High Calorie, Low Nutrient Food/Beverage Intake and Video Gaming in Children as Potential Signals for Addictive Behavior
Abstract
:1. Introduction
1.1. Addictive High Calorie, Low Nutrient Food Intake and Video Gaming as Risk Factors for Obesity
1.2. Obesity Risk in Childhood
1.3. Predictors of Video Gaming and High Calorie, Low Nutrient Food Intake in Children
1.4. Objectives of the Present Study
2. Methods
2.1. Background
2.2. Participants
2.3. Measures
2.3.1. High Calorie Low Nutrient Food/Beverage (HCLN) Intake
2.3.2. Video Gaming
2.3.3. Inhibitory Control Problems
2.3.4. Stress and Coping
2.3.5. Sensation Seeking
2.3.6. Perceived Neighborhood Safety
2.3.7. Covariates
2.4. Analysis Plan
Growth Curve Analysis
3. Results
3.1. Descriptive Characteristics
Variable | X (SE) | % (SE) |
---|---|---|
Inhibitory Control Problems | 1.29 (0.01) | |
Low Inhibitory Control | 5.08 (0.01) | |
Grades | 1.73 (0.02) | |
Low Achievement | 2.28 (0.00) | |
Stress | 1.75 (0.02) | |
High Stress | 1.66 (0.00) | |
Coping | 2.15 (0.02) | |
Low Coping | 1.76 (0.00) | |
Sensation Seeking | 1.92 (0.01) | |
High Sensation Seeking | 2.28 (0.00) | |
White | 30.50 (0.01) | |
Hispanic | 26.97 (0.01) | |
African American | 2.90 (0.01) | |
Asian | 8.20 (0.01) | |
Mixed/Bi-Racial/Other | 31.43 (0.01) | |
Free Lunch | 23.34 (0.01) | |
Unsafe | 8.60 (0.01) | |
Male | 49.59 (0.02) | |
Video Gaming hours/day | 2.45 (0.05) | |
≥20.5 hours/week | 62.96 (0.01) | |
HCLN † Intake | 2.37 (0.03) | |
≥25 Times Per Week | 8.51 (0.01) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1. Inhibitory Control Problems | ||||||||||
2. Grades | -0.15*** | |||||||||
3. Stress | 0.33** | -0.07* | ||||||||
4. Coping | -0.13*** | 0.09** | -0.08* | |||||||
5. Sensation Seeking | 0.33*** | 0.00 | 0.13*** | |||||||
6. Hisp/AA | -0.04 | -0.18*** | -0.03 | -0.02 | -0.07* | |||||
7. Free Lunch | 0.00 | -0.16*** | 0.01 | -0.03 | -0.02 | 0.27** | ||||
8. Unsafe | 0.11*** | -0.12*** | 0.13*** | -0.01 | 0.11*** | 0.07* | 0.05 | |||
9. Male | 0.11*** | -0.11*** | -0.05 | 0.03 | 0.15*** | 0.05 | 0.01 | 0.02 | ||
10. Video Gaming | 0.15*** | 0.13*** | 0.04 | -0.03 | 0.15*** | 0.06* | 0.06 | 0.14*** | 0.32*** | |
11. HCLN Intake | 0.13*** | 0.14*** | 0.11*** | -0.05 | 0.11*** | 0.14*** | 0.18*** | 0.11*** | 0.17*** | 0.38*** |
3.2. Estimates of Relationships of Predictors (Including Demographic Covariates) to HCLN Intake and Video Gaming
HCLN Intake | Video Gaming | |||
---|---|---|---|---|
Predictors | Intercept | Slope | Intercept | Slope |
β (S.E.) | β (S.E.) | β (S.E.) | β (S.E.) | |
Low Grades | -0.08 (0.04)† | 0.00 (0.07) | -0.06 (0.04)† | -0.10 (0.05) |
Male | 0.18 (0.04)*** | -0.26 (0.05)*** | 0.42 (0.03)*** | 0.03 (0.08) |
Hispanic/AA | 0.11 (0.04)** | 0.16 (0.05)* | 0.04 (0.04) | 0.17 (0.09)† |
Free Lunch | 0.16 (0.04)*** | 0.07 (0.06) | 0.08 (0.04)* | 0.06 (0.09) |
Unsafe Environment | 0.09 (0.04)* | 0.06 (0.07) | 0.14 (0.04)*** | 0.02 (0.09) |
High Stress | 0.08 (0.04)† | -0.18 (0.05)* | -0.01 (0.04) | 0.16 (0.09)† |
Low Coping Skills | 0.05 (0.04) | -0.06 (0.05) | 0.07 (0.04)† | -0.10 (0.08) |
Inhibitory Problems | 0.11 (0.07)** | -0.08 (0.08) | 0.13 (0.04)** | -0.28 (0.10)** |
3.3. Co-Occurrence and Growth in HCLN Intake and Video Gaming
3.4. Common and Behavior Specific Predictors
4. Discussion and Conclusions
4.1. Summary
4.2. Unexpected Findings
4.3. Limitations
4.4. Implications of the Findings and Future Directions
Acknowledgements
References
- Sussman, S.; Leventhal, A.; Bluthenthal, R.N.; Freimuth, M.; Forster, M.; Ames, S.L. A framework for the specificity of addictions. Int. J. Environ. Res. Public Health 2011, 8, 3399–3415. [Google Scholar]
- Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 4th ed; American Psychiatric Association: Arlington, VA, USA, 2000; pp. 1–943.
- Potenza, M.N. Should addictive disorders include non-substance-related conditions? Addiction 2006, 101 (Suppl 1), 142–151. [Google Scholar]
- Sussman, S.; Lisha, N.; Griffiths, M. Prevalence of the addictions: A problem of the majority or the minority. Eval. Health Prof. 2011, 34, 3–56. [Google Scholar]
- Gentile, D.A.; Choo, H.; Liau, A.; Sim, T.; Li, D.; Fung, D.; Khoo, A. Pathological video game use among youths: A two-year longitudinal study. Pediatrics 2011, 127, e319–e329. [Google Scholar]
- Petry, N.M. Substance abuse, pathological gambling, and impulsiveness. Drug Alcohol Depend. 2001, 63, 29–38. [Google Scholar]
- Grüsser, S.M.; Thalemann, R.; Griffiths, M.D. Excessive computer game playing: Evidence for addiction and aggression? Cyberpsychol. Behav. 2007, 10, 290–292. [Google Scholar]
- Ogden, C.L.; Carroll, M.D.; Curtin, L.R.; McDowell, M.A.; Tabak, C.J.; Flegal, K.M. Prevalence of overweight and obesity in the United States, 1999–2004. J. Am. Med. Assoc. 2006, 295, 1549–1555. [Google Scholar]
- Pentz, M.A. Understanding and preventing risks for adolescent obesity. In Adolescent Health: Understanding and Preventing Risk; Crosby, R., Santelli, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 147–164. [Google Scholar]
- Pearson, N.; Biddle, S.J. Sedentary behavior and dietary intake in children, adolescents, and adults: A systematic review. Am. J. Prev. Med. 2011, 41, 178–188. [Google Scholar]
- Ballard, M.E. Video game play, behavior, and dietary health. In Handbook of Behavior, Food, and Nutrition; Preedy, V.R., Watson, R.R., Martin, C.R., Eds.; Springer: New York, NY, USA, 2011; pp. 2169–2181. [Google Scholar]
- Ballard, M.E.; Gray, M.A.; Reilly, J.; Noggle, M. Correlates of video game screen time among males: Body mass, physical activity, and other media use. Eat. Behav. 2009, 10, 161–167. [Google Scholar]
- Institute of Medicine. Overview of the IOM’s Childhood Obesity Prevention Study. 2004. Available online: www.iom.edu/report.asp?id=22596 (accessed on 14 April 2008).
- Dorosty, A.R.; Emmett, S.R.D.; Cowin, I.S.; Reilly, J.J. Factors associated with early adiposity rebound. ALSPAC Study Team. Pediatrics 2000, 105, 1115–1118. [Google Scholar]
- Hoelscher, D.M.; Day, R.S.; Kelder, S.H.; Ward, J.L. Reproducibility and validity of the secondary level School-Based Nutrition Monitoring (SBNM) student questionnaire. J. Am. Diet. Assoc. 2003, 103, 186–194. [Google Scholar]
- Bardo, M.T.; Pentz, M.A. Translational research. In APA Handbook of Research Methods in Psychology; Cooper, H., Ed.; American Psychiatric Association: Washington, DC, USA, 2011. [Google Scholar]
- Stephenson, M.T.; Hoyle, R.H.; Palmgreen, P.; Slater, M.D. Brief measures of sensation seeking for screening and large-scale surveys. Drug Alcohol Depend. 2003, 72, 279–286. [Google Scholar]
- Crawford, A.M.; Pentz, M.A.; Chou, C.P.; Li, C.; Dwyer, J.H. Parallel developmental trajectories of sensation seeking and regular substance use in adolescents. Psychol. Addict. Behav. 2003, 17, 179–192. [Google Scholar]
- Kelley, A.E.; Schochet, T.; Landry, C.F. Risk taking and novelty seeking in adolescence: Introduction to part I. Ann. NY Acad. Sci. 2004, 1021, 27–32. [Google Scholar]
- Belin, D.; Mar, A.C.; Dalley, J.W.; Robbins, T.W.; Everitt, B.J. High impulsivity predicts the switch to compulsive cocaine-taking. Science 2008, 320, 1352–1355. [Google Scholar]
- Verdejo-García, A.; Lawrence, A.J.; Clark, L. Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci. Biobehav. Rev. 2008, 32, 777–810. [Google Scholar]
- Verdejo-Garcia, A.; Bechara, A.; Recknor, E.C.; Pérez-Garcia, M. Executive dysfunction in substance dependent individuals during drug use and abstinence: An examination of the behavioral, cognitive and emotional correlates of addiction. J. Int. Neuropsychol. Soc. 2006, 12, 405–415. [Google Scholar]
- Bechara, A. Risky business: Emotion, decision-making, and addiction. J. Gambl. Stud. 2003, 19, 23–51. [Google Scholar]
- Riggs, N.R.; Spruijt-Metz, D.; Chou, C.P.; Pentz, M.A. Relationships between executive cognitive function and lifetime substance use, and obesity-related behaviors in fourth grade youth. Child Neuropsychol. 2011, 7, 1–11. [Google Scholar]
- Chambers, R.A.; Taylor, J.R.; Potenza, M.N. Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. Am. J. Psychiatry 2003, 160, 1041–1052. [Google Scholar]
- Fishbein, D.; Tarter, R. Infusing neuroscience into the study and prevention of drug misuse and co-occurring aggressive behavior. Subst. Use Misuse 2009, 44, 1204–1235. [Google Scholar]
- Riggs, N.R.; Greenberg, M.T. Neurocognition as a moderator and mediator of adolescent substance misuse prevention. Am. J. Drug Alcohol Abuse 2009, 35, 209–213. [Google Scholar]
- Cerqueira, J.J.; Mailliet, F.; Almeida, O.F.X.; Jay, T.M.; Sousa, N. The prefrontal cortex as a key target of the maladaptive response to stress. J. Neurosci. 2007, 27, 2781–2787. [Google Scholar]
- Bickel, W.K.; Marsch, L.A. Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction 2001, 96, 73–86. [Google Scholar]
- Montague, P.R.; Berns, G.S. Neural economics and the biological substrates of valuation. Neuron 2002, 36, 265–284. [Google Scholar]
- Posner, M.I.; Rothbart, M.K. Toward a physical basis of attention and self regulation. Phys. Life Rev. 2009, 6, 103–120. [Google Scholar]
- Volkow, N.D.; Wise, R.A. How can drug addiction help us understand obesity? Nat. Neurosci. 2005, 8, 555–560. [Google Scholar]
- Marsh, R.; Horga, G.; Wang, Z.; Wang, P.; Klahr, K.W.; Berner, L.A.; Walsh, B.T.; Peterson, B.S. An fMRI study of self-regulatory control and conflict resolution in adolescents with bulimia nervosa. Am. J. Psychiatry 2011. [Google Scholar]
- Guy, S.C.; Isquith, P.K.; Gioia, G.A. BRIEF (The Behavior Rating Inventory of Executive-Function-Self-Report Version BRIEF-SR), Behavior Rating Inventory of Executive Function-Self-Report Version; Psychological Assessment Resources, Inc.: Odessa, FL, USA, 2004. [Google Scholar]
- Riggs, N.R.; Kobayakawa-Sakuma, K.L.; Pentz, M.A. Preventing risk for obesity by promoting self-regulation and decision-making skills: Pilot results from the Pathways to Health Program. Eval. Rev. 2007, 31, 287–310. [Google Scholar]
- Romeo, R.D.; McEwen, B.S. Stress and the adolescent brain. Ann. NY Acad. Sci. 2006, 1094, 202–214. [Google Scholar]
- Jasuja, G.K.; Chou, C.P.; Riggs, N.R.; Pentz, M.A. Early cigarette use and psychological distress as predictors of obesity risk in adulthood. Nicotine Tob. Res. 2008, 10, 325–335. [Google Scholar]
- Johnston, L.D.; O’Malley, P.M.; Bachman, J.G.; Schulenberg, J.E. Monitoring the Future National Survey Results on Drug Use, 1975–2010. Volume I: Secondary School Students; Institute for Social Research, University of Michigan: Ann Arbor, MI, USA, 2011; p. 734. [Google Scholar]
- Sussman, S.; Pentz, M.A.; Spruijt-Metz, D.; Miller, T. Abuse of “study drugs”: Prevalence, consequences, and implications for therapeutic prescription and policy. Subst. Abuse Treat. Prev. Policy 2006, 1. [Google Scholar]
- Huh, H.; Riggs, N.R.; Spruijt-Metz, D.; Chou, C.P.; Huang, Z.; Pentz, M. Identifying patterns of eating and physical activity in children: A latent class analysis of obesity risk. Obesity 2010, 19, 652–658. [Google Scholar]
- Nguyen-Michel, S.T.; Unger, J.B.; Metz, D.S. Dietary correlates of emotional eating in adolescence. Appetite 2007, 49, 494–499. [Google Scholar]
- Riggs, N.R.; Spruijt-Metz, D.; Sakuma, K.L.; Chou, C.P.; Pentz, M.A. Executive cognitive function and food intake in children. J. Nutr. Educ. Behav. 2010, 42, 398–403. [Google Scholar]
- Rollins, B.Y.; Riggs, N.R.; Spruijt-Metz, D.; McClain, A.D.; Chou, C.P.; Pentz, M.A. Psychometrics of the Eating in Emotional Situations Questionnaire (EESQ) among low-income Latino elementary-school children. Eat. Behav. 2011, 12, 156–159. [Google Scholar]
- Singh, G.K.; Slahpush, M.; Kogan, M.D. Rising social inequalities in U.S. childhood obesity, 2003–2007. Ann. Epidemiol. 2010, 20, 40–52. [Google Scholar]
- Pentz, M.A.; Johnson, C.A.; Dwyer, J.H.; MacKinnon, W.B.; Flay, B.R. A comprehensive community approach to adolescent drug abuse prevention: Effects on cardiovascular disease risk behaviors. Ann. Med. 1989, 21, 219–222. [Google Scholar]
- Greenberg, M.T.; Kusché, C.A. Promoting Social and Emotional Development in Deaf Children: The PATHS Project; University of Washington Press: Seattle, WA, USA, 1993. [Google Scholar]
- SAS Institute Inc, SAS Language: Reference, Version 6, 1st ed; SAS Institute Inc.: Cary, NC, USA, 1990.
- Field, A.E.; Peterson, K.E.; Gortmaker, S.L.; Cheung, L.; Rockett, H.; Fox, M.K.; Colditz, G.A. Reproducibility and validity of a food frequency questionnaire among fourth to seventh grade inner-city school children: Implications of age and day-to-day variation in dietary intake. Public Health Nutr. 1999, 2, 293–300. [Google Scholar]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar]
- California Healthy Kids Survey: Main Report; WestEd Health and Human Development Program for the California Department of Education: San Francisco, CA, USA, 2009.
- Cohen, S.; Kamarck, T.; Mermelstein, R.A. Global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar]
- Malmberg, M.; Overbeek, G.; Monshouwer, K.; Lammers, J.; Vollebergh, W.A.; Engels, R.C. Substance use risk profiles and associations with early substance use in adolescence. J. Behav. Med. 2010, 33, 474–485. [Google Scholar]
- Centers for Disease Control (CDC). Youth Risk Behavior Survey; CDC: Atlanta, GA, USA, 2005. Available online: http://www.cdc.gov/HealthyYouth/yrbs/pdfs/2005highschoolquestionnaire.pdf (accessed on 22 November 2011).
- Eaton, D.K.; Kann, L.; Kinchen, S.; Ross, J.; Hawkins, J.; Harris, W.A.; Lowry, R.; McManus, T.; Chyen, D.; Shanklin, S.; et al. Youth risk behavior surveillance—United States, 2005. J. School Health 2006, 76, 353–372. [Google Scholar]
- Paeratakul, S.; Lovejoy, J.C.; Ryan, D.H.; Bray, G.A. The relation of gender, race and socioeconomic status to obesity and obesity comorbidities in a sample of US adults. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1205–1210. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. Mplus Users Guide, 6th ed; Muthén & Muthén: Los Angeles, CA, USA, 1998. [Google Scholar]
- Golley, R.K.; Hendrie, G.A.; McNaughton, S.A. Scores on the dietary guideline index for children and adolescents are associated with nutrient intake and socio-economic position but not adiposity. J. Nutr. 2011, 141, 1340–1347. [Google Scholar]
- Reedy, J.; Krebs-Smith, S.M. Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States. J. Am. Diet Assoc. 2010, 110, 1477–1484. [Google Scholar]
- Durand, C.P.; Andalib, M.; Dunton, G.F.; Wolch, J.; Pentz, M.A. A systematic review of built environment factors related to physical activity and obesity risk: Implications for smart growth urban planning. Obes. Rev. 2011, 12, e173–e182. [Google Scholar]
- Midei, A.J.; Matthews, K.A. Interpersonal violence in childhood as a risk factor for obesity: A systematic review of the literature and proposed pathways. Obes. Rev. 2011, 12, e159–e172. [Google Scholar]
- Pentz, M.A. Defining Neighborhoods of Opportunity by Green Spaces, School Achievement, and Perceived Neighborhood Safety: Illustrations from Two Drug Abuse and Obesity Prevention Trials. In National Hispanic Science Network on Drug Abuse, New Orleans, LA, USA, 30 September–2 October 2010.
- Galvan, A.; Hare, T.; Voss, H.; Glover, G.; Casey, B.J. Risk-taking and the adolescent brain: Who is at risk? Dev. Sci. 2007, 10, 8–14. [Google Scholar]
- Diamond, A.; Lee, K. Interventions shown to aid executive function development in children 4 to 12 years old. Science 2011, 333, 959–964. [Google Scholar]
- Davis, C.L.; Tomporowski, P.D.; Boyle, C.A.; Waller, J.L.; Miller, P.H.; Naglieri, J.A.; Gregoski, M. Effects of aerobic exercise on overweight children’s cognitive functioning: A randomized controlled trial. Res. Q. Exerc. Sport 2007, 78, 510–519. [Google Scholar]
- Terry-McElrath, Y.M.; O’Malley, P.M.; Johnston, L.D. Exercise and substance use among American youth, 1991–2009. Am. J. Prev. Med. 2011, 40, 530–540. [Google Scholar]
- Steffen, L.M.; Dai, S.; Fulton, J.E.; Labarthe, D.R. Overweight in children and adolescents associated with TV viewing and parental weight: Project HeartBeat! Am. J. Prev. Med. 2009, 37 (Suppl 1), S50–S55. [Google Scholar]
- Robinson, T.N.; Wilde, M.L.; Navracruz, L.C.; Haydel, K.F.; Varady, A. Effects of reducing children’s television and video game use on aggressive behavior: A randomized controlled trial. Arch. Pediatr. Adolesc. Med. 2001, 155, 17–23. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pentz, M.A.; Spruijt-Metz, D.; Chou, C.P.; Riggs, N.R. High Calorie, Low Nutrient Food/Beverage Intake and Video Gaming in Children as Potential Signals for Addictive Behavior. Int. J. Environ. Res. Public Health 2011, 8, 4406-4424. https://doi.org/10.3390/ijerph8124406
Pentz MA, Spruijt-Metz D, Chou CP, Riggs NR. High Calorie, Low Nutrient Food/Beverage Intake and Video Gaming in Children as Potential Signals for Addictive Behavior. International Journal of Environmental Research and Public Health. 2011; 8(12):4406-4424. https://doi.org/10.3390/ijerph8124406
Chicago/Turabian StylePentz, Mary Ann, Donna Spruijt-Metz, Chih Ping Chou, and Nathaniel R. Riggs. 2011. "High Calorie, Low Nutrient Food/Beverage Intake and Video Gaming in Children as Potential Signals for Addictive Behavior" International Journal of Environmental Research and Public Health 8, no. 12: 4406-4424. https://doi.org/10.3390/ijerph8124406
APA StylePentz, M. A., Spruijt-Metz, D., Chou, C. P., & Riggs, N. R. (2011). High Calorie, Low Nutrient Food/Beverage Intake and Video Gaming in Children as Potential Signals for Addictive Behavior. International Journal of Environmental Research and Public Health, 8(12), 4406-4424. https://doi.org/10.3390/ijerph8124406