Sensitivity of Air Pollution-Induced Premature Mortality to Precursor Emissions under the Influence of Climate Change
Abstract
:1. Introduction
2. Methods
2.1. Meteorology
2.2. Air Quality Modeling
2.3. Health Effects
2.4. Premature Mortality Sensitivity
- ➢ EX(Y) is the mortality change induced by changes in pollutant X concentration due to a 1% reduction in precursor Y emissions over the domain
- ➢ ΔCX is the pollutant X concentration change due to climate change
- ➢ ΔMX is the premature mortality change induced by ΔCX
- ➢ SX(Y) is the sensitivity of pollutant X to precursor emissions Y (i.e., concentration responses to a 1% emissions reduction)
- ➢ X: PM2.5 or O3 concentrations
- ➢ Y: SO2, anthropogenic NOX, NH3, biogenic or anthropogenic VOC emissions.
3. Results and Discussion
3.1. Baseline Meteorology
3.2. Baseline Air Quality
3.3. Baseline Health Effects
3.4. State Specific PM2.5, O3 and Premature Mortality Sensitivities to Emissions
4. Conclusions
Acknowledgments
References
- Curtis, L; Rea, W; Smith-Willis, P; Fenyves, E; Pan, Y. Adverse health effects of outdoor air pollutants. Environ. Int 2006, 32, 815–830. [Google Scholar]
- World Health Organization. Estimated Deaths & DALYs Attributable to Selected Environmental Risk Factors; 2007; Available online: www.who.int/quantifying_ehimpacts/countryprofilesebd.xls (accessed on 20 April 2010).
- Ostro, B. Outdoor Air Pollution: Assessing the Environmental Burden of Disease at National and Local Levels; WHO Environmental Burden of Disease Series, No 5, World Health Organization: Geneva, Switzerland, 2004; p. viii. [Google Scholar]
- Bernard, SM; Samet, JM; Grambsch, A; Ebi, KL; Romieu, I. The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ. Health Perspect 2001, 109, 199–209. [Google Scholar]
- Peng, RD; Dominici, F; Pastor-Barriuso, R; Zeger, SL; Samet, JM. Seasonal analyses of air pollution and mortality in 100 US cities. Am. J. Epidemiol 2005, 161, 585–594. [Google Scholar]
- Ballester, F; Medina, S; Boldo, E; Goodman, P; Neuberger, M; Iniguez, C; Kunzli, N. Reducing ambient levels of fine particulates could substantially improve health: A mortality impact assessment for 26 European cities. J. Epidemiol. Community Health 2008, 62, 98–105. [Google Scholar]
- Araujo, JA; Barajas, B; Kleinman, M; Wang, XP; Bennett, BJ; Gong, KW; Navad, M; Harkema, J; Sioutas, C; Lusis, AJ; Nel, AE. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ. Res 2008, 102, 589–596. [Google Scholar]
- Jerrett, M; Burnett, RT; Pope, CA; Ito, K; Thurston, G; Krewski, D; Shi, Y; Calle, E; Thun, M. Long-Term Ozone Exposure and Mortality. N. Engl. J. Med 2009, 360, 1085–1095. [Google Scholar]
- Bell, ML; Goldberg, R; Hogrefe, C; Kinney, PL; Knowlton, K; Lynn, B; Rosenthal, J; Rosenzweig, C; Patz, JA. Climate change, ambient ozone, and health in 50 US cities. Clim. Change 2007, 82, 61–76. [Google Scholar]
- Ebi, KL; Paulson, JA. Climate change and children. Pediatr. Clin. N. Am 2007, 54, 213–226. [Google Scholar]
- Ebi, KL; McGregor, G. Climate change, tropospheric ozone and particulate matter, and health impacts. Environ. Health Perspect 2008, 116, 1449–1455. [Google Scholar]
- Jacob, DJ; Winner, DA. Effect of climate change on air quality. Atmos. Environ 2009, 43, 51–63. [Google Scholar]
- Liao, K-J; Tagaris, E; Manomaiphiboon, K; Napelenok, SL; Woo, J-H; He, S; Amar, P; Russell, AG. Sensitivity of ozone and fine particulate matter formation to emissions under the impact of potential future climate change. Environ. Sci. Technol 2007, 41, 8355–8361. [Google Scholar]
- Mickley, LJ; Jacobs, DJ; Field, BD; Rind, D. Effects of future climate change on regional air pollution episodes in the United States. Geophys. Res. Lett 2004, 31, L24103. [Google Scholar]
- Webster, PJ; Holland, GJ; Curry, LA; Chang, HR. Changes in tropical cyclone number, duration and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar]
- Hogrefe, C; Lynn, B; Civerolo, K; Ku, J-Y; Rosenthal, J; Rosenzweig, C; Goldberg, R; Gaffin, S; Knowlton, K; Kinney, PL. Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J. Geophys. Res 2004, 109, D22301. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Nakićenović, N, Swart, R, Eds.; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Weaver, CP; Liang, X-Z; Zhu, J; Adams, PJ; Amar, P; Avise, J; Caughey, M; Chen, J; Cohen, RC; Cooter, E; Dawson, JP; Gilliam, R; Gilliland, A; Goldstein, AH; Grambsch, A; Guenther, A; Harley, RA; He, S; Hemming, B; Hogrefe, C; Huang, H-C; Hunt, S; Jacob, D; Kinney, P; Kunkel, K; Lamarque, J-F; Lamb, B; Larkin, N; Leung, LR; Liao, K-J; Lin, J; Lynn, BH; Manomaiphiboon, K; Mass, C; McKenzie, D; Mickley, L; O’Neil, S; Nolte, C; Pandis, SN; Racherla, PN; Rosenzweig, C; Russell, AG; Salathe, E; Steiner, AL; Tagaris, E; Tao, Z; Wiedinmyer, C; Williams, A; Winner, D; Woo, J-H; Wu, S; Wuebbles, DJ. A preliminary synthesis of modeled climate change impacts on U.S. regional ozone concentrations. Bull. Am. Meteorol. Soc 2009, 90, 1843–1863. [Google Scholar]
- Knowlton, K; Rosenthal, JE; Hogrefe, C; Lynn, B; Gaffin, S; Goldberg, R; Rosenzweig, C; Civerolo, K; Ku, J-Y; Kinney, PL. Assessing ozone-related health impacts under a changing. Climate Environ. Health Perspect 2004, 112, 1557–1563. [Google Scholar]
- Tagaris, E; Liao, K-J; DeLucia, AJ; Deck, L; Amar, P; Russell, AG. Potential impact of climate change on air pollution-related human health effects. Environ. Sci. Technol 2009, 43, 4979–4988. [Google Scholar]
- Rind, D; Lerner, J; Shah, K; Suozzo, R. Use of on line tracers as a diagnostic tool in general circulation model development: 2. Transport between the troposphere and the stratosphere. J. Geophys. Res. Atmos 1999, 104, 9151–9167. [Google Scholar]
- Grell, G; Dudhia, J; Stauffer, DR. A Description of The Fifth Generation Penn State/NCAR Mesoscale Model (MM5), NCAR Tech. Note, NCAR/TN-398+STR, Natl. Cent for Atmos. Res.: Boulder, CO, USA,1994.
- Byun, D; Schere, KL. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev 2006, 59, 51–77. [Google Scholar]
- Tagaris, E; Manomaiphiboon, K; Liao, K-J; Leung, L-R; Woo, J-H; He, S; Amar, P; Russell, AG. Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States. J. Geophys. Res. Atmos 2007, 112, D14312. [Google Scholar]
- Leung, LR; Gustafson, WI. Potential regional climate change and implications to US air quality. Geophys. Res. Lett 2005, 32, L16711. [Google Scholar]
- Carter, WPL. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment, Final Report to CA Air Resources Board, contract no. 92–329, and 95–3082000.
- Dunker, AM. Efficient calculation of sensitivity coefficients for complex atmospheric models. Atmos. Environ 1981, 15, 1155–1161. [Google Scholar]
- Dunker, AM. The decoupled direct method for calculating sensitivity coefficients in chemical-kinetics. J. Chem. Phys 1984, 81, 2385–2393. [Google Scholar]
- Yang, YJ; Wilkinson, JG; Russell, AG. Fast, direct sensitivity analysis of multidimensional photochemical models. Environ. Sci. Technol 1997, 31, 2859–2868. [Google Scholar]
- Dunker, AM; Yarwood, G; Ortmann, JP; Wilson, GM. The decoupled direct method for sensitivity analysis in a three dimensional air quality model—Implementation, accuracy, and efficiency. Environ. Sci. Technol 2002, 36, 2965–2976. [Google Scholar]
- Hakami, A; Odman, MT; Russell, AG. Nonlinearity in atmospheric response: A direct sensitivity analysis approach. J. Geophys. Res. Atmos 2004, 109, D15303. [Google Scholar]
- Cohan, DS; Hakami, A; Hu, YT; Russell, AG. Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis. Environ. Sci. Technol 2005, 39, 6739–6748. [Google Scholar]
- Napelenok, SL; Cohan, DS; Hu, YT; Russell, AG. Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM). Atmos. Environ 2006, 40, 6112–6121. [Google Scholar]
- U. S. EPA. Air Quality Criteria for Particulate Matter; EPA/600/P-99/002aF; Washington, DC, USA, 2004. [Google Scholar]
- U.S. EPA. Air Quality Criteria for Ozone and Related Photochemical Oxidants; EPA600/R-05/004aF; Washington, DC, USA, 2006. [Google Scholar]
- U.S. EPA. Final Regulatory Impact Analysis: PM2.5 NAAQS.
- U. S. EPA. Final Ozone NAAQS Regulatory Impact Analysis.
- Bell, ML; McDermott, A; Zeger, SL; Samet, JM; Dominici, F. Ozone and short-term mortality in 95 US urban communities,1987–2000. J. Am. Med. Assoc 2004, 292, 2372–2378. [Google Scholar]
- Pope, CA; Burnett, RT; Thun, MJ; Calle, EE; Krewski, D; Ito, K; Thurston, GD. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc 2002, 287, 1132–1141. [Google Scholar]
- Tagaris, E; Liao, K-J; Manomaiphiboon, K; Woo, J-H; He, S; Amar, P; Russell, AG. Impacts of future climate change and emissions reductions on nitrogen and sulfur deposition over the United States. Geophys. Res. Lett 2008, 35, L08811. [Google Scholar]
- Seinfeld, J; Pandis, SN. Atmospheric Chemistry and Physics; John Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Woo, J-H; He, S; Tagaris, E; Liao, K-J; Manomaiphiboon, K; Amar, P; Russell, AG. Development of North American emission inventories for air quality modeling under climate change. J. Air Waste Manage. Assoc 2008, 58, 1483–1494. [Google Scholar]
- Napelenok, SL; Flabermacher, FD; Akhtar, F; Hu, Y; Russell, AG. Area of influence (AOI) sensitivity analysis: Application to Atlanta, Georgia. Atmos. Environ 2007, 41, 5605–5617. [Google Scholar]
Mortality Change (number of incidents) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Caused by changes in concentrations* | Caused by 1% decrease in SO2 emissions | Caused by 1% decrease in anthropogenic NOx emissions | Caused by 1% decrease in NH3 emissions | Caused by 1% decrease in biogenic VOC emissions | Caused by 1% decrease in anthropogenic VOC emissions | |||||||||||||
PM2.5 | O3 | Total | PM2.5 | O3 | Total | PM2.5 | O3 | Total | PM2.5 | O3 | Total | PM2.5 | O3 | Total | PM2.5 | O3 | Total | |
AL | −84 | 23 | −61 | −6.55 | −0.01 | −6.56 | −3.26 | −1.05 | −4.32 | −4.70 | 0.02 | −4.68 | −1.19 | −0.21 | −1.40 | 0.00 | −0.30 | −0.30 |
AZ | 60 | 19 | 79 | −3.67 | −0.01 | −3.67 | −2.18 | −1.08 | −3.25 | −2.15 | 0.01 | −2.14 | −2.28 | −0.18 | −2.47 | 0.00 | −0.17 | −0.17 |
AR | −72 | 21 | −51 | −6.34 | −0.01 | −6.35 | −4.86 | −0.62 | −5.47 | −5.02 | 0.02 | −5.00 | 0.12 | −0.18 | −0.06 | 0.21 | −0.19 | 0.03 |
CA | −186 | 82 | −104 | −7.44 | −0.02 | −7.46 | −11.35 | −4.77 | −16.13 | −8.42 | 0.07 | −8.35 | −13.50 | −1.15 | −14.64 | −0.93 | −1.70 | −2.63 |
CO | 58 | −4 | 54 | −1.40 | −0.01 | −1.41 | −1.07 | −1.09 | −2.16 | −1.45 | 0.02 | −1.43 | −0.53 | −0.11 | −0.64 | 0.03 | −0.09 | −0.06 |
CT | 232 | −3 | 229 | −2.71 | 0.00 | −2.71 | −1.40 | 0.18 | −1.22 | −4.25 | 0.01 | −4.24 | −0.75 | −0.05 | −0.80 | −0.39 | −0.10 | −0.48 |
DE | 8 | −1 | 7 | −0.87 | 0.00 | −0.87 | −0.58 | 0.03 | −0.55 | −1.02 | 0.00 | −1.02 | −0.04 | −0.02 | −0.06 | −0.09 | −0.03 | −0.12 |
DC | 2 | 0 | 2 | −0.09 | 0.00 | −0.09 | −0.04 | 0.00 | −0.04 | −0.11 | 0.00 | −0.11 | −0.01 | 0.00 | −0.01 | −0.01 | 0.00 | −0.01 |
FL | −396 | 30 | −366 | −21.96 | 0.00 | −21.96 | −5.41 | −2.41 | −7.81 | −10.57 | 0.03 | −10.55 | −3.77 | −0.50 | −4.26 | 0.18 | −0.56 | −0.38 |
GA | −163 | 34 | −129 | −8.65 | 0.00 | −8.65 | −4.38 | −1.24 | −5.62 | −6.70 | 0.03 | −6.68 | −2.10 | −0.34 | −2.44 | −0.10 | −0.48 | −0.58 |
ID | 23 | −5 | 18 | −0.36 | 0.00 | −0.36 | −0.50 | −0.12 | −0.62 | −0.49 | 0.00 | −0.49 | −1.18 | 0.02 | −1.16 | −0.02 | −0.01 | −0.02 |
IL | 396 | −17 | 379 | −28.29 | −0.31 | −28.60 | −27.34 | 1.19 | −26.16 | −40.12 | 0.41 | −39.71 | 1.65 | −3.48 | −1.83 | −1.21 | −4.29 | −5.50 |
IN | 275 | −5 | 270 | −8.94 | −0.01 | −8.96 | −8.05 | 0.25 | −7.80 | −13.98 | 0.02 | −13.97 | 0.28 | −0.20 | 0.07 | −0.68 | −0.26 | −0.94 |
IA | 32 | −8 | 24 | −1.98 | −0.03 | −2.01 | −3.39 | −0.15 | −3.55 | −3.56 | 0.05 | −3.51 | 0.34 | −0.12 | 0.23 | 0.01 | −0.15 | −0.14 |
KS | 6 | 1 | 7 | −0.87 | −0.03 | −0.90 | −0.87 | −0.97 | −1.84 | −0.82 | 0.05 | −0.77 | 0.11 | −0.28 | −0.17 | 0.04 | −0.23 | −0.19 |
KY | 52 | 8 | 60 | −15.51 | −0.02 | −15.54 | −7.59 | −0.07 | −7.66 | −18.20 | 0.02 | −18.18 | −0.03 | −0.31 | −0.34 | −0.49 | −0.36 | −0.86 |
LA | 57 | 32 | 89 | −9.58 | −0.01 | −9.59 | −4.13 | −1.01 | −5.14 | −5.93 | 0.02 | −5.91 | −0.95 | −0.28 | −1.24 | 0.11 | −0.24 | −0.13 |
ME | 46 | −4 | 42 | −0.67 | 0.00 | −0.67 | −0.30 | −0.04 | −0.34 | −0.87 | 0.00 | −0.86 | −0.59 | 0.01 | −0.58 | −0.05 | −0.02 | −0.07 |
MD | 90 | −3 | 87 | −5.56 | 0.00 | −5.56 | −2.79 | 0.09 | −2.70 | −6.75 | 0.00 | −6.75 | −0.39 | −0.05 | −0.44 | −0.54 | −0.08 | −0.62 |
MA | 328 | −6 | 322 | −4.36 | 0.00 | −4.36 | −1.75 | 0.19 | −1.56 | −6.22 | 0.01 | −6.20 | −1.36 | −0.09 | −1.45 | −0.43 | −0.20 | −0.63 |
MI | 624 | −43 | 581 | −11.81 | −0.04 | −11.85 | −8.71 | −0.01 | −8.72 | −17.20 | 0.05 | −17.15 | −2.47 | −0.17 | −2.64 | −0.72 | −0.60 | −1.32 |
MN | 218 | −26 | 192 | −4.75 | −0.06 | −4.81 | −7.58 | −0.16 | −7.74 | −9.78 | 0.09 | −9.70 | −1.89 | −0.04 | −1.93 | −0.37 | −0.12 | −0.49 |
MS | 33 | 14 | 47 | −11.89 | −0.01 | −11.90 | −6.37 | −0.66 | −7.02 | −8.38 | 0.01 | −8.37 | −1.63 | −0.12 | −1.75 | 0.15 | −0.16 | −0.02 |
MO | −78 | 19 | −59 | −25.81 | −0.03 | −25.83 | −24.07 | −0.59 | −24.66 | −28.34 | 0.04 | −28.30 | 2.38 | −0.27 | 2.10 | 0.41 | −0.32 | 0.08 |
MT | 16 | −4 | 12 | −0.28 | 0.00 | −0.28 | −0.22 | −0.08 | −0.30 | −0.40 | 0.00 | −0.40 | −0.29 | 0.01 | −0.28 | 0.00 | −0.01 | −0.01 |
NE | −19 | −6 | −25 | −2.08 | −0.01 | −2.09 | −2.40 | −0.20 | −2.59 | −2.71 | 0.02 | −2.69 | 0.37 | −0.05 | 0.32 | 0.14 | −0.04 | 0.10 |
NV | 12 | 1 | 13 | −0.44 | 0.00 | −0.44 | −0.38 | −0.05 | −0.43 | −0.45 | 0.00 | −0.45 | −0.97 | 0.00 | −0.97 | −0.02 | 0.00 | −0.02 |
NH | 60 | −2 | 58 | −0.90 | 0.00 | −0.90 | −0.46 | −0.01 | −0.47 | −1.43 | 0.00 | −1.43 | −0.57 | 0.00 | −0.57 | −0.08 | −0.03 | −0.10 |
NJ | 497 | 16 | 513 | −11.61 | −0.02 | −11.63 | −6.07 | 3.94 | −2.13 | −15.75 | 0.07 | −15.68 | −1.72 | −1.13 | −2.85 | −1.75 | −1.73 | −3.48 |
NM | 16 | 4 | 20 | −1.91 | 0.00 | −1.92 | −1.01 | −0.19 | −1.20 | −1.16 | 0.00 | −1.16 | −0.44 | −0.02 | −0.46 | 0.06 | −0.01 | 0.05 |
NY | 846 | −3 | 843 | −15.07 | 0.00 | −15.07 | −10.77 | 0.02 | −10.75 | −24.77 | 0.00 | −24.77 | −3.50 | −0.02 | −3.52 | −1.15 | −0.05 | −1.21 |
NC | −95 | 9 | −86 | −8.22 | −0.02 | −8.24 | −4.66 | −0.79 | −5.45 | −7.67 | 0.05 | −7.62 | −0.90 | −0.66 | −1.56 | −0.30 | −0.92 | −1.21 |
ND | −4 | −4 | −8 | −0.59 | 0.00 | −0.60 | −0.79 | −0.03 | −0.83 | −0.95 | 0.01 | −0.94 | −0.04 | 0.00 | −0.05 | 0.01 | −0.01 | 0.00 |
OH | 566 | −28 | 538 | −12.55 | −0.02 | −12.57 | −7.73 | 0.85 | −6.87 | −20.36 | 0.04 | −20.33 | −0.40 | −0.48 | −0.88 | −0.93 | −0.70 | −1.63 |
OK | −43 | 16 | −27 | −7.82 | −0.01 | −7.84 | −5.97 | −0.75 | −6.73 | −6.00 | 0.02 | −5.98 | 0.69 | −0.18 | 0.51 | 0.28 | −0.16 | 0.12 |
OR | 79 | −13 | 66 | −1.01 | 0.00 | −1.01 | −0.95 | −0.26 | −1.22 | −0.95 | 0.00 | −0.95 | −2.78 | 0.04 | −2.74 | −0.06 | −0.02 | −0.08 |
PA | 464 | −20 | 444 | −12.56 | 0.00 | −12.56 | −7.07 | 0.38 | −6.69 | −18.85 | 0.02 | −18.83 | −1.30 | −0.22 | −1.53 | −1.08 | −0.41 | −1.49 |
RI | 43 | −1 | 42 | −0.63 | 0.00 | −0.63 | −0.22 | 0.12 | −0.11 | −0.84 | 0.00 | −0.84 | −0.14 | −0.04 | −0.19 | −0.07 | −0.08 | −0.15 |
SC | −35 | 13 | −22 | −3.56 | 0.00 | −3.56 | −2.04 | −0.51 | −2.55 | −3.15 | 0.02 | −3.13 | −0.63 | −0.26 | −0.90 | −0.11 | −0.35 | −0.46 |
SD | −18 | −3 | −21 | −1.00 | −0.01 | −1.01 | −1.28 | −0.08 | −1.36 | −1.82 | 0.01 | −1.81 | 0.11 | −0.01 | 0.10 | −0.02 | −0.01 | −0.03 |
TN | −85 | 21 | −64 | −8.33 | −0.02 | −8.35 | −4.11 | −0.58 | −4.69 | −8.08 | 0.02 | −8.06 | −0.17 | −0.35 | −0.52 | −0.11 | −0.41 | −0.52 |
TX | −536 | 161 | −375 | −25.23 | −0.05 | −25.27 | −12.13 | −4.03 | −16.16 | −14.12 | 0.07 | −14.05 | 1.16 | −0.93 | 0.22 | 0.88 | −0.59 | 0.28 |
UT | 1 | −2 | −1 | −0.05 | 0.00 | −0.05 | −0.05 | −0.10 | −0.15 | −0.06 | 0.00 | −0.06 | −0.06 | 0.00 | −0.06 | 0.00 | −0.01 | −0.01 |
VT | 7 | −2 | 5 | −0.37 | 0.00 | −0.37 | −0.32 | −0.01 | −0.34 | −0.71 | 0.00 | −0.70 | −0.22 | 0.00 | −0.23 | −0.04 | −0.02 | −0.07 |
VA | −2 | 1 | −1 | −2.88 | 0.00 | −2.88 | −1.05 | −0.02 | −1.07 | −3.10 | 0.00 | −3.09 | −0.28 | −0.06 | −0.35 | −0.14 | −0.10 | −0.24 |
WA | 139 | −11 | 128 | −1.93 | 0.00 | −1.93 | −2.17 | −0.18 | −2.36 | −2.28 | 0.01 | −2.27 | −4.42 | 0.03 | −4.39 | −0.12 | −0.04 | −0.16 |
WV | 43 | −2 | 41 | −2.73 | 0.00 | −2.73 | −0.74 | 0.01 | −0.73 | −2.98 | 0.00 | −2.98 | −0.20 | −0.06 | −0.25 | −0.11 | −0.09 | −0.19 |
WI | 196 | −18 | 178 | −4.04 | −0.02 | −4.06 | −4.73 | −0.05 | −4.77 | −5.79 | 0.04 | −5.75 | −0.69 | −0.08 | −0.77 | −0.19 | −0.18 | −0.37 |
WY | 2 | −2 | 0 | −0.14 | 0.00 | −0.14 | −0.07 | −0.07 | −0.14 | −0.17 | 0.00 | −0.17 | −0.10 | 0.00 | −0.10 | 0.00 | 0.00 | −0.01 |
State* | Premature mortality** | Domain−wide emissions change (%) | |||||
---|---|---|---|---|---|---|---|
SO2 | anthropogenic NOX | NH3 | biogenic VOCs | anthropogenic VOCs | |||
1 | NY | 843 | −56 | >60 | −34 | >60 | >60 |
2 | MI | 581 | −49 | >60 | −34 | >60 | >60 |
3 | OH | 538 | −43 | >60 | −26 | >60 | >60 |
4 | NJ | 513 | −44 | >60 | −33 | >60 | >60 |
5 | PA | 444 | −35 | >60 | −24 | >60 | >60 |
6 | IL | 379 | −13 | −14 | −10 | >60 | >60 |
7 | MA | 322 | >60 | >60 | −52 | >60 | >60 |
8 | IN | 270 | −30 | −35 | −19 | − | >60 |
9 | CT | 229 | >60 | >60 | −54 | >60 | >60 |
10 | MN | 192 | −40 | −25 | −20 | >60 | >60 |
11 | WI | 178 | −44 | −37 | −31 | >60 | >60 |
12 | WA | 128 | >60 | −54 | −56 | −29 | >60 |
13 | LA | 89 | −9 | −17 | −15 | >60 | >60 |
14 | MD | 87 | −16 | −32 | −13 | >60 | >60 |
15 | AZ | 79 | −22 | −24 | −37 | −32 | >60 |
16 | OR | 66 | >60 | −54 | >60 | −24 | >60 |
17 | KY | 60 | −4 | −8 | −3 | >60 | >60 |
18 | NH | 58 | >60 | >60 | −41 | >60 | >60 |
19 | CO | 54 | −38 | −25 | −38 | >60 | >60 |
20 | MS | 47 | −4 | −7 | −6 | −27 | >60 |
21 | ME | 42 | >60 | >60 | −49 | >60 | >60 |
22 | RI | 42 | >60 | >60 | −50 | >60 | >60 |
23 | WV | 41 | −15 | −56 | −14 | >60 | >60 |
24 | IA | 24 | −12 | −7 | −7 | − | >60 |
25 | NM | 20 | −10 | −17 | −17 | −43 | − |
26 | ID | 18 | −50 | −29 | −37 | −16 | >60 |
27 | NV | 13 | −29 | −30 | −29 | −13 | >60 |
28 | MT | 12 | −43 | −40 | −30 | −42 | >60 |
29 | DE | 7 | −8 | −13 | −7 | >60 | −57 |
30 | KS | 7 | −8 | −4 | −9 | −40 | −36 |
31 | VT | 5 | −14 | −15 | −7 | −22 | >60 |
32 | DC | 2 | −23 | −49 | −18 | >60 | >60 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tagaris, E.; Liao, K.-J.; DeLucia, A.J.; Deck, L.; Amar, P.; Russell, A.G. Sensitivity of Air Pollution-Induced Premature Mortality to Precursor Emissions under the Influence of Climate Change. Int. J. Environ. Res. Public Health 2010, 7, 2222-2237. https://doi.org/10.3390/ijerph7052222
Tagaris E, Liao K-J, DeLucia AJ, Deck L, Amar P, Russell AG. Sensitivity of Air Pollution-Induced Premature Mortality to Precursor Emissions under the Influence of Climate Change. International Journal of Environmental Research and Public Health. 2010; 7(5):2222-2237. https://doi.org/10.3390/ijerph7052222
Chicago/Turabian StyleTagaris, Efthimios, Kuo-Jen Liao, Anthony J. DeLucia, Leland Deck, Praveen Amar, and Armistead G. Russell. 2010. "Sensitivity of Air Pollution-Induced Premature Mortality to Precursor Emissions under the Influence of Climate Change" International Journal of Environmental Research and Public Health 7, no. 5: 2222-2237. https://doi.org/10.3390/ijerph7052222
APA StyleTagaris, E., Liao, K. -J., DeLucia, A. J., Deck, L., Amar, P., & Russell, A. G. (2010). Sensitivity of Air Pollution-Induced Premature Mortality to Precursor Emissions under the Influence of Climate Change. International Journal of Environmental Research and Public Health, 7(5), 2222-2237. https://doi.org/10.3390/ijerph7052222