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Abstract: Implementing a suite of best management practices (BMPs) can reduce  

non-point source (NPS) pollutants from various land use activities. Watershed models are 

generally used to evaluate the effectiveness of BMP performance in improving water 

quality as the basis for watershed management recommendations. This study evaluates 171 

management practice combinations that incorporate nutrient management, vegetated filter 

strips (VFS) and grazing management for their performances in improving water quality in 

a pasture-dominated watershed with dynamic land use changes during 1992–2007 by using 

the Soil and Water Assessment Tool (SWAT). These selected BMPs were further 

examined with future climate conditions (2010–2069) downscaled from three general 

circulation models (GCMs) for understanding how climate change may impact BMP 

performance. Simulation results indicate that total nitrogen (TN) and total phosphorus (TP) 

losses increase with increasing litter application rates. Alum-treated litter applications 

resulted in greater TN losses, and fewer TP losses than the losses from untreated poultry 

litter applications. For the same litter application rates, sediment and TP losses are greater 
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for summer applications than fall and spring applications, while TN losses are greater for 

fall applications. Overgrazing management resulted in the greatest sediment and 

phosphorus losses, and VFS is the most influential management practice in reducing 

pollutant losses. Simulations also indicate that climate change impacts TSS losses the most, 

resulting in a larger magnitude of TSS losses. However, the performance of selected BMPs 

in reducing TN and TP losses was more stable in future climate change conditions than in 

the BMP performance in the historical climate condition. We recommend that selection of 

BMPs to reduce TSS losses should be a priority concern when multiple uses of BMPs that 

benefit nutrient reductions are considered in a watershed. Therefore, the BMP combination 

of spring litter application, optimum grazing management and filter strip with a VFS ratio 

of 42 could be a promising alternative for use in mitigating future climate change.  

Keywords: best management practice (BMP); climate change; land use change; soil and 

water assessment tool (SWAT); nonpoint source pollution 

 

1. Introduction 

Best management practices (BMPs) are often used to control the losses of non-point source (NPS) 

pollutants to receiving water bodies. Selection of BMPs is specific to topographic, soil, land use, and 

climate conditions. For example, NRCS recommended using phosphorus index (PI) rating, soil 

phosphorus threshold values, or soil test to establish acceptable phosphorus application rates [1]. 

Different approaches to mitigate animal waste problems were adopted in the Rural Clean Water 

Program (RCWP) projects conducted in the American states of Utah and Florida due to their different 

climatic characteristics [2]. Multiple BMPs are usually combined together in a watershed, such as 

tillage and nutrient management practices [3] or grazing management and vegetative buffers [4] to 

effectively control pollutants from various sources. When numerous BMP options are available, 

whether various combinations of BMPs work synergistically or cancel the effect of each other when 

implemented together in a watershed must be evaluated [5–7].  

The Conservation Effects Assessment Project (CEAP) was initiated by the USDA Natural 

Resources Conservation Service (NRCS), Agricultural Research Service (ARS), and Cooperative State 

Research, Education and Extension Service (CSREES) (now National Institute of Food and 

Agriculture or NIFA) to evaluate the effects of conservation practices at the watershed scale and to 

estimate the impacts of conservation practices at national and regional levels. One of the efforts of 

CEAP is to measure long-term watershed-specific effects of conservation practices on environmental 

quality. This task is performed by examining changes in water quality for a specific period when a 

watershed has undergone certain conservation management practices. For example, 70% and 41% of 

the reductions in suspended sediment concentration and total phosphorus, respectively, were found as a 

result of conservation practices in the Beasley Lake watershed, Mississippi, from 1995 to 2005 [8]. 

Increased levels of residue cover were found to be negatively correlated with nutrient concentrations 

and loads in the St. Joseph River watershed in Indiana, where multiple tillage management was 

implemented from 2006–2007 [9]. 
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In addition to field investigation of the impacts of conservation practices, watershed models are a 

highly efficient means of evaluating how various combinations of BMPs can improve water quality 

and reduce NPS losses. These models are used to make watershed response predictions in two modes 

based on the time scale of interest: futurecast and hindcast. In futurecast, a watershed model is used to 

evaluate how various BMPs likely improve water quality. For example, Yuan [10] identified the 

critical areas where conservation practices must be implemented in the Mississippi Delta Beasley 

watershed by using the annualized agricultural non-point source (AnnAGNPS) model. According to 

their results, converting all crop lands to no-till soybeans or cotton reduces sediment losses by 64–77% 

over current conditions. By using the soil and water assessment tool (SWAT), Chaubey [5] evaluated 

the effectiveness of 171 BMP scenarios in a CEAP watershed from 2004–2028, as represented by 250 

projected weather variations. Hindcast studies adopt a watershed model to retrospectively evaluate 

how much water quality was impacted by current conservation practices or how much water quality 

would have improved if certain suites of BMPs had been previously implemented in a watershed. For 

example, from 2003–2006, conservation practices reduced sediment, total nitrogen and phosphorus 

losses by 69%, 46% and 49%, respectively in the Upper Mississippi River Basin [1]. Locke [8] 

suggested that no-tillage practices could reduce sediment loadings to a range of 15%–69% of the 

existing condition in the Mississippi Delta region, based on AnnAGNPS model simulations. By using 

the soil and water assessment tool (SWAT), Bracmort [11] quantified the long-term impacts of various 

structural BMPs on sediment and phosphorus losses over a 25-year period (1975–2000). That study 

also estimated that current BMPs reduced sediment and phosphorus yield by 7–10% and 7–17%, 

respectively. 

Designing a futurecast model often involves making climate change scenarios or land use change 

scenarios, which could be the main source of uncertainty in the evaluation of conservation  

practices [12–14]. However, hindcast modeling, which utilizes climate data and historical land use 

data, likely has less uncertainty and can be used to evaluate the effectiveness of current conservation 

practices and how water quality is improved even if another suite of BMPs has been implemented in 

the watershed. Additionally, the hindcasted results could be used as a baseline to evaluate how 

simulated future conditions impact watershed responses [15]. Therefore, this study evaluates the 

effectiveness of various combinations of management practices in improving water quality for the 

periods of 1992–2007 and 2010–2069 in the Lincoln Lake watershed, Arkansas. Additionally, the 

amount of pollutants that would have been reduced if the most effective management practices were 

implemented in the watershed is quantified. Moreover, exactly how climate change impacts water 

quality improvement at different spatial scales is quantified. By using the SWAT model, 171 pasture 

management practice scenarios are evaluated, including 19 nutrient management options, three grazing 

management types, and three vegetated filter strips (VFS). This study was undertaken from 1992–2007 

with the implementation of several BMPs in the watershed since 1992. We hypothesized that future 

climate change impacts the BMP performance in different ways to improve water quality. 
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2. Materials and Methods 

2.1. Study Area 

This study was conducted in the Lincoln Lake watershed, a 32 km2 agricultural watershed within 

the Illinois River basin located in Northwest Arkansas and Eastern Oklahoma. Moores Creek and 

Beatty Branch are the two major tributaries in the watershed, representing 21 and 11 km2 of the 

watershed area, respectively. This watershed is one of the 13 watersheds in the Conservation 

Effectiveness Assessment Project (CEAP) funded by the USDA-CSREES. The Lincoln Lake 

watershed was a pasture dominated watershed where pasture lands constituted more than 48% of the 

entire watershed in 1992. However, due to rapid urbanization in the past 15 years, pasture lands have 

decreased with a concurrent increase in urban lands. Table 1 shows the land use distribution in the 

Lincoln Lake watershed from 1992 to 2004. In 2004, pasture, forest, urban residential and urban 

commercial represented 36%, 49%, 12% and 2% of the watershed area, respectively (Figure 1). There 

are numerous poultry, beef, and dairy cattle production facilities in the pasture fields of the watershed. 

High levels of fertilizer and manure usages on perennial forage crop production in the watershed have 

been shown to increase surface and ground water pollution due to inputs of sediment, nutrients and 

pathogens [16]. Since 1994, areas that had BMPs implemented in the watershed have increased from  

1% to 34% of the entire watershed area, representing 53% of total pasture areas in the watershed in 

2005 (Figure 2). BMPs were first implemented in the northeast part of the Beatty Branch and Upper 

Moores Creek subwatersheds in 1994. The western portion of the Beatty Branch and northeastern 

portion of the Lower Moores Creek subwatershed had BMPs implemented later in 1999. In 2005, most 

of the pasture lands had at least one BMP implemented, except the southwestern part of the Moores 

Creek subwatershed. Recommendations for BMP implementation have changed over the years from 

poultry litter application based on meeting plant nitrogen demand in the early 1990s to phosphorous 

based application in 2000. Currently, farmers are encouraged to apply alum-treated poultry litter based 

on the Arkansas Phosphorus Index to reduce soluble phosphorus concentration in poultry litter [17,18].  

Table 1. Historical land use distribution in the Lincoln Lake watershed from 1992 to 2004. 

(Note: number in parenthesis denotes the percentage of the watershed).  

Land Use 1992 1994 1996 1999 2001 2004 

Forest 1,493 (46.4) 1,619 (50.3) 1,574 (48.9) 1,628 (50.6) 1,619 (50.3) 1,567 (48.7) 
Pasture 1,532 (47.6) 1,377 (42.8) 1,322 (41.1) 1,229 (38.2) 1,164 (36.2) 1,151 (35.8) 
Urban 107 (3.3) 138 (4.3) 225 (7.0) 267 (8.3) 339 (10.6) 381 (11.8) 
Urban 
commercial 27 (0.9) 30 (0.9) 36 (1.1) 39 (1.2) 41 (1.3) 50 (1.5) 
Other 58 (1.8) 53 (1.7) 61 (1.9) 55 (1.7) 54 (1.7) 70 (2.2) 
Total 3,217 3,217 3,217 3,217 3,217 3,217 

Three monitoring sites were located at the Beatty Branch, Lower Moores Creek and Upper Moores 

Creek with different monitoring periods depending on the monitoring projects funded in the watershed 

(Figure 1). Nutrient and sediment transport were first monitored from September 1991 to April 1994 at 

Beatty Branch (BB) and Lower Moores Creek (LMC). Vendrell [19] concluded that the BMPs were 
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able to retard nitrogen transport as indicated with a decrease in mean concentrations of ammonia 

nitrogen (NH4-N) and Total Kjeldahl Nitrogen (TKN) from January 1995 through December 1998 at 

the Lower Moores Creek and Beatty Branch sites, and from July 1996 through February 1999 at the 

Upper Moores Creek site, respectively. Nelson [20] compared data from 2006 to 2007 with the data 

from 2000 to 2003, and the results showed that TP concentration dropped nearly 50% (0.19 mg/L in 

2000 and 0.1 mg/L in 2007) and nitrate-nitrogen declined by 66% (3.57 mg/L in 2000 and 1.21 mg/L 

in 2007) indicating that implemented BMPs resulted in reduced nutrient loads in the watershed. 

Figure 1. Location of Beatty Branch, Moores Creek, gauging stations with monitoring 

periods and 2004 land use distribution in the Lincoln Lake watershed. 

 
Figure 2. Location of BMPs on pasture lands in the Lincoln Lake watershed from 1992 to 2005. 
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2.2. Model Description and Input Data Preparation 

The Soil and Water Assessment Tool (SWAT) model was used to estimate and hindcast the 

effectiveness of various management practice combinations on water quality considering the dynamic 

land use and management conditions in the watershed. The model can predict long-term impacts of 

land use and management on water, sediment and agricultural chemical yields at different scales in a 

mixed land use watershed [21]. The SWAT model has been widely used to quantify the linkage 

between BMPs and water quality at the watershed-scale in the United States [22]. The major GIS input 

files for the SWAT model were the digital elevation model (DEM) at 30 m resolution [23], land use 

and land cover [24] and SSURGO soil data. The land use maps for the years 1992, 1994, 1996, 1999, 

2001 and 2004 were developed using moderate spatial resolution (28.5 m × 28.5 m) Landsat Thematic 

Mapper (TM) satellite images [25]. The watershed was delineated into 72 subbasins based on the 

DEM, specification of streams and inlets/outlets. Then the sub-basins were portioned into 

homogeneous units (hydrologic response units, HRUs) by setting 0% threshold percentages of land use 

and soil type for accurately capturing the land use change that occurred between 1992 and 2004. 

Weather data (daily precipitation, minimum and maximum temperature) were obtained from 

Fayetteville Weather Station located approximately 25 km from the watershed. Other weather 

variables needed by the model (solar radiation, wind speed and relative humidity) were estimated using 

the weather generator built into the SWAT model. 

The pasture management information was collected by Washington County extension personnel and 

used to calculate the area-weighted average of fertilizer and manure rates for representing the existing 

land application and grazing management at each HRU [26]. The calculated fertilizer and manure 

rates, as well as grazing periods were built into the management files for pasture HRUs as SWAT 

input files. There were seven types of manure and fertilizers applied in the Lincoln Lake watershed. 

The inorganic fertilizers included urea, anhydrous ammonia, and triple 17 (17% of N, P2O5 and K2O). 

Organic manure included beef-fresh manure, hen/pullet manure, broiler-fresh manure, and alum-

treated broiler manure. The SWAT model has the ability to define specific types of manure and 

fertilizers by providing detailed fertilizer and manure components, such as fractions of mineral N (or 

P), organic N (or P), and a ratio of ammonium to mineral N in the SWAT fertilizer database. It should 

be noted that the nutrient content of broiler-fresh manure and alum-treated broiler manure were based 

on poultry houses located in the northwest Arkansas [27,28]. The pasture management information 

including amount of litter and fertilizer application, timing of manure and fertilizer application, and 

grazing intensity and dates were obtained from a detailed review of historical nutrient management 

plans and interviews with 63 out of 75 farmers located in the watershed [26]. The timing and amount 

of litter and fertilizer application varied in this watershed during 1992–2004. The average litter 

application and approximate dates of application were 2,500 kg/ha applied each time on 30 April and 

31 August. The daily dry weight of forage intake by grazing animals was 10.14 kg/ha/day and the dry 

mass of the manure excreted ranged from 0.01–14.2 kg/ha/day. The number of days animals grazed in 

the watershed ranged from 11–365 days/year. Detailed information of management practices and 

schedules for SWAT management files can be found in Chaubey [5]. 

In order to incorporate the dynamic land use change, the SWAT 2009 model which incorporates 

HRU fraction changes was used. More details about developing HRU fraction files for individual years 
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and how the SWAT model reads the different HRU fraction files can be found in Chiang [27]. One of 

the major changes in the SWAT 2009 model is to simulate vegetated filter strips (VFS) by using the 

VFS ratio of pollutant sourcing area to the VFS area and including the impact of concentrated flow. In 

the 2005 executable version of SWAT, the model simulates the performance of VFS using the VFS 

width alone. Several factors may influence the removal rate of chemicals through the buffers, such as 

forms of chemicals (soil-bound or soluble), length/width of buffer strips, vegetation types, hydrologic 

conditions and soil types [29–31]. Many studies have focused on simulating the sediment trapping 

efficiency of filter strips at the field scale, where runoff was distributed fairly uniformly over the buffer 

area [32,33]. However, numerous studies indicate that non-uniform flow is more common than 

uniform flow passing through the buffer area [34–37]. When a buffer is designed, it should be based on 

a ratio of upslope contributing area to effective buffer area rather than on buffer dimensions (width, 

length, shape, total area) alone [38,39]. Therefore, the VFS ratio is critical, especially when high loads 

or concentrated flow conditions exist in the VFS areas [31]. In SWAT 2009, VFS is separated into two 

sections during the simulation. Section one is 90% of the VFS that receives the least flow, and section 

two is the other 10% of the VFS that receives 25–75% of the flow [40]. Runoff and sediment loadings 

before passing through the VFS are calculated using the ratio of the drainage area to VFS area 

(DAFSratio) for each VFS section and HRU runoff and sediment yield prediction. Sequentially, the 

reduction of runoff, sediment and nutrients are calculated as follows [40]: 

RR = 75.8 − 10.8 ln(RL) + 25.9 ln(KSAT)  (1) 

where RR is the runoff reduction (%); RL is the runoff loading (mm); and KSAT is the saturated 

hydraulic conductivity (mm/h). 

SR = 79 − 1.04 SL + 0.213 RR  (2) 

where SR is the sediment reduction (%); SL is the sediment loading (kg/m2); and RR is the runoff 

reduction (%). 

TNR = 0.036 SR
1.69  (3) 

where TNR is the total nitrogen reduction (%); and SR is the sediment reduction (%). 

TPR = 0.9 SR  (4) 

where TPR is the total phosphorus reduction (%); and SR is the sediment reduction (%). 

The SWAT outputs include flow and water quality information at different temporal (daily, 

monthly and annual) and spatial (HRU, subbasin, watershed) scales. In this study, monthly flow, 

sediment, nitrogen and phosphorus loads at the gauging station were of interest for model calibration 

and validation. The annual pollutant loads at a subbasin were calculated by multiplying the annual 

area-averaged pollutant loads from a HRU by the HRU area, and then summing the annual loads at 

each HRU in the subbasin. These processed outputs were used to quantify the amount of pollutant 

losses if a certain suite of BMPs was implemented in the watershed.  
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2.3. SWAT Model Calibration and Validation 

Sensitivity analysis is usually performed to identify which parameters in a model most influence 

outputs of interest. Based on the sensitivity analysis results and the identified calibration parameters in 

several SWAT publications, 13 parameters were modified for calibrating flow, sediment, nitrogen and 

phosphorus in this study [11,41]. Model calibration and validation were performed for monthly stream 

flow, TSS, TN and TP using the measured flow and water quality data collected at the Upper Moores 

Creek for the period 01/1996–2/1999, 01/2000–12/2003 and 01/2006–12/2007. Measured stream flow 

data were available for 8 years, while water quality data (TSS, TN and TP) were only available for 

seven years, which was the same monitoring period as flow except the year of 1996. In order to make 

the model comprehensively capture the watershed responses, we selected 01/2001–12/2003 and 

01/2006–12/2007 as the model calibration period due to major land use changes that occurred during 

this period. Subsequently, we selected 01/1996–2/1999 and 1/2000–12/2000 as the model validation 

period for flow and 01/1997–2/1999 and 1/2000–12/2000 for TSS, TN and TP.  

Flow was calibrated first because it can influence other outputs [41] and it has less measurement 

uncertainty [42]. Flow calibration was followed by sediment calibration because organic nitrogen and 

phosphorus are usually attached on sediment and transported in runoff [43,44]. Two quantitative 

statistics used for model evaluation were Nash-Sutcliffe efficiency (NSE) [45] and coefficient of 

determination (R2). The Nash-Sutcliffe efficiency (NSE) is a normalized statistic indicating how well 

the observed and predicted data fit the 1:1 line [45]. Predicted results with an NSE value greater than 

0.5 is regarded as satisfactory [46]. The coefficient of determination (R2) describes the portion of the 

variance in the measured data that are explained by the model. The greater R2 values indicate a less 

error variance and a model with R2 value greater than 0.5 is usually considered acceptable [47,48].  

The process of calibration was repeated by adjusting the parameters and computing NSE and R2 

between observed and predicted data to ensure that in optimizing one variable, other variables were not 

substantially influenced [41]. To test if the parameters were appropriately selected for model 

calibration, model validation was performed for evaluating the accuracy of the model by comparing 

simulation results to a different set of observation data from the calibration dataset.  

2.4. Management Practice Scenarios  

The watershed management practice scenarios considered in this study were grouped into three 

categories: grazing management, vegetated filter strips (VFS), and nutrient management. These 

scenarios were based on detailed interactions with the watershed stakeholders and history of past 

BMPs implemented in the watershed [26].  

Grazing management: Three grazing intensities were considered: (1) no grazing; (2) optimum 

grazing; and (3) overgrazing. Based on detailed discussion with the county extension experts, the 

minimum plant biomass for grazing to occur was set at 2,700 and 1,009 kg/ha, respectively, for 

optimum and overgrazing (Ron Morrow, personal communication). The overgrazing application 

started on 30 September and lasted for 213 days until 30 April of the next year. Typically, optimum 

grazing comprises rotating grazing animals through various HRUs such that a minimum biomass is 

maintained in the field. Based on information on typical optimum grazing management, it was 
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assumed that within 30 days the cattle should graze through the whole watershed and would stay for 

approximately 4–6 days in each pasture HRU [49]. This approach was similar to grazing operations 

reported in other watersheds located near the study area [41].  

Vegetated filter strips (VFS): Vegetated filter strips (VFS) have been proven to be an effective 

management practice for trapping sediment and nutrients in field runoff [50–52]. The Natural 

Resources Conservation Service (NRCS) has developed a method to design and estimate sediment 

removal from VFS using the Revised Universal Soil Loss Equation, Version 2 (RUSLE2) [53] in 

which VFS are designed to have a minimum 10-year life time and the VFS need to be re-established 

once the sediment accumulation reaches 6 inches [54]. NRCS developed an equation to calculate the 

number of years to reach 6 inches at the annual sediment accumulation rate. The annual sediment 

accumulation rate is calculated as follows: 

 Ratesed = Sed × 21.74(ft3/ton) × Trapsed × VFSratio ×43,560(ft2/acre) × 12(in/ft)  (5) 

where Ratesed is the annual sediment accumulation rate (in/year); Sed is sediment delivery to VFS 

(tons/acre/year); Trapsed is the trapping efficiency; and VFSratio is the ratio of contributing field area to 

VFS area. 

In this study, the life time of the VFS was assumed to be 25 years, and different levels of trapping 

efficiency were set equal to 29%, 56% and 100% based on various studies in the Southeastern U.S. 

region [7,37,55]. The maximum annual sediment loads (2,333 kg/ha/year), which were estimated with 

250 weather realizations during a 25-year simulation period in previous study [5], were selected to 

design VFS ratios with three levels of trapping efficiency under the worst condition of sediment 

delivery. The VFS ratios were calculated inversely using Equation (5). Thus, VFS ratios were designed 

to be 146, 76 and 42, respectively, with the trapping efficiency of 29%, 56% and 100% to maintain a 

VFS functional period of 25 years. In other words, when the VFS ratio is 42 at any trapping efficiency, 

it will take at least 25 years to accumulate 150 mm in the VFS. Similarly, when the VFS ratio is 76, the 

VFS can function for 14–48 years with the trapping efficiency 100%–29%. However, if the VFS ratio 

is 146 with greater than 82% trapping efficiency, the life time of VFS will be shorter than 9 years. 

Therefore, we selected VFS ratios of 42 and 76 as two different levels of VFS that could be 

implemented in the watershed.  

Nutrient management: Nutrient management scenarios evaluated in this study included various 

poultry litter application rates, litter characteristics, and application timing. DeLaune [18] suggested 

that the litter application in pasture areas should not exceed 4.94 t/ha for warm season grasses, and 

7.41 t/ha for cool season grasses in nutrient surplus watersheds in Northwest Arkansas. Therefore, the 

litter application rates evaluated were 2.47, 3.71 and 4.94 t/ha in spring (applied on 30 Apri) and 

summer (31 August) to support growth of warm season grasses, and 4.94, 6.18 and 7.41 t/ha in fall  

(15 October) to support growth of cool season grasses. For all application rates and timings evaluated 

in this study, two types of poultry litter were selected-normal poultry litter and alum-amended litter. 

Many studies have shown that the alum-amended litter was able to reduce P losses in surface runoff 

and leaching [51,56,57]. Additionally, alum in poultry litter was shown to increase yields due to 

greater N mineralization and less NH3 emissions [57,58]. The total number of nutrient management 

scenarios evaluated was 18 (3 nutrient application rates × 3 application timings × 2 litter types). 
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Management practice scenarios which consist of no litter application with any grazing management 

and VFS implementation were also added for further comparison.  

The combination of above management practices resulted in 171 different management practice 

scenarios. The pasture management practices that existed in the watershed during 1992–2007 were 

regarded as baseline (scenario 172) and were used to compare the effectiveness of selected 

management practice combinations in reducing NPS pollutants of concern from the watershed. 

2.5. Climate Change Scenarios 

The future 100-year climate condition with no climate change was first generated using the 

historical climate data from 1970 to 1999. This no climate change (NCC) condition retains the same 

statistical characteristics as the historical climate data. Three GCMs (general circulation models) 

simulations were used to generate short-term (2010–2039) and mid-term (2040–2069) climate change 

conditions. Those GCMs are CCSM (National Center for Atmospheric Research, NCAR, Community 

Climate System Model, version 3.0), CGCM2 (Meteorological Research Institute, Japan 

Meteorological Agency, MRI-CGCM2.3.2), and GFDL21 (Geophysical Fluid Dynamics Laboratory, 

NOAA, CM2.1). All the data for the GCMs were obtained from the Data Distribution Centre of the 

Intergovernmental Panel on Climate Change (IPCC). Since the spatial resolutions of GCMs are too 

coarse to represent local climate characteristics in the watershed, the technique of simple downscaling 

between the baseline and the climate scenario of the nearest GCM grid was applied directly.  

The future change in temperature in the study area is assumed to be the same as the difference 

between temperatures simulated using GCMs for the future and current conditions at the weather 

station [59,60]:  µ୫Tᇱ ൌ µ୫T  ሺµ୫T,୳୲୳୰ୣ െ  µ୫T,ୡ୳୰୰ୣ୬୲ሻ  (6) 

where µ୫T  and µ୫Tᇱ  are the current and future mean monthly temperature (°C) respectively; and µ୫T,ୡ୳୰୰ୣ୬୲ and µ୫T,୳୲୳୰ୣ are, respectively, the simulated mean monthly temperature (°C) under the 

current and future scenarios (the annual average for 2010–2039) climate conditions respectively.  

The future change in precipitation in this study area is assumed to be the ratio of the precipitation 

for the future condition to that for the current condition [60]: µ୫Pᇱ ൌ µ୫P ൈ ሺµ୫P,୳୲୳୰ୣ/µ୫P,ୡ୳୰୰ୣ୬୲ሻ  (7) 

Where μmP and μ'mP are the current and future mean monthly precipitation (cm), respectively; and 

μmP,current and μmP,future are the simulated mean monthly precipitation (cm) under the current and future 

climate conditions, respectively.  

We utilized Tung and Haith’s [61] weather generation model to generate daily temperature and 

precipitation data for the target climate scenarios. In order to produce as many combinations of 

weather variability as possible, a total of 100 years of daily weather data were generated for the 

baseline and climate scenarios. Table 2 lists the annual average temperature and precipitation for each 

climate change scenario.  
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2.6. Selection of the Best and Worst Pasture Management Practice Combinations 

The management practices with the maximum constituent losses is regarded as the worst 

management practice combination for water quality improvement, while the management practices 

having the minimum losses is regarded as the best management practice combination. The best and 

worst scenarios are not the same for all pollutants. For example, litter application can increase the 

biomass production, infiltration and reduce sediment losses, but meanwhile an increase in nutrient 

inputs on pasture may exceed nutrient demand of the forage and can lead to greater nutrient losses 

from the watershed. 

Table 2. The annual average temperature and precipitation. (Note: Historical climate 

denotes the observed weather data from 1990–2007; NCC denotes no climate change 

condition). 

Scenarios 
Max. 

Temperature 
Min. 

Temperature
Precipitation 

(mm) 

Historical climate 20.7 9.3 1,245.5 

NCC 20.2 8.5 1,105.4 

CCSM_S 22.4 10.5 1,063.5 

CCSM_M 23.6 11.6 1,170.3 

CGCM_S 21.4 9.6 1,069.5 

CGCM_M 22.2 10.3 1,114.4 

GFDL_S 21.4 9.6 1,080.2 

GFDL_M 22.8 10.9 995.0 

3. Results and Discussion 

3.1. SWAT Model Performance 

Table 3 lists the ranges, default values and calibrated values of the SWAT parameters. The ranges 

of the SWAT parameters were obtained from the literature [11,62]. The model was initially run using 

the default SWAT parameters, and the monthly predictions from each step of the model calibration 

were compared with the monthly measured data at the Upper Moores Creek. The default CN values for 

each land use were decreased by 10%, indicating that the Lincoln Lake watershed has better soil 

drainage than the general conditions in the SWAT database.  

The ESCO value was decreased from 0.95 to 0.26 to allow for greater evaporation from lower soil 

layers. Because of a high base flow, the GWQMN value was increased to 3,000 mm to increase deep 

percolation losses, a condition typical to karst topography in the watershed. NPERCO and PPERCO 

values were increased because of a low mineral nitrogen loading and low soluble phosphorus loading, 

respectively. The PHOSKD value was not linearly related to TP, and PHOSKD = 100 was the optimal 

value for TP calibration.  
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Table 3. List of calibration SWAT parameters for each output of interest for the Lincoln 

Lake watershed SWAT model. 

Output 
SWAT 
parameters 
(Unit) 

Short Description Range Default Calibrated

Flow CN Initial SCS runoff curve number 39–98 75.25 
67.725 
(−10%) 

 ESCO Soil evaporation compensation factor 0–1 0.95 0.26 

 GWQMN (mm) 
Threshold depth of water in shallow 
aquifer 

0–5,000 0 3,000 

TSS SLOPE (m/m) Average slope steepness 0–0.6 0.072 0.036 
 USLE_K USLE equation soil erodibility K factor 0.01–0.65 0.345 0.1725 

 ADJ_PKR 
Peak rate adjustment factor for 
sediment routing in the main channel 

0.1–2 1 2 

TN NPERCO Nitrate percolation coefficient 0.001–1 0.2 1 

 CMN 
Rate factor for mineralization of 
active organic nutrients 

0.001–0.004 0.003 0.004 

TP PPERCO Phosphorus percolation coefficient 10–17.5 10 17.5 

 PHOSKD Phosphorus soil partitioning coefficient 40–300 175 100 

The model calibration and validation results were evaluated using Nash-Sutcliffe efficiency (NSE) 

and coefficient of determination (R2) as the model performance criteria (Table 4). For calibration, the 

NSE and R2 values for flow, TSS, TN and TP were equal to or greater than 0.5, which is generally 

viewed as a satisfactory model performance [46–48]. For validation, the performance of the model in 

simulating the flow and TP was satisfactory, as indicated by NSE and R2 values greater than 0.5. 

Except for one indication of unsatisfactory model performances (NSE = 0.25 and 0.33 for TSS and 

TN, respectively), the model simulation of TSS and TN was satisfactory. Our results indicated some 

extremely high measured TSS and TN values that the model could not simulate resulting in the NSE 

values for TSS and TN lower than 0.5. The NSE values increased to 0.64 and 0.53 for TSS and TN 

after the outliers (4 measured monthly TSS values ranging from 238–550 kg /ha and 4 measured 

monthly TN values ranging from 0.73–0.85 kg/ha) were removed. Concurrently, the R2 values for TSS 

and TN increased to 0.75 and 0.73, respectively. Overall, the model calibration and validation were 

satisfactory based on NSE and R2 as the model performance criteria.  

Table 4. Results of calibration and validation of the SWAT model for monthly flow, total 

suspended sediment (TSS), nitrogen (TN) and phosphorus (TP).  

  Calibration Validation 

Variable 
Observed 

Mean 
Predicted 

Mean NSE R2  
Observed 

Mean 
Predicted 

Mean NSE R2 

Flow (m3/s) 3.31 3.00 0.52 0.55  3.83 2.18 0.60 0.76 
TSS (kg/ha) 20.34 26.11 0.58 0.73  44.15 16.09 0.25 0.67 
TN (kg/ha) 0.55 0.32 0.50 0.66   0.73 0.33 0.33 0.5 
TP (kg/ha) 0.09 0.10 0.60 0.72  0.14 0.09 0.73 0.89 
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3.2. Performance of Management Practices  

3.2.1. Under Historical Climate Condition (1992–2007) 

Many studies have evaluated the hydrological impacts of land use changes by hypothetically 

predicting the land use changes, such as conversion of the entire watershed to agricultural lands, or 

systematically changing land use distribution at different percentages [12,14]. Such simulation results 

may fail to provide an expectation on how a watershed would respond when a complex land use 

change occurs. This study incorporated the historical land use changes with corresponding agricultural 

management, and measured weather data into the model simulation to reduce the uncertainty in the 

evaluation of current conservation practices. Additionally, evaluating the performance of alternative 

conservation practices that would have further improved water quality provides more precise 

information on their effectiveness for making future watershed management decisions. Tables 5, 6, and 

7 summarize the effectiveness of 171 different management practice combinations in reducing annual 

pollutant losses from the watershed for total suspended sediment (TSS), total N (TN), and total P (TP), 

respectively. Notably, the values shown in these tables are the average annual values during the 

simulation period (1992–2007) and can be considered as the average watershed responses for these 

management practice scenarios. These simulation results for 171 scenarios were compared with the 

pollutant losses from the current management practice (baseline) scenario, which included various 

pasture management practices in the watershed from 1992 to 2007 [5].  

The best management practice combination for mitigating TSS losses is scenario 61, which is a 

combination of 4.94 t/ha alum-amended litter applied in spring, no grazing and a VFS ratio of 42. The 

worst management practice combination is scenario 39, which is a combination of no litter application, 

overgrazing and no VFS. Vegetated filter strips (VFS) were the most influential management practices 

for reducing sediment losses. In the same field, a smaller VFS ratio indicates a larger VFS compared to 

a larger VFS ratio, indicating that a smaller VFS is implemented. In this study, the VFS ratios were 

derived using the maximum sediment loads (2,333 kg/ha/year) from the Lincoln Lake watershed under 

various weather conditions during a 25-year period (2004–2028). However, the maximum sediment 

loads (224.3 kg/ha/year for scenario 39) from the watershed over the past 16 years (1992–2007) were 

significantly less than the sediment loads in extreme weather conditions. Therefore, a VFS ratio of 76 

could reduce sediment losses by 14.1%–23.8% compared with the baseline scenario. A VFS ratio of 42 

resulted in similar sediment losses ranging from 127.1 to 141.1 kg/ha/year (Table 5) with 

corresponding reductions of 24.2% and 15.8%, respectively. When no VFS was implemented, 

overgrazing increased sediment losses from 164.7 to 224.3 kg/ha/year as the results of a loss of 

vegetative cover, soil compaction and reduction in infiltration. When no VFS was implemented, TSS 

losses generally increased with the intensity of grazing for all nutrient management scenarios. Litter 

application timing also affected the losses of sediment. For example, TSS losses of 197.5, 179.7, and 

159.3 kg/ha/year were simulated when 4.94 t/ha alum-treated litter was applied in summer, fall and 

spring seasons, respectively. Spring and fall are the primary growing seasons for Bermuda grass and 

Fescue grass, while Bermuda was harvested twice in mid July and September. Therefore, summer 

application affected growth of grass to a lesser extent, and TSS losses were greater than those for 
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spring and fall applications. Additionally, plants may experience nutrient stress when no litter is 

applied, resulting in less vegetated cover and increased losses of TSS. 

Table 5. Total suspended sediment (TSS, kg/ha) losses from the Lincoln Lake watershed 

under 171 management practice scenarios (NG: no grazing, OG: optimum grazing, OVG: 

over grazing), VFS (vegetative filter strips, no VFS, VFS ratio = 42, 76) and application 

timing (spring, summer and fall applications), where the number indicates the litter amount 

in ton/acre unit with non-alum (NA) or alum (A) amended poultry litter. Bold value and 

underlined value indicate the best and the worst pasture management scenarios, 

respectively. 

VFS ratio 

0 42 76 

Grazing and Pasture Management 

Manure application  
(t/ha)-type NG OG OVG NG OG OVG NG OG OVG

No application 187.1 195.3 224.3 133.0 134.8 141.1 134.2 136.3 144.0

Spring  

2.47A 166.1 167.8 177.0 128.4 128.7 130.4 129.1 129.4 131.3

3.71A 162.1 163.2 169.5 127.6 127.8 128.9 128.2 128.4 129.7

4.94A 159.3 160.0 164.7 127.1 127.2 128.0 127.6 127.8 128.6

2.47NA 168.2 170.5 182.3 128.9 129.3 131.4 129.6 130.1 132.4

3.71NA 164.4 165.9 174.7 128.1 128.3 129.9 128.7 129.0 130.7

4.94NA 161.4 162.5 169.1 127.5 127.7 128.8 128.1 128.3 129.5

Summer 

2.47A 165.3 167.9 186.4 128.5 129.0 132.6 129.2 129.7 133.8

3.71A 172.2 172.9 183.8 129.9 129.9 131.7 130.8 130.8 132.8

4.94A 197.5 198.3 210.8 135.1 135.1 137.3 137.1 137.0 139.4

2.47NA 166.4 169.2 190.1 128.7 129.3 133.4 129.4 130.0 134.8

3.71NA 164.1 166.3 181.0 128.2 128.6 131.3 128.9 129.3 132.4

4.94NA 170.0 170.5 180.0 129.4 129.4 131.0 130.2 130.2 132.0

Fall 

4.94A 179.7 180.9 187.3 131.5 131.7 132.7 132.8 133.0 134.0

6.18A 184.2 185.7 193.8 132.4 132.7 134.1 133.9 134.2 135.7

7.41A 180.0 181.4 189.6 131.5 131.7 133.2 132.7 133.0 134.7

4.94NA 167.4 168.1 172.6 129.1 129.2 129.8 129.9 130.0 130.6

6.18NA 175.3 176.1 180.1 130.7 130.8 131.4 131.8 131.9 132.5

7.41NA 181.8 182.7 187.4 132.0 132.2 132.9 133.4 133.5 134.3

The best management practice combination (i.e., scenario 77) for cumulative TN losses comprises 

no litter application, optimum grazing and a VFS ratio of 42, while the worst management practice 

combination (i.e., scenario 16) consists of 7.41 t/ha alum-treated litter application in the fall, no 

grazing and no VFS. Overgrazing decreased losses of TN from the watershed for all litter application 

rates, application timings, and VFS ratios (Table 6). Nutrients are normally removed from pastures by 
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haying or by animals through grazing. When a pasture is grazed, nutrients can be returned to pasture 

lands via animal urine and feces excreted. Since nitrogen is usually the limiting nutrient for pasture 

growth, nitrogen inputs as fertilizer or manure are needed to sustain forage production. Therefore, 

overgrazing reduced TN losses, possibly because the amount of N removed via forage consumed by 

grazing animals is greater than that of N returned to the pasture in the form of animal manure. 

However, overgrazing increased TN losses when no litter was applied.  

Table 6. Total nitrogen (TN, kg/ha) losses from the Lincoln Lake watershed under 171 

management practice scenarios (NG: no grazing, OG: optimum grazing, OVG: over 

grazing), VFS (vegetative filter strips, no VFS, VFS ratio = 42, 76) and application timing 

(spring, summer and fall applications), where the number indicates the litter amount in 

ton/acre unit with non-alum (NA) or alum (A) amended poultry litter. Bold value and 

underlined value indicate the best and the worst pasture management scenarios, 

respectively. 

  VFS ratio 

0 42 76 

Grazing and Pasture Management 

Manure application  
(t/ha)-type NG OG OVG NG OG OVG NG OG OVG 

No application   3.0 3.0 3.1 2.4 2.4 2.5 2.4 2.4 2.5 

Spring  

2.47A 3.3 3.3 3.2 2.5 2.5 2.5 2.6 2.6 2.5 

3.71A 3.5 3.5 3.3 2.6 2.6 2.6 2.7 2.6 2.6 

4.94A 3.7 3.6 3.5 2.7 2.7 2.6 2.7 2.7 2.7 

2.47NA 3.2 3.2 3.1 2.5 2.5 2.5 2.6 2.5 2.5 

3.71NA 3.4 3.4 3.2 2.6 2.6 2.5 2.6 2.6 2.5 

4.94NA 3.5 3.5 3.4 2.6 2.6 2.6 2.7 2.7 2.6 

Summer 

2.47A 3.6 3.6 3.5 2.7 2.7 2.6 2.7 2.7 2.7 

3.71A 4.3 4.2 4.0 2.9 2.9 2.8 3.0 2.9 2.9 

4.94A 5.1 5.0 4.9 3.2 3.2 3.1 3.3 3.3 3.2 

2.47NA 3.5 3.5 3.4 2.6 2.6 2.6 2.7 2.7 2.6 

3.71NA 3.8 3.8 3.7 2.8 2.7 2.7 2.8 2.8 2.7 

4.94NA 4.2 4.2 4.0 2.9 2.9 2.8 3.0 2.9 2.9 

Fall           

4.94A  5.3 5.3 5.1 3.3 3.3 3.2 3.4 3.4 3.3 

6.18A  6.0 5.9 5.8 3.6 3.6 3.5 3.7 3.7 3.6 

7.41A  6.5 6.5 6.3 3.8 3.8 3.7 3.9 3.9 3.8 

4.94NA  4.5 4.4 4.3 3.0 3.0 2.9 3.1 3.1 3.0 

6.18NA  4.9 4.9 4.7 3.2 3.2 3.1 3.3 3.3 3.2 

7.41NA  5.4 5.4 5.2 3.4 3.4 3.3 3.5 3.5 3.4 

  



Int. J. Environ. Res. Public Health 2012, 9 3669 

 

 

The greatest TN losses were predicted for fall litter applications under all application rates. 

Additionally, vegetated filter strips decreased TN losses significantly and a smaller VFS ratio was 

more effective in reducing TN losses than greater VFS ratios. 

Table 7 lists the TP losses from the watershed for 171 management practice scenarios evaluated in 

this study. Overall, TP losses were reduced by 43.4–68.1% compared with the baseline scenario. The 

worst case scenario (i.e., scenario 57) is a combination of 3 tons/acre litter application, overgrazing 

management and no VFS. Meanwhile, the best management practice scenario (i.e., scenario 58) is a 

combination of no litter application, no grazing and a VFS ratio of 42.  
 

Table 7. Total phosphorus (TP, kg/ha) losses from the Lincoln Lake watershed under 171 

management practice scenarios (NG: no grazing, OG: optimum grazing, OVG: over 

grazing), VFS (vegetative filter strips, no VFS, VFS ratio = 42, 76) and application timing 

(spring, summer and fall applications), where the number indicates the litter amount in 

ton/acre unit with non-alum (NA) or alum (A) amended poultry litter. Bold value and 

underlined value indicate the best and the worst pasture management scenarios, 

respectively. 

 VFS ratio 

0 42 76 

Grazing and Pasture Management 

Manure application  
(t/ha)-type NG OG OVG NG OG OVG NG OG OVG 

No application  0.6 0.6 0.8 0.3 0.3 0.4 0.3 0.3 0.4 

Spring  

2.47A 0.7 0.8 0.8 0.3 0.4 0.4 0.4 0.4 0.4 

3.71A 0.8 0.8 0.9 0.4 0.4 0.4 0.4 0.4 0.4 

4.94A 0.8 0.9 0.9 0.4 0.4 0.4 0.4 0.4 0.4 

2.47NA 0.8 0.8 0.9 0.4 0.4 0.4 0.4 0.4 0.4 

3.71NA 0.9 0.9 1.0 0.4 0.4 0.4 0.4 0.4 0.4 

4.94NA 0.9 1.0 1.1 0.4 0.4 0.4 0.4 0.4 0.5 

Summer 

2.47A 0.7 0.8 0.9 0.4 0.4 0.4 0.4 0.4 0.4 

3.71A 0.8 0.9 1.0 0.4 0.4 0.4 0.4 0.4 0.4 

4.94A 1.0 1.0 1.2 0.4 0.4 0.5 0.4 0.5 0.5 

2.47NA 0.8 0.8 1.0 0.4 0.4 0.4 0.4 0.4 0.4 

3.71NA 0.9 0.9 1.0 0.4 0.4 0.4 0.4 0.4 0.4 

4.94NA 1.0 1.0 1.2 0.4 0.4 0.5 0.4 0.5 0.5 

Fall 

4.94A 1.0 1.0 1.1 0.4 0.4 0.4 0.4 0.4 0.5 

6.18A 1.1 1.1 1.2 0.4 0.4 0.5 0.5 0.5 0.5 

7.41A 1.1 1.2 1.3 0.5 0.5 0.5 0.5 0.5 0.5 

4.94NA 1.0 1.0 1.1 0.4 0.4 0.5 0.4 0.4 0.5 

6.18NA 1.1 1.2 1.3 0.5 0.5 0.5 0.5 0.5 0.5 

7.41NA  1.3 1.3 1.4 0.5 0.5 0.5 0.5 0.5 0.6 
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Unlike the impact of grazing intensity on TN losses, higher grazing intensity increased TP losses from 

the watershed. When no VFS was present in the watershed, the TP losses ranged from 0.6 to 1.3 kg/ha/year 

for no grazing and optimum grazing conditions, while TP losses ranged from 0.8 to 1.4 kg/ha/year for 

overgrazed conditions. The impacts of VFS on TP losses were similar for VFS ratios of 42 and 76 

where TP losses were reduced by 43.4–68.1% compared with the baseline scenario. Nutrient inputs 

from manure are usually based on meeting the N-demand of pasture; phosphorus inputs thus generally 

exceed the P requirement for plant growth [47,63]. Since phosphorus is easily attached to soils and 

transported in both soluble and sediment attached forms, high stocking rates can result in greater 

erosion and TP losses. Similarly, TP losses increased with increasing litter application rates. TP losses 

were slightly greater for summer application than for fall application due to greater precipitation and 

higher soil temperature, which makes phosphorus more easily attach to soils [64]. For all types of 

grazing management and VFS ratios, TP losses for alum-treated litter application in spring ranging 

from 0.3 to 0.9 kg/ha/year were less than those for the baseline (0.98 kg/ha/year). Moore [57] found 

that poultry litter amended with alum reduces the availability of soluble P, thus reducing the runoff 

losses from pasture areas.  

3.2.2. Under Future Climate Conditions (2010–2069) 

Table 8 summarizes the simulation results of 172 pasture management combinations under the 

historical climate condition, no climate change condition and six climate change conditions. Among 

those 171 pasture management combinations, the best pasture management combinations that result in 

the least pollutant losses were selected to show the maximum pollutant reduction by comparing with 

the water quality improvement brought by current pasture management (Table 8). The annual average 

TN and TP losses under different climate conditions were within a similar range of 2.4–6.5 kg/ha and 

0.3–1.9 kg/ha, respectively. However, the annual average TSS losses under the no climate change 

condition were similar to those under historical climate conditions with a range of 127.1 and  

224.3 kg/ha, while the TSS simulations under climate change conditions, ranging from 1,085.1 to 

1,772.2 kg/ha, were significantly greater than the historical annual average TSS losses.  

Kay [13] compared the uncertainty sources for future climate change impacts on flood frequency in 

England and suggested that the uncertainty in GCMs is the major source of uncertainty in model 

results. The increasing magnitude of TSS losses under future climate conditions might be influenced 

by the uncertainty of GCM. Moreover, as extreme precipitation events increase in future climate 

conditions, the magnitude of peak flows were projected to increase, resulting in increases in catchment 

nutrient and sediment export [65–68]. Woznicki [67] also determined that a significant change in BMP 

performance occurred between the current climate and future climate scenarios. Our findings suggest 

that future climate change could significantly impact TSS losses more than nutrient losses. 

Those 172 pasture management combinations under no climate change and future climate 

conditions revealed similar patterns as the simulations under historical climate conditions (Figure 3). 

Under the CCSM_M condition, the TSS simulation results were the highest among other climate 

change conditions, ranging from 1,686.5 to 1,772.2 kg/ha. The TSS simulation results under the 

CGCM_S condition were the least among other climate change conditions, ranging from 990.9 to 
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1,066.6 kg/ha. For these three GCMs, the mid-term (2040–2069) climate conditions with more 

precipitation resulted in greater TSS losses than the short-term (2010–2039) climate conditions.   

Table 8. Range of 172 simulated pasture management performance under historical and 

various climate change scenarios (Note: NCC denotes no climate change condition; 

Difference denotes the difference between minimum and baseline simulation results). 

  
Historical 

climate 
NCC CCSM_S CCSM_M CGCM_S CGCM_M GFDL_S GFDL_M

TSS 
(kg/ha) 

Baseline 167.9  157.7 1,108.2 1,715.3  1,036.5  1,166.4  1,169.7  1,443.1  

Min 127.1  129.9 1,085.1 1,686.5  990.9  1,143.6  1,148.0  1,424.4  

Max 224.3  198.5 1,155.9 1,772.2  1,066.6  1,202.2  1,196.7  1,464.7  

Difference (%) −24.3 −17.6 −2.1 −1.7 −4.4 −2.0 −1.9 −1.3 

TN 
(kg/ha) 

Baseline 3.7  3.7  3.4  4.3  3.7  3.9  3.9  3.4  

Min 2.4  2.7  2.6  3.3  2.8  3.0  2.9  2.6  

Max 6.5  6.0  4.7  5.9  5.8  5.7  6.1  5.2  

Difference (%) −34.6 −28.6 −22.2 −22.6 −25.9 −23.8 −25.5 −24.4 

TP 
(kg/ha) 

Baseline 1.0  1.1  1.0  1.2  1.0  1.1  1.0  0.9  

Min 0.3  0.3  0.3  0.3  0.3  0.3  0.3  0.3  

Max 1.4  1.8  1.5  1.9  1.5  1.7  1.6  1.5  

Difference (%) −68.6 −74.7 −72.5 −72.5 −72.2 −72.6 −72.5 −70.1 

Figure 3. Changes in performance of 172 pasture management scenarios under historical 

climate and future climate conditions (Note: NCC denotes no climate change).  
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Figure 3. Cont.  

 

 

The best pasture management combination performs better than the current pasture management 

under historical and no climate change conditions in terms of the least TSS losses (127.1–129.9 kg/ha) 

and the greatest TSS reduction (17.6%–24.3%) (Figure 4). The impact of climate change on nutrient 

losses was expected in other studies [68,69]. Van Liew [68] concluded that TN and TP losses under the 

future climate scenarios are projected to be about 1.2–1.9 times and up to 1.7 times, respectively 

greater than the baseline for two watersheds in Nebraska. Unlike the impact of climate change on TSS 

losses, climate change only slightly impacted TN losses, in comparison with the simulated TN losses 

for the current pasture management (scen172) range of 3.4 to 4.3 kg/ha under historical and future 

climate change conditions. Moreover, the minimum and maximum TN losses among these 171 pasture 

management combinations ranged from 2.4–3.3 kg/ha and from 4.7–6.5 kg/ha, respectively, for all 

climate conditions. Among these climate conditions, the same best pasture management combination 

results in better efficiencies under the historical climate condition than under the future climate change 

condition. The TN reduction generally ranged from 22.2% to 25.9% for all climate change conditions. 

Under the CCSM and CGCM conditions, the best pasture management combination performed better 

in the short-term (2010–2039) than in the mid-term (2040–2069) (Figure 4). Changes in the 

performance of the best pasture management differ under the GFDL condition. The impact of climate 

change on TP losses was even smaller than that on TN losses. The TP simulations ranged from  

Pasture management combinations

Pasture management combinations
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0.9–1.2 kg/ha for the current pasture management under all climate conditions. The TP improvement 

from the best pasture management ranged from 68.6 to 74.7%, which is greater than TSS and TN 

improvements. Similar to the impact of CCSM and CGCM climate conditions on TN losses, TP losses 

were greater in the mid-term (2040–2069) than in the short-term (2010–2039) (Figure 4). The mid-

term impact of climate change on nutrient losses was greater than the short-term impact for the Lincoln 

Lake watershed. Wu [70] suggested that three greenhouse gas emission scenarios (B1, A1B, and A2) 

for 2040 through 2069 would result in decreases in precipitation ranging from 8.5 to 9.0% and 

increases in air temperature ranging from 1.9 to 3.1 °C. Under these climate conditions, hydrological 

components in the semiarid James River Basin in the Midwestern United States could be altered 

considerably. Their results highlight possible risks of drought, water supply shortage, and water quality 

degradation in this basin. Zhang [69] also found that the simulated annual TP load shows an 

insignificant increasing trend with the change rate of 3.77 t per decade. 

Figure 4. Comparison of TSS, TN and TP under different climate conditions with selected 

BMPs and current BMPs.  
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Figure 4. Cont.  

 

3.3. Hindcast of Cumulative Pollutant Losses from the Watershed  

Despite the use of CEAP watersheds in several studies to evaluate the advantages of existing 

conservation practices [8,9,71], few of them evaluated how much conservation practices improved water 

quality. Especially for watersheds where only a small portion of the watershed area is managed with 

conservation practices, exactly how conservation practices affect water quality remains unclear [72]. 

Application of watershed models in evaluating certain conservation practices in past periods provides 

information on the effectiveness of such practices. However, assuming a constant land condition during 

the simulation period can increase the uncertainty of the effectiveness of conservation practices [8,73]. 

During the evaluation of conservation practices in the Upper Mississippi River Basin, a previous study 

developed a no-practice scenario to compare with the baseline scenario which includes conservation 

practices based on farmer survey information [1]. The difference between these two scenarios 

represents the cumulative benefits of conservation practices currently implemented in the watershed. 

Possible uncertainty in this measure in terms of the effectiveness of conservation practices is expected 

because the no-practice scenario was a technological step backward of conservation, and does not fully 

represent the previous era when conservation practices were not used.  

Figure 5 shows the cumulative total suspended sediment (TSS), total N (TN) and total P (TP) losses 

from the watershed from 1992–2007 for four management practice scenarios. The management 

practices, which had the maximum and minimum cumulative constituent losses in 2007, were selected 

and compared with the current pasture management scenario (baseline), which is dynamic pasture 

management practices from 1992 to 2007, as well as the 1992 pasture management scenario, which is 

assumed that pasture management practices remained the same from 1992 until 2007. Details of the 

1992 pasture management can be found in Chiang [27]. 

With insufficient nutrient supply to plant growth, less vegetated cover resulted in greater sediment 

losses. Higher stocking rates could result in greater sediment losses due to a decrease in infiltration of 

soils and an increase in soil compaction. Overgrazing should thus be avoided to reduce sediment losses 

from a watershed. Vegetated filter strips with a lower VFS ratio are more effective in reducing 

sediment losses than VFS with a greater VFS ratio. Therefore, if the best management practice 
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combination had been implemented in 1992, a 2,104 tons cumulative TSS reduction would have been 

achieved by the end of 2007 compared to the baseline scenario (8,646 tons). However, sediment losses 

would have increased by 2,904 tons if the worst management practice combination were implemented. 

The cumulative TSS losses for the baseline and 1992 pasture management scenarios were similar, 

primarily due to that negative impacts of urbanization masked the positive impacts of conservation 

practices in the watershed [27]. 

Figure 5. Cumulative pollutant losses for 1992 pasture management, actual pasture 

management (baseline), minimum and maximum pollutant losses scenarios at the Lincoln 

Lake watershed over the period 1992–2007.  

 

 

Based on the previous comparison of 171 management practice scenarios, TN decreased with the 

intensity of grazing due to less nitrogen returned via feces and urine by cattle than with the nitrogen in 

the pasture consumed by the cattle. Additionally, TN losses increased with greater litter application 

rates, and TN losses incurred for alum-treated litter applications were slightly greater than untreated 

litter application. If the worst case scenario were implemented since 1992, the nitrogen losses would 

have increased by 144.3 tons by 2007 compared with the baseline scenario (190.6 tons), while the best 

management practice combination would have reduced TN losses by 65.9 tons. The cumulative TN 

losses (182.7 tons) for the 1992 pasture management scenario were slightly lower than the baseline 

scenario, indicating that TN losses would have been reduced if the pasture management remained the 



Int. J. Environ. Res. Public Health 2012, 9 3676 

 

 

same as in 1992. This may be owing to the fact that nitrogen input from pasture management practices 

increased and overrode the effects of other conservation practices applied since 1994 [27]. 

Similar to TN losses, TP losses increased as the litter application rates increased. Since poultry litter 

with alum amendment has a small fraction of soluble phosphorus, alum-treated litter resulted in less 

mineral phosphorus losses than the untreated litter at the same application rate. Similar to the 

simulation results of TSS and TN losses, a smaller VFS ratio reduced more TP. TP losses would have 

been reduced by 35 tons by the end of 2007 compared with the baseline scenario (51.2 tons), if the best 

management practice combination had been implemented since 1992. However, if the worst 

management practice combination had been implemented since 1992, TP losses would have increased 

by 20.6 tons.  

3.4. Futurecast of Pollutant Reduction at the Sub-Basin Level 

The best management practice combination for reducing each pollutant was selected to analyze the 

maximum pollutant reduction at the sub-basin level that would be achieved under different future 

climate conditions (Table 9). Generally, significant changes in performance were more commonly 

observed at the field scale, while most BMPs did not affect pollution reduction at the watershed  

outlet [67]. The pollutant reduction was calculated as the difference between the annual average losses 

for the best management practice scenario and the losses for the baseline scenario. A greater difference 

implies a greater reduction of pollutant losses. Figures 6–8 show the annual average reduction of TSS, 

TN and TP losses for the best management practice combinations, respectively. A darker color implies 

a greater reduction in pollutant losses. 

Table 9. Annual area-weighted average pollutant losses at the subbasin level with 

adaptation of current pasture management and the best pasture management under 

historical, no climate change (NCC) and climate change conditions.  

Current scen061 Current scen077 Current scen058 

TSS(t/ha) TSS(t/ha) TN(kg/ha) TN(kg/ha) TP(kg/ha) TP(kg/ha)

Historical climate 0.16 0.12 4.00 2.70 1.05 0.34 

NCC 0.16 0.13 3.85 2.83 1.19 0.32 

CCSM_S 1.16 1.13 3.56 2.85 1.02 0.30 

CCSM_M 1.78 1.75 4.57 3.65 1.29 0.37 

CGCM_S 1.08 1.06 3.87 2.97 1.02 0.30 

CGCM_M 1.21 1.19 4.00 3.11 1.10 0.32 

GFDL_S 1.22 1.19 4.07 3.11 1.10 0.32 

GFDL_M 1.51 1.49 3.78 2.95 1.00 0.31 

The annual area-weighted average of TSS losses incurred at the subbasin level would become 

greater in the future climate conditions, especially in the mid-term of CCSM and GFDL conditions 

(Table 9). This table reveals that under historical climate conditions, more subbasins would have 

greater annual TSS reduction of at least 90 kg/ha with the best pasture management combination than 

under future climate conditions (Figure 6). Although the TSS simulations of current and best pasture 

management practices vary under different climate conditions, the difference between those two 
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pasture management practices could provide information about which subbasins should be given 

priority for BMP implementation in the watershed. Simulation results indicate that more subbasins in 

the Beatty Branch and Lower Moores Creek subwatersheds have greater TSS reduction, indicating that 

the best management practice combination was more effective in reducing TSS losses in those 

subbasins. The subbasins where urban area was located generally had less TSS reductions because 

management practices were only implemented on pasture lands. The TSS reduction was the greatest in 

the northwestern part of the Beatty Branch subwatershed, and the southern part of the Upper Moores 

Creek subwatershed. The greatest TSS reduction indicated that the maximum improvement would be 

found if the best management practice combination (2 tons/acre alum-treated litter in spring, no 

grazing and VFS ratio as 42) is implemented in the future. 

Figure 6. TSS reduction of the best pasture management combination (scen061) compared 

to the current pasture management for different climate conditions.  

 

With current pasture management, only under the CCSM_M and GDFL_S climate conditions, TN 

losses were greater than the losses under the historical climate condition (Table 9). The results are 

consistent with the simulation results conducted by Zhang [69] in that the simulated annual NH4
+-N 

load into Shitoukoumen reservoir had a significant downward trend with a decrease rate of 40.6 t per 

decade using the SWAT model and a GCM (HadCM3). However, simulation results indicated that TN 

losses with the best pasture management practices would be increased in the future climate conditions 

compared to its performance under the historical climate condition. This finding indicates that future 

climate change can impact the performance of the best pasture management practices. Wu [70] 

concluded that the potential climate change impact would result in decreased NO3−N load to streams, 

which could be beneficial, but a concomitant increase in NO3−N concentration due to a decrease in 

streamflow likely would degrade stream water and threaten aquatic ecosystems in the watershed. A 

greater TN reduction was found in the western part of the Beatty Branch subwatershed (Figure 7). 

Under the historical climate condition, reduction in TN losses ranged from 1.5 to 3.88 kg/ha in the 

western part of the watershed. Moreover, a greater TN reduction would have been found in the 

southern part of the watershed if the best pasture management practices would have been adopted.  
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Figure 7. TN reduction of the best pasture management combination (scen077) compared 

to the current pasture management for different climate conditions. 

 

In the Beatty Branch subwatershed, 2–3 subbasins would have 2.5–3.88 kg/ha of TN reduction 

under future climate conditions, except for the CCSM_S climate condition. The management practices 

impacted those subbasins under different climate change conditions in different ways, owing to 

dynamic nutrient management and the impacts of weather variation from 1992–2007 [5,27]. 

Figure 8. TP reduction of the best pasture management combination (scen058) compared 

to the current pasture management for different climate conditions. 

 

The best management practice combination improved TP reduction in the western part of the Beatty 

Branch subwatershed and the southern part of the Upper Moores Creek subwatershed (Figure 8). Half 

of the Upper Moores Creek would have at least 0.38 and 1.19 kg/ha of TP reduction in future climate 

conditions. In particular, we believe that, especially for the western part of the Beatty Branch 
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subwatershed, critical subbasins have the best pasture management practices implemented; in addition, 

the greatest TP reduction would be found under the CCSM_M condition. 

4. Conclusions  

This study evaluated 171 pasture management combinations in the Lincoln Lake watershed for the 

periods 1992–2007 and 2010–2069. Due to management practices that focus on reducing different 

pollutants and the interactions between management practices, the best and worst management practice 

combinations were dissimilar for sediment, nitrogen and phosphorus. For example, overgrazing 

resulted in greater TSS and TP losses, but less TN losses. Intensive grazing management could 

increase soil compaction and decrease infiltration of soils, subsequently leading to greater TSS losses 

and more sediment attached P losses. Sediment losses generally decreased and nutrient losses 

increased with greater litter application rates. Different litter application timings influenced pollutant 

losses in different ways. For example, fall litter application resulted in greater TN losses while TP 

losses were greater for summer application. Poultry litter with alum amendment, which has a greater 

amount of nitrogen and less soluble phosphorus than the normal litter, resulted in greater TN losses 

and smaller TP losses from the watershed. Vegetative filter strips (VFS) were the most influential 

management practices in reducing pollutant losses, and a smaller VFS ratio (i.e., the ratio of drainage 

area to VFS area) resulted in greater pollutant reduction.  

Compared with the baseline scenario (i.e., the dynamic pasture management implemented in the 

watershed from 1992–2007), pollutant losses would have been reduced by 2,104, 66 and 35 tons for 

TSS, TN and TP by end of 2007, respectively, if the best management practice combination had been 

implemented since 1992. The different distribution of the cumulative reduction of pollutants during the 

periods of 1992–2007 and 2010–2069 revealed that different amounts of pollutants would have been or 

will be reduced if the best management practice combinations are implemented. Generally, BMPs 

under the future climate change scenarios would provide sufficient nutrient load reductions that are 

comparable to the respective loads simulated for the current day baseline condition. The simulation 

results indicated that the western part of the Beatty Branch subwatershed, as well as the northern and 

southern parts of the Upper Moores Creek subwatershed are the critical areas that are sensitive to 

climate change and must implement BMPs.  

BMPs are often implemented in a watershed without considering their watershed scale impacts or 

comparative analysis with other candidate BMPs. Without such an analysis, BMPs implemented in the 

watershed may not be able to meet the water quality goals. Results of this study demonstrate that 

watershed management should incorporate comparative analysis of various suites of BMPs, in addition 

to those implemented previously or under consideration for the future. With such an analysis, a 

watershed manager is more likely to achieve water quality goals or devise BMP implementation 

strategies in similar watersheds. 
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