Momordica balsamina L.: A Plant with Multiple Therapeutic and Nutritional Potential—A Review
Abstract
:1. Introduction
2. Botanical Description and Geographical Distribution of Momordica balsamina
3. Chemical Composition of Momordica balsamina
Class of Compounds | Compounds | Biological Activity | Essay/Conclusion | References |
---|---|---|---|---|
Balsamin | Antiviral activity | In vitro. Inhibits HIV-1 replication in T-cell lines and human primary CD4+ T cells during the translation of viral proteins with an IC50 of approximately 10 nM after three days of treatment. | [23] | |
Antibacterial | In vitro Inhibition the growth in a dose-dependent manner of pathogens Staphylococcus epidermidis (MICs = 1.56 μg/mL) and Staphylococcus aureus (MICs = 6.25 μg/mL). | [24] | ||
Flavonoids | Kaempferol | Depigmenting | In vitro. Tyrosine inhibition in B16 melanoma cells with IC50 171.40 μM. | [25] |
Anti-inflammatory | In vitro. Potent inhibitory activity relative to Nitric Oxide (NO) production, induced by Lipopolysaccharides (LPS) in RAW 264.7 cells (IC50 15.40 μM) without cytotoxicity, and inhibited NF-κB-mediated luciferase activities (IC50 90.30 μM). | [25] | ||
Managing cancer-associated ailments | In vitro. Effectively inhibit (IC50 43 μmol/L) multiple cancer-associated pathways in triple-negative breast cancer cells (TNBC cells) simultaneously. | [26] | ||
Quercetin | Anti-carcinogenic/Antioxidant | In vitro. Scavenge oxygen-free radicals H2O2 (IC50 5 μM) and O2− (IC50 9 μM); inhibit lipid peroxidation (IC50 60 μM); and quench 8 ohdg formation via UV light irradiation (IC50 0.8 μM) and Fenton reaction (IC50 80 μM). | [27] | |
Antioxidant/Anti-inflammatory | In vivo Preserve the function of the liver in acute alcoholic injury by upregulating the expression of Interleukin 10 and Oxygenase-1 and thus inhibiting NLRP3 inflammasome activation and inflammatory factor secretion. | [28] | ||
Isorhamnétine | Anti-inflammatory | In vitro. At 30 and 60 mg/kg, inhibits the inflammatory response to lipopolysaccharides (LPS) in RAW 264.7 cells and in an acute lung injury (ALI) model. It significantly suppresses the overproduction of pro-inflammatory cytokines and neutrophil migration and reduces the histopathological changes and lung edema induced by LPS. | [29] | |
Phenolic Acids | Quinic acid | Anti-inflammatory | In vitro. At 0.10 μg/mL, inhibits vascular cell adhesion molecule-1 (VCAM-1) expression via the suppression of mitogen-activated Protein (MAP) kinase and NF-κb signaling pathways in TNF-α-stimulated vascular smooth muscle cells (VSMCs). | [30] |
Antiviral | In vitro. Inhibits HBV (Hepatitis B Virus) DNA replication and Hepatitis B surface antigen (HBsAg) production in HepG2.2.15 cells infected with duck Hepatitis B virus. | [31] | ||
Triterpenoids | Karavilagenin C | Anti-malarial | In vitro. Anti-malarial activity against the chloroquine-sensitive (3D7) (IC50 10.40 μM) and the chloroquine-resistant (Dd2) (IC50 11.20 μM) strains of Plasmodium falciparum. | [21] |
Antibacterial | In vitro. At 3 μM inhibition, the activity of bacterial efflux pumps of methicillin-resistant Staphylococcus aureus (MRSA) COLoxa by increasing the intracellular accumulation of ethidium bromide. | [32] | ||
P-glycoprotein modulation activity | In vivo. Inhibition of P-glycoprotein in a mouse lymphoma cell transfected with the human ABCB1 gene. Fluorescence activity ratio (FAR) 42.10 at 2 μM. | [18] | ||
Balsaminagenin B | Antibacterial | In vitro. Inhibition of the activity of bacterial efflux pumps of Enterococcus faecalis by increasing the intracellular accumulation of ethidium bromide at 30 μM. | [18] | |
Cucurbalsaminone B | P-glycoprotein modulation activity | In vivo. Inhibition of P-glycoprotein in a mouse lymphoma cell transfected with the human ABCB1 gene. Fluorescence activity ratio (FAR) 76.90 at 2 μM. | [18] | |
Balsaminoside A | Anti-malarial | In vitro. Inhibition of P. falciparum 3D7 (IC50 4.60 μM) and Dd2 (IC50 4.00 μM stem cell growth. | [20] | |
karavilagenin E | Anti-malarial | In vitro. Inhibition of P. falciparum 3D7 (IC50 4.70 μM) and Dd2 (IC50 8.20 μM) stem cell growth. | [20] | |
Balsaminol groups, Balsaminoside and Balsaminagenine groups, Karavilagenin groups, Cucurbalsaminol groups | Anti-diabetic, Anti-malarial, Antiviral, Anticancer, antibacterial, P-glycoprotein (P-gp) inhibitors, and others. | [18,20,21] |
4. Nutritional Value of Momordica balsamina
Nutrients | Composition (g/kg) [9,34] | Recommended Daily Intake [37] |
---|---|---|
Protein | 287.70 ± 1.80 | 1.05–0.85 g/kg body weight/day (Child) 0.80 g/kg body weight/day (Adult) |
Fat | 53.70 ± 8.60 | |
Crude fiber | 37.20 ± 7.90 | |
Ash | 127.00 ± 17.00 | |
Moisture | 710.00 ± 0.90 | |
Available Carbohydrate | 390.50 ± 2.00 | |
Calorific Value (Kcal/kg) | 1892.20 |
Minerals | Leaves (g/kg) [9] | Fruits (mg/100 g) [36] | Recommended Daily Intake [37] |
---|---|---|---|
Calcium | 22.20 ± 0.50 | 2.02 | 210–800 mg/day (Child); 1000–1300 mg/day (Adult) |
Magnesium | 3.82 ± 0.06 | - | 80–410 mg/day (Child); 310–420 mg/day (Adult) |
Phosphorus | 3.24 ± 0.01 | 9.67 | 460–1250 mg/day (Child); 700 mg/day (Adult) |
Potassium | 27.05 ± 0.27 | 43.67 | 0.4–4.5 g/day (Child); 4.7 g/day (Adult) |
Sodium | 0.06 ± 0.02 | 0.53 | 1.5–2.3 g/day (Child); 2.3 g/day (Adult) |
Iron | 0.14 ± 0.01 | 1.24 | 7–15 mg/day (Child); 8–18 mg/day (Adult) |
Manganese | 0.15 ± 0.00 | - | 0.6–2.2 mg/day (Child); 1.8–2.3 mg/day (Adult) |
Zinc | 0.39 ± 0.01 | 0.38 | 3–8 mg/day (Child); 8–11 mg/day (Adult) |
Amino Acid | Concentration (g/100 g Protein) [34] | Recommended Daily Intake in mg/day Body Weight for +12 Years [38] |
---|---|---|
Essential amino acids | ||
Isoleucine | 2.94 | 10 |
Leucine | 8.38 | 14 |
Lysine | 3.94 | 12 |
Methionine | 0.90 | |
Phenylalanine | 3.94 | |
Threonine | 3.13 | 7 |
Valine | 4.11 | 10 |
Histidine | 2.50 | 8–12 |
Non-essential Amino Acids | ||
Cysteine | 0.56 | |
Total Sulfur | 1.46 | |
Tyrosine | 2.62 | |
Total aromatic | 6.46 | |
Alanine | 4.16 | |
Arginine | 4.87 | |
Aspartic acid | 8.21 | |
Glutamic acid | 12.38 | |
Glycine | 4.66 | |
Proline | 3.21 | |
Serine | 4.00 |
5. Biological Properties of Momordica balsamina
6. Traditional Uses of Momordica balsamina
7. Cosmetic Use of Momordica balsamina
8. Other Uses of Momordica balsamina
9. Adverse Effects of Momordica balsamina
10. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rikisahedew, J.J.; Naidoo, Y. Phyto-histochemical evaluation and characterization of the foliar structures of Tagetes minuta L. (Asteraceae). S. Afr. J. Bot. 2018, 115, 328–329. [Google Scholar] [CrossRef]
- Balde, S.; Ayessou, N.C.; Gueye, M.; Ndiaye, B.; Sow, A.; Cissé, O.I.K.; Cissé, M.; Diop, C.G. Ethnobotanical investigations of Momordica charantia Linn (Cucurbitaceae) in Senegal. Int. J. Biol. Chem. Sci. 2019, 13, 466–474. [Google Scholar] [CrossRef]
- Thakur, G.; Bag, M.; Sanodiya, B.S.; Bhadauriya, P.; Debnath, M.; Prasad, G.B.; Bisen, P.S. Momordica balsamina: A medicinal and neutraceutical plant for health care management. Curr. Pharm. Biotechnol. 2009, 10, 667–682. [Google Scholar] [CrossRef]
- Omokhua-Uyi, A.G.; Staden, J.V. Phytomedicinal relevance of South African Cucurbitaceae species and their safety assessment: A review. J. Ethnopharmacol. 2020, 259, 112967. [Google Scholar] [CrossRef]
- Paris, H.S.; Tadmor, Y.; Schaffer, A.A. Cucurbitaceae, melons, squash, cucumber. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: Oxford, UK, 2017; Volume 3, pp. 209–217. [Google Scholar] [CrossRef]
- Bouquet, A. Plantes médicinales de la côte d’ivoire. Off. De La Rech. Sci. Et Tech. D’outre-Mer (ORSTOM) Paris 1974, 165, 38–39. Available online: https://cir.nii.ac.jp/crid/1571135650006923392 (accessed on 1 September 2023).
- Ramalhete, C.; Mansoor, T.A.; Mulhovo, S.; Molnár, J.; Ferreira, M.J. Cucurbitane-type triterpenoids from the African plant Momordica balsamina. J. Nat. Prod. 2009, 72, 2009–2013. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, H.; Renner, S.S. A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. Mol. Phylogenet. Evol. 2010, 54, 553–560. [Google Scholar] [CrossRef]
- Flyman, M.V.; Afolayan, A.J. Proximate and mineral composition of the leaves of Momordica balsamina L.: An under-utilized wild vegetable in Botswana. Int. J. Food Sci. Nutr. 2007, 58, 419–423. [Google Scholar] [CrossRef]
- Duenas-Lopez, M.A. Momordica balsamina (Common Balsam Apple); Invasive Species Compendium (CABI Compendium): Wallingford, UK, 2019; p. 34677. [Google Scholar] [CrossRef]
- Kaur, I.; Yadav, S.K.; Hariprasad, G.; Gupta, R.C.; Srinivasan, A.; Batra, J.K.; Puri, M. Balsamin, a novel ribosome-inactivating protein from the seeds of Balsam apple Momordica balsamina. Amino Acids 2012, 43, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Dehou, R.; Dougnon, V.; Atchade, p.; Attakpa, C.; Legba, B.; Baba-Moussa, L.; Gbaguidi, F. Phytochemical and toxicological study of Cassia italica, Momordica balsamina and Ocimum gratissimum, three plants used against scabies in southern Benin. Rev. Ivoir. Sci. Technol. 2018, 32, 286–297. [Google Scholar]
- Yolidjé, I.; Keita, D.A.; Moussa, I.; Toumane, A.; Maarouhi, I.M.; Saley, K.; Jean-Luc, P.; Much, O.J.T. Phytochemical Characterization and Larvicidal Activity of Crude Plant Extracts from the Traditional Pharmacopoeia of Niger on Larvae of Anopheles gambiae. Eur. Sci. J. 2019, 15, 30–51. [Google Scholar] [CrossRef]
- Mu’azu, A.; Bello, M. Reproductive performance of rabbit feed with graded of balsam apple (Momordica balsamina). J. Agric. Sci. Technol. 2022, 9, 17–26. [Google Scholar]
- Bot, Y.S.; Mgbojikwe, L.O.; Nwosu, C.; Abimiku, A.; Dadik, J.; Damshak, D. Screening of the fruit pulp extract of Momordica balsamina for anti-HIV property. Afr. J. Biotechnol. 2007, 6, 047–052. [Google Scholar]
- Mabasa, X.E.; Mathomu, L.M.; Madala, N.E.; Musie, E.M.; Sigidi, M.T. Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochem. Res. Int. 2021, 2021, 2854217. [Google Scholar] [CrossRef]
- Mashiane, P.; Shoko, T.; Manhivi, V.; Slabbert, R.; Sultanbawa, Y.; Sivakumar, D. A Comparison of Bioactive Metabolites, Antinutrients, and Bioactivities of African Pumpkin Leaves (Momordica balsamina L.) Cooked by Different Culinary Techniques. Molecules 2022, 27, 1901. [Google Scholar] [CrossRef]
- Ramalhete, C.; Gonçalves, B.M.; Barbosa, F.; Duarte, N.; Ferreira, M.J. Momordica balsamina: Phytochemistry and pharmacological potential of a gifted species. Phytochem. Rev. 2022, 21, 617–646. [Google Scholar] [CrossRef]
- Maibulangu, B.M.; Ibrahim, M.B.; Akinola, L.K. Inhibitory effect of African Pumpkin (Momordica balsamina Linn.) leaf extract on copper corrosion in acidic media. J. Appl. Sci. Environ. Manag. 2017, 21, 1067–1071. [Google Scholar] [CrossRef]
- Ramalhete, C.; Lopes, D.; Mulhovo, S.; Molnár, J.; Rosário, V.E.; Ferreira, M.U. New antimalarials with a triterpenic scaffold from Momordica balsamina. Bioorg. Med. Chem. 2010, 18, 5254–5260. [Google Scholar] [CrossRef] [PubMed]
- Ramalhete, C.; Lopes, D.; Molnár, J.; Mulhovo, S.; Rosário, V.E.; Ferreira, M.U. Karavilagenin C derivatives as antimalarials. Bioorg. Med. Chem. 2011, 19, 330–338. [Google Scholar] [CrossRef]
- Ajji, P.K.; Sonkar, S.P.; Walder, K.; Puri, M. Purification, and functional characterization of recombinant balsamin, a ribosome-inactivating protein from Momordica balsamina. Int. J. Biol. Macromol. 2018, 114, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Kaur, I.; Puri, M.; Ahmed, Z.; Blanchet, F.P.; Mangeat, B.; Piguet, V. Inhibition of HIV-1 Replication by Balsamin, a Ribosome Inactivating Protein of Momordica balsamina. PLoS ONE 2013, 8, e73780. [Google Scholar] [CrossRef] [PubMed]
- Ajji, P.K.; Walder, K.; Puri, M. Functional Analysis of a Type-I Ribosome Inactivating Protein Balsamin from Momordica balsamina with Anti-Microbial and DNase Activity. Plant Foods Hum. Nutr. 2016, 71, 265–271. [Google Scholar] [CrossRef]
- Rho, H.S.; Ghimeray, A.K.; Yoo, D.S.; Ahn, S.M.; Kwon, S.S.; Lee, K.H.; Cho, D.H.; Cho, J.Y. Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties. Molecules 2011, 16, 3338–3344. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xue, L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncol. Res. 2019, 27, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Rahn, R.O.; Zhang, R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett. 1997, 119, 99–107. [Google Scholar] [CrossRef]
- Liu, S.; Tian, L.; Chai, G.; Wen, B.; Wang, B. Targeting heme oxygenase-1 by quercetin ameliorates alcohol-induced acute liver injury via inhibiting NLRP3 inflammasome activation. Food Funct. 2018, 9, 4184–4193. [Google Scholar] [CrossRef]
- Chi, G.; Zhong, W.; Liu, Y.; Lu, G.; Lu, H.; Wang, D.; Sun, F. Isorhamnetin protects mice from lipopolysaccharide-induced acute lung injury via the inhibition of inflammatory responses. Inflamm. Res. 2016, 65, 33–41. [Google Scholar] [CrossRef]
- Jang, S.A.; Park, D.W.; Kwon, J.E.; Song, H.S.; Park, B.; Jeon, H.; Sohn, E.H.; Koo, H.K.; Kang, S.C. Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle cells. Biomed. Pharmacother. 2017, 96, 563–571. [Google Scholar] [CrossRef]
- Wang, G.F.; Shi, L.P.; Ren, Y.D.; Liu, Q.F.; Liu, H.F.; Zhang, R.J.; Li, Z.; Zhu, F.H.; He, P.L.; Tang, W.; et al. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir. Res. 2009, 83, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Ramalhete, C.; Spengler, G.; Martins, A.; Martins, M.; Viveiros, M.; Mulhovo, S.; Ferreira, M.J.U.; Amaral, L. Inhibition of efflux pumps in meticillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. Int. J. Antimicrob. Agents 2011, 37, 70–74. [Google Scholar] [CrossRef]
- Avato, P.; Argentieri, M.P. Editorial to the special issue: “Phytochemicals in nutrition and health: Advances and challenges”. Phytochem. Rev. 2022, 21, 313–316. [Google Scholar] [CrossRef]
- Hassan, L.G.; Umar, K.J. Nutritional value of Balsam Apple (Momordica balsamina L.) leaves. Pak. J. Nutr. 2006, 5, 522–529. [Google Scholar] [CrossRef]
- Karumi, Y.; Onyeyili, P.A.; Ogugbuaja, V.O. Identification of active principles of M. balsamina (Balsam Apple) leaf extract. J. Med. Sci. 2004, 4, 179–182. [Google Scholar]
- Chinthan, K.N.; Manjunathagowda, D.C.; Rathod, V.; Devan, S.R.; Anjanappa, M. Southern balsam pear (Momordica balsamina L.): Characterization of underutilized cucurbitaceous vegetable. S. Afr. J. Bot. 2022, 145, 95–98. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; Meyers, L.D., Hellwig, J.P., Otten, J.J., Eds.; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- WHO-World Health Organization. Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation [Held in Rome from 5 to 17 October 1981]. Available online: https://apps.who.int/iris/handle/10665/62734 (accessed on 10 August 2023).
- De Wet, H.; Ramulondi, M.; Ngcobo, Z.N. The use of indigenous medicine for the treatment of hypertension by a rural community in northern Maputaland, South Africa. S. Afr. J. Bot. 2016, 103, 78–88. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Gauttam, V.; Kalia, A.N. Evaluation of antidiabetic activity of Momordica balsamina Linn seeds in experimentally-induced diabetes. J. Chem. Pharm. Res. 2010, 2, 701–707. [Google Scholar]
- Souda, S.; George, S.; Mannathoko, N.; Goercke, I.; Chabaesele, K. Antioxidant and Antibacterial Activity of Methanol Extract of Momordica balsamina. IRA-Int. J. Appl. Sci 2018, 10, 7–17. [Google Scholar] [CrossRef]
- Benoit-Vical, F.; Grellier, P.; Abdoulaye, A.; Moussa, I.; Ousmane, A.; Berry, A.; Ikhiri, K.; Poupat, C. In vitro and in vivo Antiplasmodial Activity of Momordica balsamina Alone or in a Traditional Mixture. Chimiothérapie 2006, 52, 288–292. [Google Scholar] [CrossRef]
- Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G.; Bhagwandin, N.; Smith, P.J.; Folb, P.I. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J. Ethnopharmacol. 2004, 92, 177–191. [Google Scholar] [CrossRef]
- Abdulhamid, A.; Jega, S.A.; Sani, I.; Bagudo, A.I.; Abubakar, R. Phytochemical and antibacterial activity of Momordica balsamina leaves crude extract and fractions. Drug Discov. 2023, 17, e11dd1012. [Google Scholar] [CrossRef]
- Otimenyin, S.O.; Uguru, M.O.; Ogbonna, A. Antimicrobial and hypoglycemic effects of Momordica balsamina. Linn. J. Nat. Prod. 2008, 1, 3–9. Available online: http://hdl.handle.net/123456789/3130 (accessed on 1 September 2023).
- Jigam, A.A.; Akanya, H.O.; Adeyemi, D.J. Antimicrobial and antiplasmodial effects of Momordica balsamina. Nig. J. Nat. Prod. Et Med. 2004, 8, 11–12. [Google Scholar] [CrossRef]
- Madureira, A.M.; Ramalhete, C.; Mulhovo, S.; Duarte, A.; Ferreira, M.J.U. Antibacterial activity of some African medicinal plants used traditionally against infectious diseases. Pharm. Biol. 2012, 50, 481–489. [Google Scholar] [CrossRef]
- Khan, M.; Diop, A.; Gbodossou, E.; Xiao, P.; Coleman, M.; De Barros, K.; Duong, H.; Bond, V.C.; Floyd, V.; Kondwani, K.; et al. Anti-human immunodeficiency virus-1 activity of MoMo30 protein isolated from the traditional African medicinal plant Momordica balsamina. J. Virol. 2023, 20, 50. [Google Scholar] [CrossRef]
- Coleman, M.I.; Khan, M.; Gbodossou, E.; Diop, A.; DeBarros, K.; Duong, H.; Bond, V.C.; Floyd, V.; Kondwani, K.; Montgomery, R.V.; et al. Identification of a Novel Anti-HIV-1 Protein from Momordica balsamina Leaf Extract. Int. J. Environ. Res. Public Health 2022, 19, 15227. [Google Scholar] [CrossRef]
- Chollom, S.C.; Olawuyi, A.K.; Danjuma, L.D.; Nanbol, L.D.; Makinde, I.O.; Hashimu, G.A.; Alesa, M.U.; Esilonu, J.T.; Ogundeji, E.B.; Kwatjel, J.S. Antiviral Potential of Aqueous Extracts of Some Parts of Momordica balsamina plant against Newcastle Disease Virus. J. Adv. Pharm. Educ. Res. 2012, 3, 82–92. [Google Scholar]
- Ampitan, T.; Garba, M.H.; Adekambi, D.I.; Ampitan, A.; Adelakun, K. Prophylactic potency of methanolic extract of Momordica balsamina L. against avian paramyxovirus-1 infection in broiler chickens. Egypt. J. Anim. Prod. 2023, 60, 25–32. [Google Scholar] [CrossRef]
- Khumalo, B.; Siboto, A.; Akinnuga, A.M.; Sibiya, N.; Khathi, A.; Ngubane, P.S. Effects of Momordica balsamina on markers associated with renal dysfunction in a diet-induced prediabetic rat model. Res. Squar. 2023, 1–20. [Google Scholar] [CrossRef]
- Siboto, A.; Sibiya, N.; Khathi, A.; Ngubane, P. The effects of Momordica balsamina methanolic extract on kidney function in STZ-induced diabetic rats: Effects on selected metabolic markers. J. Diabetes Res. 2018, 2018, 7341242. [Google Scholar] [CrossRef]
- Sani, A.A.; Idris, S.B.; Yakubu, S. Anti-Diabetic Activity of Methanolic Extract of Momordica Balsamina in Rabbits. Sci. Res. J. 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Kgopa, A.H.; Shai, L.J.; Mogale, M.A. Momordica balsamina fruit extracts enhance selected aspects of the insulin synthesis/secretion pathway. Am. J. Biochem. Biotechnol. 2020, 16, 549–560. [Google Scholar] [CrossRef]
- Samaila, A.T. Evaluation of Antifungal Efficacy of Lawsonia inermis, Momordica balsamina and Ziziphus mauritiana against Clinically Isolated Candida Species (Candida albicans, C. krusei, C. tropicalis, and C. parapsilosis). In Proceedings of the BOUESTI International Conference on Education, Science and Technology (ICEST), Ikere-Ekiti, Nigeria, 21–24 November 2022. [Google Scholar]
- Ndhlala, A.R.; Finnie, J.F.; Van Staden, J. Plant composition, pharmacological properties and mutagenic evaluation of a commercial Zulu herbal mixture: Imbiza ephuzwato. J. Ethnopharmacol. 2011, 133, 663–674. [Google Scholar] [CrossRef]
- Silva, C.D.; Ramalhete, C.; Spengler, G.; Mulhovo, S.; Molnar, J.; Ferreira, M.J.U. Triterpenes from Momordica balsamina (African pumpkin): ABCB1 inhibition and synergistic interaction with doxorubicin in resistant cancer cells. Phytochemistry 2022, 203, 113354. [Google Scholar] [CrossRef]
- Odhav, B.; Beekrum, S.; Akula, U.S.; Baijnath, H. Preliminary assessment of nutritional value of traditional leafy vegetables in KwaZulu-Natal, South Africa. J. Food Compost. Anal. 2007, 20, 430–435. [Google Scholar] [CrossRef]
- Okpara, J.O.; Salihu, A.A.; Akanni, K.N.; Ogbu, K.I.; Ochai, C.Z. Antidiarrhoel properties of the methanolic fruit extract of Momordica balsamina (Linneaus). Int. J. Sci. Appl. Res. 2017, 2, 17–26. [Google Scholar]
- Karumi, Y.; Onyeyili, P.; Ogugbuaja, V. Anti-inflammatory and Antinociceptive (Analgesic) Properties of Momordical balsamina Linn. (Balsam Apple) Leaves in Rats. Pak. J. Biol. Sci. 2003, 6, 1515–1518. [Google Scholar] [CrossRef]
- Bosch, C.H. Momordica balsamina L., Ressources Végétales De L’Afrique Tropicale. Available online: https://plantnet.org/en/ (accessed on 12 July 2023).
- Mamadou, A.O. Étude Phytochimique Et De L’activité Antipaludique In Vivo Et In Vitro De Momordica balsamina Linn. (Cucurbitaceae). Ph.D. Thesis, FMPOS Bamako, Bamako, Mali, 2005. [Google Scholar]
- Putri, H. Determination of Total Flavonoid Content of Ethanol Extract of Forest Bitter Melon (Momordica balsamina) Leaves by Uv-Vis Spectrophotometric Method. Ph.D. Thesis, Universitas Muhammadiyah Mataram, Kota Mataram, Indonesia, 2023. [Google Scholar]
- Mensah, É.J.P.A.; Kindomihou, V.; Moussa, H.; Houndonougbo, F.; Vodouhè, D.S.; Aiyelaagbe, I.; Sinsin, B. Organic production potential of traditional small ruminant farming systems: A synthesis. J. Anim. Plant Sci. 2022, 52, 9404–9451. [Google Scholar]
- Noudèkè, N.D.; Dotché, I.; Ahounou, G.S.; Karim, I.Y.A.; Farougou, S. Inventory of medicinal plants used in the treatment of diseases that limit milk production of cow in Benin. J. Adv. Vet. Anim. Res. 2017, 4, 1–14. [Google Scholar] [CrossRef]
- Ramalhete, C.; Mulhovo, S.; Molnar, J.; Ferreira, M.J.U. Triterpenoids from Momordica balsamina: Reversal of ABCB1-mediated multidrug resistance. Bioorg. Med. Chem. 2016, 24, 5061–5067. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiaw, M.; Samb, I.; Genva, M.; Gaye, M.L.; Fauconnier, M.-L. Momordica balsamina L.: A Plant with Multiple Therapeutic and Nutritional Potential—A Review. Nutraceuticals 2023, 3, 556-573. https://doi.org/10.3390/nutraceuticals3040040
Thiaw M, Samb I, Genva M, Gaye ML, Fauconnier M-L. Momordica balsamina L.: A Plant with Multiple Therapeutic and Nutritional Potential—A Review. Nutraceuticals. 2023; 3(4):556-573. https://doi.org/10.3390/nutraceuticals3040040
Chicago/Turabian StyleThiaw, Marème, Issa Samb, Manon Genva, Mohamed Lamine Gaye, and Marie-Laure Fauconnier. 2023. "Momordica balsamina L.: A Plant with Multiple Therapeutic and Nutritional Potential—A Review" Nutraceuticals 3, no. 4: 556-573. https://doi.org/10.3390/nutraceuticals3040040
APA StyleThiaw, M., Samb, I., Genva, M., Gaye, M. L., & Fauconnier, M. -L. (2023). Momordica balsamina L.: A Plant with Multiple Therapeutic and Nutritional Potential—A Review. Nutraceuticals, 3(4), 556-573. https://doi.org/10.3390/nutraceuticals3040040