Evaluation of Hyperspectral Indices for Chlorophyll-a Concentration Estimation in Tangxun Lake (Wuhan, China)
Abstract
:1. Introduction
2. Study Area and Measurements
2.1. Study Area
2.2. In-situ Measurements
3. Analysis
3.1. Reflectance Spectra Analysis
3.2. Correlation Analysis
3.2.1. Single band reflectance VS Chl-a concentration
3.2.2. First-derivative of reflectance VS Chl-a concentration
3.2.3. Reflectance ratio VS Chl-a concentration
4. Results
5. Conclusions
Acknowledgments
References
- Torbick, N; Hu, F; Zhang, JY; Qin, JG; Zhang, HJ; Becker, B. Mapping Chlorophyll-a Concentrations in West Lake, China using Landsat 7 ETM+. J. Great Lake Res 2008, 34, 559–565. [Google Scholar]
- Liu, Y; Guo, H; Yang, P. Exploring the influence of lake water chemistry on chlorophyll a: A multivariate statistical model analysis. Ecol. Model 2010, 34, 681–688. [Google Scholar]
- Scheffer, M. Ecology of Shallow Lakes; Chapman and Hall: London, UK, 1998. [Google Scholar]
- Charpa, SC. SurfaceWater-Quality Modeling; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Jogensen, SE; Bendoricchio, G. Fundamentals of Ecological Modeling, 3rd ed; Elsevier: New York, NY, USA, 2001. [Google Scholar]
- Camdevyren, H; Demy, RN; Kanik, A; Kesky, NS. Use of principal component scores in multiple linear regression models for prediction of chlorophyll-a in reservoirs. Ecol. Model 2005, 181, 581–589. [Google Scholar]
- Yi, G; Wang, Q; Zheng, BH. State Environmental Protection Administration of China’s demand and analysis for resources satellite (I). Aero. China 1999, 9, 3–7. [Google Scholar]
- Steele, JH. Environmental control of photosynthesis in the sea. Limnol. Oceanogr 1962, 7, 137–150. [Google Scholar]
- Cullen, JJ. The deep chlorophyll maximum Comparing vertical profiles of chlorophyll a. Can. J. Fish. Aquat. Sci 1982, 39, 791–803. [Google Scholar]
- Boyer, JN; Christopher, RK; Peter, BO; David, TR. Phytoplankton bloom status: Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol. Indicat 2009, 9, S56–S67. [Google Scholar]
- Shu, XZ; Yin, Q; Kuang, DB. Relationship between Algal chlorophyll concentration and spectral reflectance of inland water. Int. J. Rem. Sens 2000, 4, 41–45. [Google Scholar]
- Pinder, LCV; Marker, AFH; Pinderb, AC; Ingramb, JKG; Leachb, DV; Collett, GD. Concentrations of suspended chlorophyll a in the Humber rivers. Sci Total Environ 1997, 194/195, 373–378. [Google Scholar]
- Senay, GB; Shafique, NA; Autrey, BC; Fulk, F; Cormier, SM. The Selection of Narrow Wavebands for Optimizing Water Quality Monitoring on the Great Miami River, Ohio using Hyperspectral Remote Sensor Data. J. Spatial Hydrol 2001, 1, 1–22. [Google Scholar]
- Kloiber, SM; Brezonik, PL; Olmanson, LG; Bauer, ME. A procedure for regional lake water clarity assessment using Landsat multispectral data. Rem. Sens. Environ 2002, 82, 38–47. [Google Scholar]
- Stumpf, RP; Tyler, MA. Satellite detection of bloom and pigment distributions in estuaries. Rem. Sens. Environ 1988, 24, 385–404. [Google Scholar]
- Gons, HJ. Optical teledetection of chlorophyll a in turbid inland waters. Environ. Sci. Technol 1999, 33, 1127–1132. [Google Scholar]
- Jiao, HB; Zha, Y; Gao, J; Li, YM; Wei, YC; Huang, JZ. Estimation of chlorophyll-a concentration in Lake Tai, China using in situ hyperspectral data. Int. J. Rem. Sens 2006, 27, 4267–4276. [Google Scholar]
- Thiemann, S; Kaufman, H. Determination of chlorophyll content and tropic state of lakes using field spectrometer and IRS – IC satellite data in the Mecklenburg Lake Distract, Germany. Rem. Sens. Environ 2000, 73, 227–235. [Google Scholar]
- Dekker, A. Detection of the optical water quality parameters for eutrophic waters by high resolution remote sensing; PhD Thesis; Free University: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Gitelson, AA. The peak near 700 nm on reflectance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Rem. Sens 1992, 13, 3367–3373. [Google Scholar]
- Gitelson, AA; Kondratyev, KY. Optical models of mesotrophic and eutrophic water bodies. Int. J. Rem. Sens 1991, 12, 373–385. [Google Scholar]
- Dall’Olmo, G; Gitelson, AA. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Applied. Optics 2005, 44, 412–422. [Google Scholar]
- Dall’Olmo, G; Gitelson, AA. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters:Modeling results. Applied Optics 2006, 45, 3577–3592. [Google Scholar]
- Gitelson, AA; Gritz, U; Merzlyak, MN. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for nondestructive chlorophyll assessment in higher plant leaves. J. Plant. Physiol 2003, 160, 271–282. [Google Scholar]
- Gitelson, AA; Vina, A; Ciganda, V; Rundquist, DC; Arkebauer, TJ. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett 2005, 32, L08403. [Google Scholar]
- Le, CF; Li, YM; Zha, Y; Sun, DY; Huang, CC; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Rem. Sens. Environ 2009, 2, 1–8. [Google Scholar]
- Bennet, A; Bogorad, L. Complimentary chromic adaption in a filamentous blue-green alga. J. Cell Biol 1973, 58, 410–435. [Google Scholar]
- Schalles, JF; Gitelson, A; Yacobi, YZ. Chlorophyll estimation using whole seasonal, remotely sensed high spectral resolution data for an eutrophic lake. J. Phycol 1998, 34, 383–390. [Google Scholar]
- Ma, RH; Dai, JF. Chlorophyll-a Concentration Estimation with Field Spectra of Water-body near Meiliang Bayou in Taihu Lake. J. Rem. Sens 2005, 9, 78–86. [Google Scholar]
- Li, SJ; Wu, Q; Wang, XJ. Correlations between reflectance spectra and contents of Chlorophyll-a in Chaohu Lake. J. Lake Sci 2002, 14, 328–234. [Google Scholar]
- Han, L; Donald, C; Rundquitst, DC. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in a tubid reservoir. Rem. Sens. Environ 1997, 62, 253–261. [Google Scholar]
- Rundquitst, DC; Han, L; Schalles, JF. Remote measurement of algal chlorophyll in surface waters: the case for the first derivative of reflectance near 690nm. Photogramm. Eng. Rem. Sens 1996, 62, 195–200. [Google Scholar]
- Gong, CL; Qin, Q; Kuang, DB. Correlations between Water Quality Indexes and Reflectance Spectra of Huangpujiang River. J. Rem. Sens 2006, 106, 910–916. [Google Scholar]
- Illuz, D; Yacobi, YZ; Gitelson, A. Adaptation of an algorithm for chlorophyll-a estimation by optical data in the oligotrophic Gulf of Eilat. Int. J. Rem. Sens 2003, 24, 1157–1163. [Google Scholar]
- Mitienzwey, KH; Gitelson, AA; Kondratyev, KY. Determination of chlorophyll a of inland waters on the basis of spectra1 reflectante. Limnol. Oceanogr 1992, 37, 147–149. [Google Scholar]
- Goodin, D; Han, L; Fraser, R; Rundquist, D; Stebbins, W. Analysis of suspended solids in water using remotely sensed high resolution derivative spectra. Photogramm Eng Rem Sens 1993, 59, 505–510. [Google Scholar]
- Tsai, F; Philpot, W. Derivative analysis of hyperspectral data. Rem. Sens. Environ 1998, 66, 41–51. [Google Scholar]
- Fraser, RN. Hyperspectral remote sensing of turbidity and chlorophyll a among Nebraska Sand Hills lakes. Int. J. Rem. Sens 1998, 19, 1579–1589. [Google Scholar]
Wavelength (nm) | 726.5 | 727.8 | 729.1 | 730.5 | 731.8 | 733.1 | 734.4 |
Correlation coefficients | −0.80652 | −0.82203 | −0.815 | −0.83498 | −0.83097 | −0.83998 | −0.82338 |
Model | Optimal Bands | Model | R2 | MRE |
---|---|---|---|---|
Single-band | 733.1 nm | Chla = −0.0227×R733.1 + 0.0568 | 0.705 | 26.3% |
First-derivative | 446.9nm | Chla = −0.3301R’446.9 + 0.023 | 0.863 | 11.2% |
Reflectance Ratio | R861.1/R865.7 | Chla = 0.2293 × (R861.1 / R865.7) − 0.2146 | 0.861 | 13.8% |
© 2007 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huang, Y.; Jiang, D.; Zhuang, D.; Fu, J. Evaluation of Hyperspectral Indices for Chlorophyll-a Concentration Estimation in Tangxun Lake (Wuhan, China). Int. J. Environ. Res. Public Health 2010, 7, 2437-2451. https://doi.org/10.3390/ijerph7062437
Huang Y, Jiang D, Zhuang D, Fu J. Evaluation of Hyperspectral Indices for Chlorophyll-a Concentration Estimation in Tangxun Lake (Wuhan, China). International Journal of Environmental Research and Public Health. 2010; 7(6):2437-2451. https://doi.org/10.3390/ijerph7062437
Chicago/Turabian StyleHuang, Yaohuan, Dong Jiang, Dafang Zhuang, and Jingying Fu. 2010. "Evaluation of Hyperspectral Indices for Chlorophyll-a Concentration Estimation in Tangxun Lake (Wuhan, China)" International Journal of Environmental Research and Public Health 7, no. 6: 2437-2451. https://doi.org/10.3390/ijerph7062437
APA StyleHuang, Y., Jiang, D., Zhuang, D., & Fu, J. (2010). Evaluation of Hyperspectral Indices for Chlorophyll-a Concentration Estimation in Tangxun Lake (Wuhan, China). International Journal of Environmental Research and Public Health, 7(6), 2437-2451. https://doi.org/10.3390/ijerph7062437