An Optimal Centralized Carbon Dioxide Repository for Florida, USA
Abstract
:1. Introduction
2. Experimental Section
2.1. Florida Primary Emission Sources
2.2. Florida Pipeline Transportation Model
- D is the pipeline diameter in inches and is function of flow rate;
- L is the least-cost pipeline route length in miles; and,
- CF is a capital cost factor used to annualize the initial capital cost.
2.3. Geologic Repository or Disposal Zones
2.4. Optimization Model
3. Results and Discussion
4. Conclusions
Acknowledgments
References and Notes
- Bradshaw, J; Bachu, S; Bonijoly, D; Burruss, R; Holloway, S; Christensen, NP; Mathiassen, OM. CO2 storage capacity estimation: Issues and development of standards. Int. J. Greenh. Gas Control 2007, 1, 62–68. [Google Scholar]
- The Future of Coal: Options for a Carbon Constrained World; Massachusetts Institute of Technology: Cambridge, MA, USA, 2007. Available online: http://mit.edu/coal/ (accessed on 15 September 2010).
- Environmental Protection Agency. Year 2005 eGRID Plant, Boiler, and Generator Data Files; EPA Clean Energy Resources: Washington, DC, USA, 2007. Available online: http://epa.gov/cleanenergy/energy-resources/egrid/index.html (accessed on 18 August 2010).
- United States Department of Energy (DOE), Methodology for Development of Geologic Storage Estimates for Carbon Dioxide, 2008; National Energy Technology Laboratory: Pittsburgh, PA, USA, 2008; pp. 115–132.
- Energy Information Administration (EIA). Florida State Energy Profile Data 2009 and 2010. Available online: http://www.eia.gov/state/state_energy_profiles.cfm?sid=FL (accessed on 1 December 2010).
- Benson, S; Cook, P. Underground Geological Storage, Special Report on Carbon Dioxide Capture and Storage; The Intergovernmental Panel on Climate Change (IPCC), United Nations: New York, NY, USA, 2005; pp. 1–265. [Google Scholar]
- Koide, HG; Tazaki, Y; Noguchi, Y; Nakayama, S; Iijima, M; Ito, K. Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Conv. Manage 1992, 33, 619–626. [Google Scholar]
- Bachu, S; Gunter, WD; Perkins, EH. Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conv. Manage 1994, 35, 269–279. [Google Scholar]
- van der Meer, LGH. The CO2 storage efficiency of aquifers. Energy Conv. Manage 1995, 36, 513–518. [Google Scholar]
- Obdam, A; van der Meer, LGH; May, F; Kervevan, C; Bech, N; Wildenborg, A. Effective CO2 Storage Capacity in Aquifers, Gas Fields, Oil Fields and Coal Fields. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies (GHGT-6), Kyoto, Japan, 1– 4 October 2002; Gale, J, Kaya, Y, Eds.; Pergamon: Oxford, UK, 2003; pp. 339–344. [Google Scholar]
- Herzog, H. Carbon Dioxide Capture and Stoage. In Economics and Politics of Climate Change; Helm, D, Hepburn, C, Eds.; Oxford University Press: Oxford, UK, 2009; pp. 263–283. [Google Scholar]
- United States Department of Energy (DOE), Carbon Sequestration Atlas III of the United States and Canada; Southeast Regional Carbon Sequestration Partnership, National Energy Technology Laboratory: Pittsburg, PA, USA, 2010; pp. 84–95.
- Bachu, S; Adams, JJ. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Conv. Manage 2003, 44, 3151–3175. [Google Scholar]
- Han, WS; McPherson, BJ. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs. Energy Conv. Manage 2009, 50, 2570–2583. [Google Scholar]
- Sharqawy, MH; Lienhard, JH; Zubair, SM. Thermophysical properties of seawater: A review of existing correlations and data. Desal. Water Treat 2010, 16, 354–380. [Google Scholar]
- Carbon Dioxide Thermophysical Property Calculator; Massachusetts Institute of Technology: Cambridge, MA, USA, 2010. Available online: http://sequestration.mit.edu/tools/index.html (accessed on 15 September 2010).
- Flett, MA; Gurton, RM; Taggart, IJ. Heterogeneous Saline Formations: Long-Term Benefits for Geo-Sequestration of Greenhouse Gases. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 5–9 September 2004; Rubin, ES, Keith, DW, Gilboy, CF, Morris, T, Thambimuthu, K, Eds.; Elsevier: New York, NY, USA, 2005; pp. 501–509. [Google Scholar]
- Powell, S; Baker, K. Management Science. In The Art of Modeling with Spreadsheets, 3rd ed; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 281–309. [Google Scholar]
- Heddle, G; Herzog, H; Klett, M. The Economics of CO2 Storage; Report # 2003-003; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- McCoy, S. The Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs; PhD Thesis; Carnegie Mellon University Press: Pittsburg, PA, USA, 2008; pp. 1–247. [Google Scholar]
- Skovholt, O. CO2 transportation system. Energy Conv. Manage 1993, 34, 1095–1103. [Google Scholar]
- Bakken, BH; von Streng Velken, I. Linear Models for Optimization of Infrastructure for CO2 Capture and Storage. IEEE Trans. Energy Convers 2008, 23, 824–833. [Google Scholar]
- Zhang, ZX; Wang, GX; Massarotto, P; Rudolph, V. Optimization of pipeline transport for CO2 sequestration. Energy Conv. Manage 2006, 47, 702–715. [Google Scholar]
- Mendelevitch, R; Herold, J; Oei, P-Y; Tissen, A. CO2 Highways for Europe: Modelling a Carbon Capture, Transport and Storage Infrastructure for Europe; Centre for European Policy Studies: Brussels, Belgium, 2010; p. 23. [Google Scholar]
- van den Broek, M; Brederode, E; Ramirez, A; Kramers, L; van der Kuip, M; Wildenborg, T; Turkenburg, W; Faaij, A. Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model. Environ. Modell. Softw 2010, 25, 1754–1768. [Google Scholar]
- Middleton, RS; Bielicki, JM. A scalable infrastructure model for carbon capture and storage: SimCCS. Energy Policy 2009, 37, 1052–1060. [Google Scholar]
- Middleton, RS; Bielicki, JM. A comprehensive carbon capture and storage infrastructure model. Energy Procedia 2009, 1, 1691–1698. [Google Scholar]
- Keating, GN; Middleton, RS; Stauffer, PH; Viswanathan, HS; Letellier, BC; Pasqualini, D; Pawar, RJ; Wolfsberg, AV. Mesoscale. Carbon sequestration site screening and CCS infrastructure analysis. Environ. Sci. Technol 2011, 45, 215–222. [Google Scholar]
- Kuby, M; Bielicki, JM; Middleton, RS. Optimal spatial deployment of carbon dioxide capture and storage given a price on carbon dioxide. Int Reg Sci Rev 2011. [Google Scholar] [CrossRef]
- Lewis, S. 1Q Cost Report. Eng News Rec. 2010, 264, p. 58. Available online: http://enr.construction.com/economics/historical_indices/ (accessed on 10 October 2010).
- Lewicki, JL; Birkholzer, J; Tsang, C. Natural and industrial analogues for leakage of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned. Environ. Geol 2007, 52, 457–467. [Google Scholar]
- Cole, WS. Stratigraphic and Paleontologic Studies of Wells in Florida—No. 2. Florida Geological Survey; Geological Bulletin No. 20. Florida Geological Survey: Tallahassee, FL, USA, 1942. Available online: http://ufdc.ufl.edu/fgs (accessed on 15 November 2010).
- Chen, CS. The Regional Lithostratigraphic Analysis of Paleocene and Eocene Rocks of Florida. Florida Geological Survey; Geological Bulletin No. 45. Florida Geological Survey: Tallahassee, FL, USA, 1965. Available online: http://ufdc.ufl.edu/fgs (accessed on 15 November 2010).
- Babcock, C. Geology of the Upper Cretaceous Clastic Section Northern Peninsular Florida. Florida Geological Survey; Information Circular No. 60. Florida Geological Survey: Tallahassee, FL, USA, 1969. Available online: http://ufdc.ufl.edu/fgs (accessed on 15 November 2010).
- Vernon, RO. The Beneficial Uses of Zones of High Transmissivity in the Florida Subsurface for Water Storage and Waste Disposal; Florida Geological Survey Information Circular No. 70. Florida Geological Survey: Tallahassee, FL, USA, 1970. Available online: http://ufdc.ufl.edu/fgs (accessed on 15 November 2010).
- Puri, HS; Winston, GO. Geologic Framework of the High Transmissivity Zones in South Florida; Florida Geological Survey Special Publication No. 20. Florida Geological Survey: Tallahassee, FL, USA, 1974. Available online: http://ufdc.ufl.edu/UF00000159/00001/56x?td=puri (accessed on 15 November 2010).
- Raymond, DE; Copeland, CW. Alabama Stratigraphy; Geological Survey of Alabama Circular No. 140. Florida Geological Survey: Tallahassee, FL, USA, 1988. Available online: http://www.gsa.state.al.us/online_pubs.aspx (accessed on 15 November 2010).
- Rupert, FR. Geology of Gulf County, Florida; Florida Geological Survey Bulletin No. 63. Florida Geological Survey: Tallahassee, FL, USA, 1991. Available online: http://ufdc.ufl.edu/fgs (accessed on 15 November 2010).
- Yamamoto, H; Zhang, K; Karasaki, K; Marui, A; Uehara, H; Nishikawa, N. Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int. J. Greenh. Gas Control 2009, 3, 586–599. [Google Scholar]
- Okwen, RT; Stewart, MT; Cunningham, J. Analytical solution for estimating storage efficiency of geologic sequestration of CO2. Int. J. Greenh. Gas Control 2010, 4, 102–107. [Google Scholar]
- Cormier, G; Gunn, EA. Modelling and analysis for capacity expansion planning in warehousing. J. Oper. Res. Soc 1999, 50, 52–60. [Google Scholar]
- Bayer, MR; Kobelski, B. Underground injection control program: Proposed regulations for underground injection of carbon dioxide for geologic sequestration. Ground Water Monit. Remediat 2008, 28, 42–44. [Google Scholar]
- Center for Climate Strategies, Final Florida Greenhouse Gas Inventory and Reference Case Projections 1990–2025; Technical Report for the Florida Department of Environmental Protection; Center for Climate Strategies: Washington, DC, USA, 2008; p. 120.
- Brennan, ST; Burruss, RC. Specific storage volumes: A useful tool for CO2 storage capacity assessment. Nat. Resour. Res 2006, 15, 165–182. [Google Scholar]
Map ID | Plant/Facility Name | Northing (UTM) | Easting (UTM) | Annual CO2 Emission (Mt) |
---|---|---|---|---|
1 | Crystal River | 3,204,678.619 | 334,313.2096 | 15.74 |
2 | Big Bend | 3,075,217.595 | 361,725.5861 | 9.13 |
3 | Seminole | 3,289,401.756 | 438,698.3555 | 9.10 |
4 | St Johns River Power Park | 3,366,685.189 | 447,107.3266 | 8.56 |
5 | Martin | 2,992,447.289 | 543,356.5439 | 7.82 |
6 | Stanton Energy Center | 3,150,786.762 | 483,497.4057 | 6.46 |
7 | Manatee | 3,054,259.052 | 367,211.8689 | 5.84 |
8 | Sanford | 3,190,513.316 | 468,238.3524 | 5.42 |
9 | Crist | 3,398,084.815 | –97,895.92908 | 5.12 |
10 | Northside Generating Station | 3,365,145.618 | 446,936.553 | 4.96 |
11 | Anclote | 3,118,132.981 | 324,756.7577 | 3.91 |
12 | Fort Myers | 2,953,082.051 | 422,095.7715 | 3.79 |
13 | Port Everglades | 2,885,457.356 | 587,476.496 | 3.48 |
14 | Lansing Smith | 3,357,948.163 | 47,642.89122 | 3.25 |
15 | H. L. Culbreath Bayside | 3087854.701 | 360,314.9618 | 3.03 |
16 | C D McIntosh Jr | 3,106,510.129 | 409,058.5118 | 3.01 |
17 | Lauderdale | 2,883,472.218 | 580,187.5679 | 2.41 |
18 | Hines Energy Complex | 3,074,088.024 | 414,350.2864 | 2.30 |
19 | Turkey Point | 2,813,351.444 | 567,289.7214 | 2.25 |
20 | Indiantown Cogeneration LP | 2990837.399 | 548,351.095 | 1.99 |
21 | Cape Canaveral | 3,149,224.713 | 523,083.2452 | 1.88 |
22 | P L Bartow | 3,083,763.645 | 342,512.6343 | 1.86 |
23 | Cedar Bay Generating Company LP | 3,365,190.106 | 442,547.4555 | 1.69 |
24 | Riviera | 2,960,791.27 | 594,173.507 | 1.66 |
25 | Deerhaven Generating Station | 3,292,844.416 | 365,772.0839 | 1.59 |
26 | Polk | 3,067,530.872 | 402,444.7148 | 1.24 |
27 | Curtis H Stanton Energy Center | 3,151,285.136 | 483,605.7691 | 1.13 |
28 | Payne Creek | 3,057,882.912 | 405,050.8373 | 0.80 |
29 | Osprey Energy Center | 3,103,281.781 | 420,562.9754 | 0.73 |
30 | Wheelabrator South Broward | 2,883,489.47 | 579,387.226 | 0.72 |
31 | Wheelabrator North Broward | 2,907,795.911 | 583,891.3521 | 0.70 |
32 | S O Purdom | 3,341,056.505 | 191,654.8001 | 0.67 |
33 | Intercession City | 3,126,192.519 | 446,298.0256 | 0.56 |
34 | Arvah B Hopkins | 3,373,808.201 | 173,480.9335 | 0.56 |
35 | Indian River | 3,151,869.056 | 521,286.9994 | 0.54 |
36 | Suwannee River | 3,362,512.556 | 290,459.4867 | 0.47 |
37 | Brandy Branch | 3,354,282.623 | 408,799.7506 | 0.44 |
38 | Central Power & Lime | 3,162,005.233 | 360,802.8878 | 0.42 |
39 | Putnam | 3,277,742.491 | 443,310.436 | 40 .40 |
40 | Orlando Cogen LP | 3,145,979.526 | 460,067.822 | 0.37 |
Map ID | Plant/Facility Name | Costs to DA1 ($/tonne CO2) | Costs to DA2 ($/tonne CO2) | Costs to DA3 ($/tonne CO2) | Costs to DA4 ($/tonne CO2) | Costs to DA5 ($/tonne CO2) |
---|---|---|---|---|---|---|
1 | Crystal River | $5.38 | $3.94 | $5.16 | $2.42 | $4.57 |
2 | Big Bend | $7.19 | $5.89 | $3.39 | $1.79 | $3.48 |
3 | Seminole | $6.83 | $2.97 | $6.30 | $2.94 | $5.62 |
4 | St Johns River Power Park | $6.91 | $1.93 | $7.57 | $4.00 | $6.67 |
5 | Martin | $13.34 | $9.86 | $5.38 | $1.75 | $1.63 |
6 | Stanton Energy Center | $10.76 | $6.30 | $5.49 | $1.06 | $4.10 |
7 | Manatee | $14.85 | $6.81 | $3.29 | $2.00 | $3.63 |
8 | Sanford | $10.28 | $4.89 | $6.57 | $1.77 | $4.93 |
9 | Crist | $0.99 | $8.63 | $14.70 | $16.25 | $19.12 |
10 | Northside Generating Station | $7.79 | $2.29 | $8.74 | $4.56 | $7.55 |
11 | Anclote | $12.62 | $6.81 | $4.76 | $2.93 | $5.24 |
12 | Fort Myers | $17.42 | $9.16 | $4.90 | $2.76 | $2.24 |
13 | Port Everglades | $19.49 | $14.31 | $8.33 | $4.23 | $1.37 |
14 | Lansing Smith | $2.27 | $7.64 | $13.58 | $12.92 | $19.54 |
15 | H. L. Culbreath Bayside | $14.00 | $7.69 | $4.96 | $2.50 | $4.90 |
16 | C D McIntosh Jr | $14.33 | $7.25 | $5.56 | $1.62 | $4.70 |
17 | Lauderdale | $22.36 | $16.09 | $9.34 | $4.74 | $1.42 |
18 | Hines Energy Complex | $16.43 | $8.54 | $5.63 | $1.66 | $4.56 |
19 | Turkey Point | $24.52 | $16.94 | $10.52 | $6.02 | $2.08 |
20 | Indiantown Cogeneration LP | $20.18 | $14.64 | $8.34 | $2.79 | $2.55 |
21 | Cape Canaveral | $15.85 | $12.05 | $8.99 | $1.87 | $5.87 |
22 | P L Bartow | $17.95 | $9.61 | $5.21 | $3.84 | $6.58 |
23 | Cedar Bay Generating Company LP | $10.92 | $3.32 | $12.71 | $6.57 | $10.74 |
24 | Riviera | $23.41 | $20.45 | $10.15 | $4.18 | $2.66 |
25 | Deerhaven Generating Station | $9.89 | $5.40 | $12.36 | $5.75 | $9.94 |
26 | Polk | $21.11 | $10.94 | $6.93 | $2.51 | $5.85 |
27 | Curtis H Stanton Energy Center | $19.39 | $13.08 | $10.27 | $2.05 | $7.35 |
28 | Payne Creek | $26.41 | $13.54 | $8.46 | $3.07 | $6.83 |
29 | Osprey Energy Center | $25.63 | $12.75 | $10.03 | $2.57 | $8.11 |
30 | Wheelabrator South Broward | $36.23 | $26.41 | $15.58 | $7.86 | $2.40 |
31 | Wheelabrator North Broward | $35.16 | $27.09 | $15.63 | $7.35 | $2.69 |
32 | S O Purdom | $8.86 | $10.44 | $21.76 | $16.57 | $25.78 |
33 | Intercession City | $28.46 | $13.68 | $12.71 | $2.49 | $9.63 |
34 | Arvah B Hopkins | $8.79 | $11.39 | $23.75 | $16.46 | $28.13 |
35 | Indian River | $27.11 | $20.89 | $15.79 | $3.43 | $10.27 |
36 | Suwannee River | $13.92 | $8.98 | $25.06 | $13.67 | $20.38 |
37 | Brandy Branch | $18.71 | $6.90 | $24.85 | $11.92 | $19.36 |
38 | Central Power & Lime | $30.05 | $14.89 | $14.36 | $6.86 | $13.76 |
39 | Putnam | $21.48 | $10.22 | $20.70 | $9.18 | $17.20 |
40 | Orlando Cogen LP | $34.22 | $17.86 | $17.12 | $3.56 | $12.54 |
Map ID | Plant/Facility Name | Annual CO2 Emission (Mt) | Optimum Disposal Area in Florida (DA 1 to 5) |
---|---|---|---|
1 | Crystal River | 15.74 | DA4 |
2 | Big Bend | 9.13 | DA4 |
3 | Seminole | 9.10 | DA4 |
4 | St Johns River Power Park | 8.56 | DA2 |
5 | Martin | 7.82 | DA5 |
6 | Stanton Energy Center | 6.46 | DA4 |
7 | Manatee | 5.84 | DA4 |
8 | Sanford | 5.42 | DA4 |
9 | Crist | 5.12 | DA1 |
10 | Northside Generating Station | 4.96 | DA2 |
11 | Anclote | 3.91 | DA4 |
12 | Fort Myers | 3.79 | DA5 |
13 | Port Everglades | 3.48 | DA5 |
14 | Lansing Smith | 3.25 | DA1 |
15 | H. L. Culbreath Bayside | 3.03 | DA4 |
16 | C D McIntosh Jr | 3.01 | DA4 |
17 | Lauderdale | 2.41 | DA5 |
18 | Hines Energy Complex | 2.30 | DA4 |
19 | Turkey Point | 2.25 | DA5 |
20 | Indiantown Cogeneration LP | 1.99 | DA5 |
21 | Cape Canaveral | 1.88 | DA4 |
22 | P L Bartow | 1.86 | DA4 |
23 | Cedar Bay Generating Company LP | 1.69 | DA2 |
24 | Riviera | 1.66 | DA5 |
25 | Deerhaven Generating Station | 1.59 | DA2 |
26 | Polk | 1.24 | DA4 |
27 | Curtis H Stanton Energy Center | 1.13 | DA4 |
28 | Payne Creek | 0.80 | DA4 |
29 | Osprey Energy Center | 0.73 | DA4 |
30 | Wheelabrator South Broward | 0.72 | DA5 |
31 | Wheelabrator North Broward | 0.70 | DA5 |
32 | S O Purdom | 0.67 | DA1 |
33 | Intercession City | 0.56 | DA4 |
34 | Arvah B Hopkins | 0.56 | DA1 |
35 | Indian River | 0.54 | DA4 |
36 | Suwannee River | 0.47 | DA2 |
37 | Brandy Branch | 0.44 | DA2 |
38 | Central Power & Lime | 0.42 | DA4 |
39 | Putnam | 0.40 | DA4 |
40 | Orlando Cogen LP | 0.37 | DA4 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Poiencot, B.; Brown, C. An Optimal Centralized Carbon Dioxide Repository for Florida, USA. Int. J. Environ. Res. Public Health 2011, 8, 955-975. https://doi.org/10.3390/ijerph8040955
Poiencot B, Brown C. An Optimal Centralized Carbon Dioxide Repository for Florida, USA. International Journal of Environmental Research and Public Health. 2011; 8(4):955-975. https://doi.org/10.3390/ijerph8040955
Chicago/Turabian StylePoiencot, Brandon, and Christopher Brown. 2011. "An Optimal Centralized Carbon Dioxide Repository for Florida, USA" International Journal of Environmental Research and Public Health 8, no. 4: 955-975. https://doi.org/10.3390/ijerph8040955
APA StylePoiencot, B., & Brown, C. (2011). An Optimal Centralized Carbon Dioxide Repository for Florida, USA. International Journal of Environmental Research and Public Health, 8(4), 955-975. https://doi.org/10.3390/ijerph8040955