Microbiological Surveillance and State of the Art Technological Strategies for the Prevention of Dialysis Water Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Use of Polyvinyl Chloride (PVC) Piping: Two Centres—See Table 1
- (1) Use of irregular/occasional microbiological controls, chemical disinfection and SRO.
- (2) Use of regular microbiological controls, chemical disinfection and SRO in polyamide. The use of PVC however was discontinued and it was replaced with PEX rings in one unit and AISI INOX 316L steel rings in the other.
Two dialysis centres | Occasional chemical disinfection (average every quarter) | Regular monthly disinfection |
---|---|---|
Reverse osmosis | SRO | TRO |
Technical dialysis posts | 29 | 29 a |
Observation time, months | 60 | 36 |
Sampling, total numbers | 120 | 72 |
CFU, mL–1, average, bacteria * | 238.7 ± 374.3 | 153.9 ± 160.7 |
CFU, mL–1, average, mycetes * | 19.2 ± 34.4 b | 5.2 ± 7.5 c |
CFU, mL, medianbacteria | 122.2 | 25.5 |
CFU, mL, minimum and maximum values bacteria | 7–1,773 | 0–1,500 |
2.2. Use of AISI INOX 316L Piping: Three Centres—See Table 2
- (1) Use of AISI INOX 316L steel distribution ring with irregular/occasional microbiological controls, chemical disinfection and one stage reverse osmosis (SRO) system in polyamide;
- (2) Use of AISI INOX 316L steel distribution ring with regular microbiological controls, chemical disinfection and SRO system in polyamide;
- (3) Use of AISI INOX 316L steel distribution ring with regular microbiological controls and daily overnight pulsed thermal disinfection by means of TRO.
Three dialysis units | Occasional chemical disinfection (average every quarter) | Regular monthly chemical disinfection | Regular daily thermal disinfection |
---|---|---|---|
Reverse osmosis | SRO | SRO | TRO |
Technical dialysis posts | 21 | 27 a,b | 27 |
Observation time, months | 60 | 87 | 36 |
Sampling, total numbers | 180 | 261 | 108 |
CFU, mL/min, average, bacteria | 160.4 ± 321.1 1 | 43.1 ± 76.1 2 | 15.0 ± 24.6 3 |
CFU, mL/min, average, mycetes | 35.8 ±53.9 4 | 8.1 ± 8.7 5 | 1.75 ± 0.41 6 |
CFU, mL, median bacteria | 19.3 | 21.2 | 0 |
CFU, mL, minimum and maximum values bacteria | 0–520 | 0–107 | 0–2 |
2.3. Use of PEX (Polyethylene Thermoplastic Polymer) Piping: Two Centres—See Table 3
- (1) Use of PEX distribution ring with irregular microbiological controls, occasional chemical disinfection and SRO system in polyamide;
- (2) Use of PEX distribution ring with regular microbiological controls, chemical disinfection and SRO system in polyamide;
- (3) Use of PEX distribution ring with regular microbiological controls and daily overnight pulsed thermal disinfection by means of TRO.
Two dialysis units | Occasional chemical disinfection (average every quarter) | Regular monthly chemical disinfection | Regular daily thermal disinfection |
---|---|---|---|
Reverse osmosis | mono-osmosis | mono-osmosis | bi-osmosis |
Technical dialysis posts | 23 d | 23 d | 31 e |
Observation time, months | 24 | 24 | 36 |
Sampling, total numbers | 48 | 48 | 72 |
FU, mL/min, average, bacteria | 398.1 ± 627 1 | 33.7 ± 29.9 2 | 2.4 ± 2.3 3 |
CFU, mL, median bacteria | 101 | 19.1 | 0.5 |
CFU, mL, minimum and maximum values bacteria | 0–1,028 | 0–75 | 0–0.9 |
2.4. Brief Description of Characteristics of Materials and Operations
Pre-Treatment
2.5. Microbiological and Endotoxin Controls
Assumption
2.6. Transportation
Parameter | Maximum time of analysis in hours |
---|---|
Total bacterial count at 22 °C or 37 °C | 8–12 |
Escherichia coli and coliforms | 12–18 |
Enterococci | 12–18 |
Bacteria and spores of sulphite-reducing clostridia | 48–72 |
Pseudomonas aeruginosa | 8–12 |
2.7. Analytical Procedures
2.7.1. Total Coliforms
2.7.2. Enterococci
2.7.3. Pseudomonas aeruginosa
2.7.4. Clostridium perfringens
2.7.5. Mycetes
2.7.6. Counting of Colonies 22 °C–37 °C
2.7.7. Counting at 22 °C (Mesophiles) (UNI EN ISO 6222:2001)
2.8. Endotoxin Tests
3. Results
4. Discussion
5. Conclusions
Conflict of Interest
References
- Locatelli, F.; Altieri, P.; Andrulli, S.; Bolasco, P.; Sau, G.; Pedrini, L.A.; Basile, C.; David, S.; Feriani, M.; Montagna, G.; et al. Hemofiltration and hemodiafiltration reduce intradialytic hypotension in ESRD. J. Am. Soc. Nephrol. 2010, 21, 1798–1807. [Google Scholar] [CrossRef]
- International Organization for Standardization (IOS), Water for Haemodialysis and Related Therapies; ISO 13959; IOS: Geneva, Switzerland, 15 April 2009.
- International Organization for Standardization (IOS), Dialysis Fluid Quality for Haemodialysis and Related Therapies; ISO 11663; IOS: Geneva, Switzerland, 15 April 2009.
- International Organization for Standardization (IOS), Water Treatment Equipment for Haemodialysis and Related Therapies; ISO 26722; IOS: Geneva, Switzerland, 15 April 2009.
- Martin, K.; Laydet, E.; Canaud, B. European best practice guidelines for haemodialysis (Part 1). Nephrol. Dial. Transplant. 2002, 17, 50. [Google Scholar]
- Alloatti, S.; Bolasco, P.; Canavese, C.; Cappelli, G.; Pedrini, L.; Pizzarelli, F.; Pontoriero, G.; Fuiano, G. Guidelines on water and solutions for dialysis. Italian Society of Nephrology. G Ital Nefrol. 2005, 22, 246–273. [Google Scholar]
- Bolasco, P.; Scotto, P. Dialysis Fluid Purity in Hemodialysis: Normal Values and Undesirable Substances. Proceedings of CIN 2011 6th Congress of Nephrology in Internet. Available online: http://trabajos.cin2011.uninet.edu/180/bolasco.pdf (accessed on 17 July 2012).
- International Organization for Standardization (ISO), Guidance for the Preparation and Quality Management of Fluids for Haemodialysis and Related Therapies; ISO 23500; ISO: Geneva, Switzerland, 15 May 2011.
- Pontoriero, G.; Pozzoni, P.; Andrulli, S.; Locatelli, F. The quality of dialysis water. Nephrol. Dial. Transplant. 2003, 18, 21–25. [Google Scholar] [CrossRef]
- Bland, L.A.; Arnow, P.M.; Arduino, M.J.; Bova, J.; McAllister, S.K. Potential hazards of deionization systems used for water purification in hemodialysis. Artif. Organs. 1996, 20, 2–7. [Google Scholar] [CrossRef]
- Arnow, P.M.; Bland, L.A.; Garcia-Houchins, S.; Fridkin, S.; Fellner, S.K. An outbreak of fatal fluoride intoxication in a long-term hemodialysis unit. Ann. Intern. Med. 1994, 121, 339–344. [Google Scholar]
- Smith, M.P.; Marr, F.E.; Kanagasundaram, N.S. Chloramine reduction by reverse osmosis membranes. Hemodial. Int. 2011, 16, 120–121. [Google Scholar]
- Ray, J. Microbiological monitoring of dialysiswater systems—Which culture method? J. Ren. Care. 2007, 33, 66–69. [Google Scholar] [CrossRef]
- Azevedo, S.M.; Carmichael, W.W.; Jochimsen, E.M.; Rinehart, K.L.; Lau, S.; Shaw, G.R.; Eaglesham, G.K. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 2002, 27, 181–182, 441–446. [Google Scholar]
- Reference Analytical Methods for Drinkable Water Second Law by Decree 31/2001; Chemical Reports ISTISAN07/5; Health Ministerial: Rome, Italy, 2007.
- Reference Analytical Methods for Drinkable Water Second Law by Decree 31/2001; Microbiological Reports ISTISAN07/5; Health Ministerial: Rome, Italy,, 2007.
- Guidelines for Environmental Infection Control in Health-Care Facilities; Recommendations of Practices Advisory Committee (HICPAC) CDC and the Healthcare Infection Control; U.S. Department of Health and Human Services Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2003.
- Arvanitidou, M.; Vayona, A.; Spanakis, N.; Tsakris, A. Occurrence and antimicrobial resistance of Gram-negative bacteria isolated in haemodialysis water and dialysate of renal units: Results of a Greek multicentre study. J. Appl. Microbiol. 2003, 95, 180–185. [Google Scholar] [CrossRef]
- Laurence, R.A.; Lapierre, S.T. Quality of hemodialysis water: A 7-year multicenter study. Am. J. Kidney Dis. 1995, 25, 738–750. [Google Scholar] [CrossRef]
- Köster, W.; Egli, T.; Ashbolt, N.; Botzenhart, K.; Burlion, N.; Endo, T.; Grimont, P.; Guillot, E.; Mabilat, C.; Newport, L.; Niemi, M.; Payment, P.; Prescott, A.; Renaud, P.; Rust, A. Analytical Methods for Microbiological Water Quality Testing. In Assessing Microbial Safety of Drinking Water: Improving Approaches and Methods; IWA Publishing: London, UK, 2003; pp. 237–282, Chapter 8. [Google Scholar]
- Pires-Gonçalves, R.H.; Sartori, F.G.; Montanari, L.B.; Zaia, J.E.; Melhem, M.S.; Mendes-Giannini, M.J.; Martins, C.H. Occurrence of fungi in water used at a haemodialysis centre. Lett. Appl. Microbiol. 2008, 46, 542–547. [Google Scholar] [CrossRef]
- Pizzarelli, F.; Cerrai, T.; Biagini, M.; Malaguti, M.; Bargagna, R. Dialysis water treatment systems and monitoring in Italy: Results of a national survey. J. Nephrol. 2004, 17, 565–569. [Google Scholar]
- Bambauer, R.; Schauer, M.; Jung, W.K.; Daum, V.; Vienken, J. Contamination of dialysis water and dialysate. A survey of 30 centers. ASAIO J. 1994, 40, 1012–1016. [Google Scholar]
- Pirastu, R.; Comba, P.; Reggiani, A.; Foa, V.; Masina, A.; Maltoni, C. Mortality from liver disease among Italian vinyl chloride monomer/polyvinyl chloride manufacturers. Am. J. Ind. Med. 1990, 17, 155–161. [Google Scholar] [CrossRef]
- Cappelli, G.; Ravera, F.; Ricardi, M.; Ballestri, M.; Perrone, S.; Albertazzi, A. Water treatment for hemodialysis: A 2005 update. Contrib. Nephrol. 2005, 149, 42–50. [Google Scholar]
- Canaud, B. The early years of on-line HDF: How did it all start? How did we get here? Contrib. Nephrol. 2011, 175, 93–109. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bolasco, P.; Contu, A.; Meloni, P.; Vacca, D.; Galfrè, A. Microbiological Surveillance and State of the Art Technological Strategies for the Prevention of Dialysis Water Pollution. Int. J. Environ. Res. Public Health 2012, 9, 2758-2771. https://doi.org/10.3390/ijerph9082758
Bolasco P, Contu A, Meloni P, Vacca D, Galfrè A. Microbiological Surveillance and State of the Art Technological Strategies for the Prevention of Dialysis Water Pollution. International Journal of Environmental Research and Public Health. 2012; 9(8):2758-2771. https://doi.org/10.3390/ijerph9082758
Chicago/Turabian StyleBolasco, Piergiorgio, Antonio Contu, Patrizia Meloni, Dorio Vacca, and Andrea Galfrè. 2012. "Microbiological Surveillance and State of the Art Technological Strategies for the Prevention of Dialysis Water Pollution" International Journal of Environmental Research and Public Health 9, no. 8: 2758-2771. https://doi.org/10.3390/ijerph9082758
APA StyleBolasco, P., Contu, A., Meloni, P., Vacca, D., & Galfrè, A. (2012). Microbiological Surveillance and State of the Art Technological Strategies for the Prevention of Dialysis Water Pollution. International Journal of Environmental Research and Public Health, 9(8), 2758-2771. https://doi.org/10.3390/ijerph9082758