Spain). Eur. Water Pollut. Control 1996, 6, 7–13. [Google Scholar]
Disease | Causal bacterial agent |
---|---|
Cholera | Vibrio cholerae, serovarieties O1 and O139 |
Gastroenteritis caused by vibrios | Mainly Vibrio parahaemolyticus |
Typhoid fever and other serious salmonellosis | Salmonella enterica subsp. enterica serovar Paratyphi |
Salmonella enterica subsp. enterica serovar Typhi | |
Salmonella enterica subsp. enterica serovar Typhimurium | |
Bacillary dysentery or shigellosis | Shigella dysenteriae |
Shigella flexneri | |
Shigella boydii | |
Shigella sonnei | |
Acute diarrheas and gastroenteritis | Escherichia coli, particularly serotypes such as O148, O157 and O124 |
Main species | Occurrence in human clinical specimens | |
---|---|---|
Intestinal | Extra-intestinal | |
Vibrio alginolyticus | + | ++ |
Vibrio cholerae O1 and O139 | +++++ | + |
Vibrio cholerae non O1 or O139 | ++ | ++ |
Aliivibrio fischeri (Vibrio fischeri) | − | − |
Vibrio fluvialis | ++ | − |
Vibrio furnissii | ++ | − |
Vibrio harveyi | − | + |
Grimontia hollisae (Vibrio hollisae) | ++ | − |
Vibrio mimicus | ++ | + |
Vibrio natriegens | − | − |
Vibrio parahaemolyticus | ++++ | + |
Vibrio vulnificus | + | +++ |
Serovariety | Serotype | Biotype |
---|---|---|
O1 | Inaba | Classical |
El Tor | ||
Ogawa | Classical | |
El Tor | ||
Hikojima | ||
O139 | ||
others |
Species | Sub-species | Main serovars (from a total of ca. 1,443) | Habitat and pathogenicity |
---|---|---|---|
Salmonella enterica | Salmonella enterica subsp. enterica | Abortusovis | Pathogenic to sheeps. |
Choleraesuis | Pathogenic to humans and animals. | ||
Enteritidis | Ubiquitous and frequently the cause of infections in humans and animals. Very frequent agent of gastroenteritis in humans. | ||
Gallinarum | Isolated chiefly from chickens and other birds. Causal agent of fowl thyphoid. | ||
Paratyphi A | Pathogenic only to humans. Causes paratyphoid fever. | ||
Paratyphi B | Causes paratyphoid fever in humans and very rarely infects animals. | ||
Paratyphi C | Causes paratyphoid fever in humans. | ||
Typhi | Pathogenic only to humans, causing typhoid fever. | ||
Transmitted by water and food contaminated with feces. | |||
Typhimurium | Ubiquitous and frequently the cause of infections in humans and animals. Very frequently, the causal agent of gastroenteritis in humans. | ||
Typhisuis | Pathogenic to swines. | ||
Salmonella enterica subsp. arizonae | At least 94 serovars. | ||
Salmonella enterica subsp. diarizonae | At least 323 serovars. | ||
Salmonella enterica subsp. houtenae | At least 70 serovars. | Isolated mainly from cold-blooded animals and from the environment. Not pathogenic to humans. | |
Salmonella enterica subsp. indica | At least 11 serovars. | ||
Salmonella enterica subsp. salamae | At least 488 serovars. | ||
Salmonella bongori | At least 20 serovars. |
Species | Main serotypes | Habitat and pathogenicity |
---|---|---|
Shigella dysenteriae | 15 serotypes. | Intestinal pathogens of humans and primates, causing bacillary dysentery. |
Shigella flexneri | 8 serotypes 9 subserotypes | Humans are the primary reservoir. A long-term carrier state occurs in few cases. |
Shigella boydii | 19 serotypes | Shigella dysenteriae serotype 1 causes more severe disease then other serotypes and produces a potent exotoxin (Shiga toxin). Large epidemics in developing countries are commonly caused by serotype 1. Diseases caused by other serotypes may be mild or severe. |
Shigella sonnei | 1 serotype | Shigella sonnei illness is usually milder than that caused by other Shigella species. |
Microbial group | Log10 CFU/g feces |
---|---|
Bacteroides | 11.3* |
Eubacterium | 10.7* |
Bifidobacterium | 10.2* |
Ruminococcus | 10.2* |
Peptostreptococcus | 10.1* |
Peptococcus | 10.0* |
Clostridium | 9.8* |
Lactobacillus | 9.6* |
Propionobacterium | 9.4* |
Actinomyces | 9.2* |
Methanobrevibacter | 8.8* |
Desulphovibrio | 8.4* |
Fusobacterium | 8.4* |
Enterococci | 3.5–7.2** |
Enterobacteriaceae | 5.9–8.0** |
Escherichia coli | 7.5–7.7** |
Citrobacter | 3.3** |
Klebsiella | 2.4** |
Yeasts | 1.0–2.5** |
Animal | Log10 cells/g wet weight feces | ||
---|---|---|---|
Fecal coliforms | Fecal streptococci | Clostridium perfringens | |
Chicken | 5.4 | 6.1 | 2.3 |
Duck | 7.5 | 7.7 | - |
Horse | 4.1 | 6.8 | < 0 |
Pig | 6.5 | 7.9 | 3.6 |
Sheep | 7.2 | 7.6 | 5.3 |
Turkey | 5.5 | 6.4 | - |
Cat | 6.9 | 7.4 | 7.4 |
Dog | 7.1 | 9.0 | 8.4 |
Bacterial group | Raw sewage (cells/ml) | Treated effluent (cells/ml) |
---|---|---|
Salmonella | 10−1 – 101 | 10−1 – 101 |
Total coliforms | 104 – 106 | 103 – 105 |
Fecal coliforms | 103 – 105 | 102 – 104 |
Enterococci | 103 – 104 | 101 – 103 |
Clostridium perfringens | 102 – 103 | 101 – 102 |
Bacterial group | Time for 50% reduction in concentration (days) |
---|---|
Total coliforms | 0.9 |
E. coli | 1.5–3 |
Enterococci | 0.9–4 |
Clostridium perfringens | 60 – > 300 |
Salmonella | 0.1–0.67 |
Shigella | 1 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cabral, J.P.S. Water Microbiology. Bacterial Pathogens and Water. Int. J. Environ. Res. Public Health 2010, 7, 3657-3703. https://doi.org/10.3390/ijerph7103657
Cabral JPS. Water Microbiology. Bacterial Pathogens and Water. International Journal of Environmental Research and Public Health. 2010; 7(10):3657-3703. https://doi.org/10.3390/ijerph7103657
Chicago/Turabian StyleCabral, João P. S. 2010. "Water Microbiology. Bacterial Pathogens and Water" International Journal of Environmental Research and Public Health 7, no. 10: 3657-3703. https://doi.org/10.3390/ijerph7103657
APA StyleCabral, J. P. S. (2010). Water Microbiology. Bacterial Pathogens and Water. International Journal of Environmental Research and Public Health, 7(10), 3657-3703. https://doi.org/10.3390/ijerph7103657