Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Ambient Pollutant Data
2.3. Landuse Data
3. Methods
4. Results
5. Discussion
6. Conclusions
Acknowledgments
References
- Pope, CA; Hansen, ML; Long, RW; Nielsen, KR; Eatough, NL; Wilson, WE; Eatough, DJ. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ. Health Perspect 2004, 112, 339–345. [Google Scholar]
- Pope, CA. Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who’s at risk? Environ. Health Perspect 2000, 108, 713–723. [Google Scholar]
- Pope, CA. Review: Epidemiological basis for particulate air pollution health standards. Aerosol Sci. Tech 2000, 32, 4–14. [Google Scholar]
- Dockery, DW; Pope, CA; Xu, XP; Spengler, JD; Ware, JH; Fay, ME; Ferris, BG; Speizer, FE. An association between air-pollution and mortality in 6 United-States cities. N. Engl. J. Med 1993, 329, 1753–1759. [Google Scholar]
- Yanosky, JD; Paciorek, CJ; Suh, HH. Predicting chronic fine and coarse particulate exposures using spatio-temporal models for the northeastern and midwestern US. Environ Health Perspect 2009, (in press).. [Google Scholar]
- Paciorek, CJ; Yanosky, JD; Puett, RC; Laden, F; Suh, HH. Practical large-scale spatio-temporal modeling of particulate matter concentrations. Ann. Appl. Stat 2009, 3, 370–397. [Google Scholar]
- Yu, HL; Wang, CH. Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei. Atmos Environ 2010. (submitted).. [Google Scholar]
- Yu, HL; Christakos, G; Chen, JC. Spatiotemporal Air Pollution Modeling and Prediction in Epidemiologic Research. In Air Pollution Research Trends; Columbus, F, Ed.; Nova Science Publishers, Inc: Hauppauge, NY, USA, 2007; pp. 57–75. [Google Scholar]
- Zhang, YX; Zhang, YM; Wang, YS; Li, DL. PIXE characterization of PM10 and PM2.5 particulate matter collected during the winter season in Shanghai city. J. Radioanal. Nucl. Chem 2006, 267, 497–499. [Google Scholar]
- Cohen, DD; Garton, D; Stilcer, E; Wang, T; Poon, S; Kim, JY; Oh, SN; Shin, H-J; Ko, MY; Santos, F; et al. Characterisation of PM2.5 and PM10 Fine Particle Pollution in Several Asian Regions. Proceedings of 16th Internatinal Clean Air Conference, Christchurch, New Zealand; 2005; pp. 18–22. [Google Scholar]
- Criterion Document on Particulate Matter; U.S. Environmental Protection Agency (USEPA): Washington, DC, USA, 2001.
- Das, M; Maiti, SK; Mukhopadhyay, U. Distribution of PM2.5 and PM10-2.5 in PM10 fraction in ambient air due to vehicular pollution in Kolkata megacity. Environ. Monit. Assess 2006, 122, 111–123. [Google Scholar]
- Mao, IF; Chen, CN; Lin, YC; Chen, ML. Airborne particle PM2.5/PM10 mass distribution and particle-bound PAH concentrations near a medical waste incinerator. Atmos. Environ 2007, 41, 2467–2475. [Google Scholar]
- Li, CS; Lin, CH. PM1/PM2.5/PM10 characteristics in the urban atmosphere of Taipei. Aerosol Sci. Tech 2002, 36, 469–473. [Google Scholar]
- Kumar, U; Jain, VK. ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch. Environ. Res. Risk Assess 2010, 24, 751–760. [Google Scholar]
- Li, HL; Huang, GH; Zou, Y. An integrated fuzzy-stochastic modeling approach for assessing health-impact risk from air pollution. Stoch. Environ. Res. Risk Assess 2008, 22, 789–803. [Google Scholar]
- Gilbert, NL; Goldberg, MS; Brook, JR; Jerrett, M. The influence of highway traffic on ambient nitrogen dioxide concentrations beyond the immediate vicinity of highways. Atmos. Environ 2007, 41, 2670–2673. [Google Scholar]
- Jerrett, M. On the use and interpretation of land use regression estimates in chronic air pollution epidemiology. Epidemiology 2008, 19, S38–S38. [Google Scholar]
- Jerrett, M; Arain, A; Kanaroglou, P; Beckerman, B; Potoglou, D; Sahsuvaroglu, T; Morrison, J; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expos. Anal. Environ. Epidem 2005, 15, 185–204. [Google Scholar]
- Sahsuvaroglu, T; Jerrett, M; Sears, MR; McConnell, R; Finkelstein, N; Arain, A; Newbold, B; Burnett, R. Spatial analysis of air pollution and childhood asthma in Hamilton, Canada: Comparing exposure methods in sensitive subgroups. Environ Health 2009, 8. [Google Scholar]
- Sangrador, JLT; Nunez, MCE; Villarreal, AB; Cadena, LH; Jerrett, M; Romieu, I. A land use regression model for predicting PM2.5 in Mexico City. Epidemiology 2008, 19, S259–S259. [Google Scholar]
- Gilbert, NL; Goldberg, MS; Beckerman, B; Brook, JR; Jerrett, M. Assessing spatial variability of ambient nitrogen dioxide in Montreal, Canada, with a land-use regression model. J. Air Waste Manage. Assoc 2005, 55, 1059–1063. [Google Scholar]
- Jerrett, M; Burnett, RT; Ma, RJ; Pope, CA; Krewski, D; Newbold, KB; Thurston, G; Shi, YL; Finkelstein, N; Calle, EE; et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005, 16, 727–736. [Google Scholar]
- Gehrig, R; Buchmann, B. Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmos. Environ 2003, 37, 2571–2580. [Google Scholar]
- Querol, X; Alastuey, A; Rodriguez, S; Plana, F; Ruiz, CR; Cots, N; Massague, G; Puig, O. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ 2001, 35, 6407–6419. [Google Scholar]
- Chang, SC; Lee, CT. Evaluation of the trend of air quality in Taipei, Taiwan from 1994 to 2003. Environ. Monit. Assess 2007, 127, 87–96. [Google Scholar]
- Air Quality in Taiwan Annual Report; Taiwan Environmental Protection Agency (TWEPA): Taipei, Taiwan, 2006.
- AQS Raw Data Summary Formulas Draft; U.S. Environmental Protection Agency (USEPA): Washington, DC, USA, 2004.
- National Land Surveying Project; National Land Surveying and Mapping Center, Taiwan Ministry of Interior (TMI): Taipei, Taiwan, 2007.
- Hoek, G; Beelen, R; de Hoogh, K; Vienneau, D; Gulliver, J; Fischer, P; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ 2008, 42, 7561–7578. [Google Scholar]
- Annual Report of Registered Vehicles in Taipei City; Taipei City Government: Taipei, Taiwan, 2007.
- Annual Report of Registered Vehicles; Taiwan Ministry of Transportation and Communication: Taipei County, Taiwan, 2007.
- Graybill, FA; Iyer, HK. Regression Analysis: Concepts and Applications; Duxbury Press: Belmont, CA, USA, 1994. [Google Scholar]
- Christakos, G. Random Field Models in Earth Sciences; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Christakos, G. Modern Spatiotemporal Geostatistics; Oxford University Press: New York, NY, USA, 2000; p. 304. [Google Scholar]
- Christakos, G; Olea, RA; Serre, ML; Yu, HL; Wang, L. Interdisciplinary Public Health Reasoning and Epidemic Modelling: The Case of Black Death; Springer-Verlag: New York, NY, USA, 2005. [Google Scholar]
- Kolovos, A; Christakos, G; Serre, ML; Miller, CT. Computational Bayesian maximum entropy solution of a stochastic advection-reaction equation in the light of site-specific information. Water Resour Res 2002, 38. [Google Scholar]
- Porcu, E; Mateu, J; Saura, F. New classes of covariance and spectral density functions for spatio-temporal modelling. Stoch. Environ. Res. Risk Assess 2008, 22, S65–S79. [Google Scholar]
- Yu, HL; Kolovos, A; Christakos, G; Chen, JC; Warmerdam, S; Dev, B. Interactive spatiotemporal modelling of health systems: The SEKS-GUI framework. Stoch. Environ. Res. Risk Assess 2007, 21, 555–572. [Google Scholar]
- Wibrin, MA; Bogaert, P; Fasbender, D. Combining categorical and continuous spatial information within the Bayesian maximum entropy paradigm. Stoch. Environ. Res. Risk Assess 2006, 20, 423–433. [Google Scholar]
- Best, NG; Ickstadt, K; Wolpert, RL; Birggs, DJ. Combining Models of Health and Exposure Data: The Saviah Study. In Spatial Epidemiology: Methods and Applications; Elliott, P, Wakefield, JC, Best, NG, Briggs, D, Eds.; Oxford University Press: Oxford, UK, 2000; pp. 393–414. [Google Scholar]
- Hsu, SC; Liu, SC; Lin, CY; Hsu, RT; Huang, YT; Chen, YW. Metal compositions of PM10 and PM2.5 aerosols in Taipei during spring, 2002. Terr. Atmos. Ocean. Sci 2004, 15, 925–948. [Google Scholar]
- Lin, CY; Liu, SC; Chou, CCK; Huang, SJ; Liu, CM; Kuo, CH; Young, CY. Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmos. Environ 2005, 39, 6066–6076. [Google Scholar]
- Tsai, YI; Chen, CL. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmos. Environ 2006, 40, 4734–4750. [Google Scholar]
- Kuo, HW; Shen, HY. Indoor and outdoor PM2.5 and PM10 concentrations in the air during a dust storm. Bldg. Environ 2010, 45, 610–614. [Google Scholar]
Pollutants | Average | Standard deviation | Median | Minimum | Maximum |
---|---|---|---|---|---|
PM2.5 | 28.92 | 8.48 | 28.29 | 9.31 | 81.60 |
PM10 | 54.24 | 33.26 | 47.04 | 0.83 | 598.25 |
Variable (m2) | Spatial Buffer (meters) | Coefficient (10−7) |
---|---|---|
Road | 500–1,000 | 6.608 |
Forest | 500–1,000 | 2.552 |
Industry | 300–500 | 33.11 |
Park | 500–1,000 | 8.745 |
Railroad | 0–50 | 10,000 |
Government institutions | 100–300 | 117.2 |
Park | 300–500 | −21.13 |
Public Equipment | 100–300 | 493.3 |
Bus | 0–50 | 20,000 |
Public Equipment | 0–50 | 815.4 |
Port | 500–1,000 | 48.45 |
Method | Mean error | Standard Deviation | Median | Max value of error | Min value of error |
---|---|---|---|---|---|
Landuse + BME | 2.1560 | 2.0584 | 0.0889 | 8.4393 | −15.390 |
Landuse | 2.7865 | 2.5685 | −0.1035 | 10.8316 | −16.6528 |
kriging | 3.1816 | 2.7798 | −0.006 | 14.3380 | −15.7980 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yu, H.-L.; Wang, C.-H.; Liu, M.-C.; Kuo, Y.-M. Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods. Int. J. Environ. Res. Public Health 2011, 8, 2153-2169. https://doi.org/10.3390/ijerph8062153
Yu H-L, Wang C-H, Liu M-C, Kuo Y-M. Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods. International Journal of Environmental Research and Public Health. 2011; 8(6):2153-2169. https://doi.org/10.3390/ijerph8062153
Chicago/Turabian StyleYu, Hwa-Lung, Chih-Hsih Wang, Ming-Che Liu, and Yi-Ming Kuo. 2011. "Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods" International Journal of Environmental Research and Public Health 8, no. 6: 2153-2169. https://doi.org/10.3390/ijerph8062153
APA StyleYu, H. -L., Wang, C. -H., Liu, M. -C., & Kuo, Y. -M. (2011). Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods. International Journal of Environmental Research and Public Health, 8(6), 2153-2169. https://doi.org/10.3390/ijerph8062153