Influence of Maceration Solvent on Chemical Composition of Gemmotherapy Macerates—A Case Study on Olea europaea Young Shoots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.2.1. Plant Material
2.2.2. Bud Macerates
2.2.3. Solid-Phase Extraction
2.3. Phytochemical Analysis
2.3.1. HPLC-DAD-ELSD
2.3.2. HPLC-UV-MS2
2.3.3. Dereplication Analysis
2.4. Determination of Extraction Yields and Individual Contents
2.4.1. Extraction Yields
2.4.2. Determination of Individual Contents
3. Results and Discussion
3.1. Influence of the Extraction Solvent
3.1.1. Effect on the Extraction Yield
3.1.2. Effect on the Metabolite Composition
- Sugars, organic acids, triterpenes, and chlorophylls:
- Phenylethanoids
- Flavonoids
- Iridoids
3.2. Comparison between Classical Bud Extraction Methods (w/e/g and e/g)
3.3. Influence of the Raw Material Treatment
3.3.1. Effect on the Extraction Yield
3.3.2. Effect on the Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
w/e/g | e/g (10-Fold Diluted) | |
---|---|---|
Total sugars | 10.2 | 1.0 |
Total organic acids | - | - |
Total phenylethanoids | 9.3 | 1.3 |
Total flavonoids | 26.9 | 3.3 |
Total iridoids | 47.0 | 7.9 |
Total triterpens | 0.8 | 2.2 |
Total chlorophylls | - | 1 |
w/e/g | e/g | Fresh w/e/g | |
---|---|---|---|
D-mannitol | 2.4 ± 0.3 | 1.3 ± 0.4 | 2.3 ± 0.6 |
Disaccharide | 8.3 ± 0.7 | 4.8 ± 0.8 | 14.4 ± 4.9 |
Total sugars | 10.7 ± 1.1 | 6.1 ± 1.2 | 16.7 ± 5.5 |
Secologanoside | 1.1 ± 0.2 | 4.3 ± 0.2 | 1.0 ± 0.3 |
Calceolarioside | 4.2 ± 0.5 | 3.1 ± 0.2 | 16.5 ± 1.4 |
Phenylethanoid 1 | - | - | 0.2 ± 0.4 |
Phenylethanoid 2 | 0.8 ± 0.1 | 0.3 ± 0.5 | - |
Phenylethanoid 3 | 0.5 ± 0.4 | - | - |
Phenylethanoid 4 | - | - | 0.6 ± 0.1 |
Phenylethanoid 5 | 3.2 ± 0.2 | - | 1.0 ± 0.1 |
Total phenylethanoids | 9.8 ± 1.3 | 7.7 ± 0.9 | 19.3 ± 2.2 |
Flavonoid 2 | 1.0 ± 0.2 | - | - |
Flavonoid 4 | 0.3 ± 0.5 | - | - |
Flavonoid 5 | 2.0 ± 0.2 | 0.8 ± 0.2 | 0.7 ± 0.1 |
Luteolin-O-rutinoside 1 | 0.6 ± 0.1 | - | - |
Rutin | 1.8 ± 0.2 | 2.1 ± 0.2 | - |
Luteolin-O-rutinoside 2 | 1.3 ± 0.1 | - | 0.8 ± 0.1 |
Luteolin-O-glucoside 1 | 5.2 ± 0.5 | 6.1 ± 1.2 | 2.6 ± 0.4 |
Flavonoid 7 | 0.4 ± 0.6 | - | 0.5 ± 0.4 |
Apigenin-O-rutinoside | 2.0 ± 0.3 | 1.5 ± 0.2 | 0.7 ± 0.1 |
Taxifolin | 2.7 ± 0.2 | 1.5 ± 0.2 | 2.0 ± 0.2 |
Apigenin-O-glucoside | 2.1 ± 0.2 | 1.5 ± 0.1 | 1.3 ± 0.2 |
Luteolin-O-glucoside 2 | 3.4 ± 0.3 | 4.4 ± 0.4 | 1.7 ± 0.2 |
Luteolin | 5.5 ± 0.3 | 2.0 ± 0.2 | 3.0 ± 0.5 |
Total flavonoids | 28.3 ± 3.7 | 19.9 ± 2.4 | 13.3 ± 1.7 |
Iridoid 1 | 0.3 ± 0.5 | - | - |
Oleuropein | 5.9 ± 0.4 | 9.0 ± 0.4 | 4.0 ± 0.4 |
Oleuroside | 3.8 ± 0.3 | - | 3.0 ± 0.8 |
Iridoid 2 | - | - | 2.3 ± 0.3 |
Lucidumoside C | 12.6 ± 2.2 | 7.2 ± 0.3 | 4.5 ± 0.3 |
Iridoid 3 | 7.9 ± 0.1 | 7.5 ± 1.0 | - |
Ligstroside | 10.0 ± 2.7 | 8.6 ± 1.6 | 2.1 ± 0.3 |
Iridoid 4 | - | - | 1.6 ± 0.0 |
Iridoid 5 | - | - | 0.6 ± 1.0 |
Iridoid 6 | 4.5 ± 0.8 | - | 5.5 ± 1.8 |
Oleuropein aglycone | 1.6 ± 0.3 | 9.1 ± 0.6 | 8.1 ± 0.7 |
Iridoid 7 | - | - | 0.8 ± 0.8 |
Iridoid 8 | 3.3 ± 0.6 | 5.6 ± 0.3 | 16.8 ± 1.7 |
Iridoid 9 | - | 0.2 ± 0.4 | 0.3 ± 0.5 |
Iridoid 10 | - | - | 0.7 ± 0.1 |
Iridoid 11 | - | - | 0.3 ± 0.5 |
Total iridoids | 49.9 ± 8.0 | 47.2 ± 4.6 | 50.6 ± 9.1 |
Oleanolic acid | 0.9 ± 0.0 | 13.2 ± 1.2 | - |
Total triterpens | 0.9 ± 0.0 | 13.2 ± 1.2 | - |
Chlorophyll A | - | 5.8 ± 1.6 | - |
Total chlorophylls | - | 5.8 ± 1.6 | - |
References
- Tétau, M. Nouvelles cliniques de Gemmothérapie; Similia: Paris, France, 1987. [Google Scholar]
- Henry, P. (Ed.) Phytembryothérapie-Gemmothérapie. Thérapeutique Par Les Extraits Embryonnaires Végétaux; Imprimerie St Norbert: Westerlo, Belgium, 1982. [Google Scholar]
- Chise, E.; Ardelean, M.; Cuc-Hepcal, I.; Deme, P.; Ardelean, S.; Mos, L.; Morgovan, C.; Olah, N.-K. The research in meristemotherapy—Apast and perspectives. J. Med. Arad. 2016, 19, 21–25. [Google Scholar]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerutti, A.K.; Marconi, V.; Bounous, G. Botanicals in Ribes nigrum bud-preparations: An analytical fingerprinting to evaluate the bioactive contribution to total phytocomplex. Pharm. Biol. 2013, 51, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerutti, A.K.; Bounous, G. Medicinal plants, chemical composition and quality: May blackcurrant buds and blackberry sprouts be a new polyphenol source for herbal preparations? J. Appl. Bot. Food Qual. 2013, 86, 79–89. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.; Cerutti, A.; Beccaro, G. Biomolecules and natural medicine preparations: Analysis of new sources of bioactive compounds from Ribes and Rubus spp. Buds. Pharmaceuticals 2016, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Ieri, F.; Innocenti, M.; Possieri, L.; Gallori, S.; Mulinacci, N. Phenolic composition of “bud extracts” of Ribes nigrum L., Rosa canina L. and Tilia tomentosa M. J. Pharm. Biomed. Anal. 2015, 115, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, T.; Boisard, S.; Le Ray, A.-M.; Bréard, D.; Chabrier, A.; Esselin, H.; Guilet, D.; Ripoll, C.; Richomme, P. A descriptive chemical composition of concentrated bud macerates through an optimized SPE-HPLC-Uv-MS2 method—Application to Alnus glutinosa, Ribes nigrum, Rosa canina, Rosmarinnus officinalis and Tilia tomentosa. Plants 2022, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Bonvegna, L.; Bounous, G. Castanea spp. buds as a phytochemical source for herbal preparations: Botanical fingerprint for nutraceutical identification and functional food standardisation. J. Sci. Food Agric. 2014, 94, 2863–2873. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Turrini, F.; Boggia, R.; Guido, M.; Gamba, G.; Mellano, M.G.; Riondato, I.; Beccaro, G.L. Vitis vinifera L. Pruning Waste for Bud-Preparations as Source of Phenolic Compounds–Traditional and Innovative Extraction Techniques to Produce New Natural Products. Plants 2021, 10, 2233. [Google Scholar] [CrossRef] [PubMed]
- Ieri, F.; Martini, S.; Innocentia, M.; Mulinaccia, N. Phenolic Distribution in liquid Preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem. Anal. 2013, 24, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Turrini, F.; Donno, D.; Loris Beccaro, G.; Pittaluga, A.; Grilli, M.; Zunin, P.; Boggia, R. Bud-derivatives, a novel source of polyphenols and how different extraction processes affect their composition. Foods 2020, 9, 1343–1364. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Beccaro, G.L.; Cerutti, A.K.; Mellano, M.G.; Bounous, G. Bud Extracts as New Phytochemical Source for Herbal Preparations—Quality Control and Standardization by Analytical Fingerprint. In Phytochemicals—Isolation, Characterisation and Role in Human Health; Rao, A.V., Rao, L.G., Eds.; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Donno, D.; Beccaro, G.L.; Carlen, C.; Ançay, A.; Cerutti, A.K.; Mellano, M.G.; Bounous, G. Analytical fingerprint and chemometrics as phytochemical composition control tools in food supplement analysis: Characterization of raspberry bud preparations of different cultivars. J. Sci. Food Agric. 2015, 96, 3157–3168. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia 11.0, 07-2022:23371 Part 2. Glycerol Macerates. Available online: https://www.edqm.eu/fr/Pharmacopee_Europeenne_11e_Edition (accessed on 24 April 2023).
- Özcan, M.M.; Bertrand Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Di Clima, F.P.; Nicoletti, M. Précis de Gemmothérapie—Fondements Scientifiques de la Méristémothérapie; Editions Amyris: Uccle, Belgium, 2018. [Google Scholar]
- European Pharmacopoeia. 11.0, 07-2019:20232 Loss on Drying. Available online: https://www.edqm.eu/fr/Pharmacopee_Europeenne_11e_Edition (accessed on 24 April 2023).
- Zhang, K.; Kurita, K.L.; Venkatramani, C.; Russell, D. Seeking universal detectors for analytical characterizations. J. Pharm. Biomed. Anal. 2019, 162, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Nicolì, F.; Negro, C.; Vergine, M.; Aprile, A.; Nutricati, E.; Sabella, E.; Miceli, A.; Luvisi, A.; De Bellis, L. Evaluation of Phytochemical and Antioxidant Properties of 15 Italian Olea europaea L. Cultivar Leaves. Molecules 2019, 24, 1998. [Google Scholar] [CrossRef] [PubMed]
- Ammar, S.; Contreras, M.D.M.; Gargouri, B.; Segura-Carretero, A.; Bouaziz, M. RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart: Metabolic profiling of the potential Olea europaea by-product “wood”. Phytochem. Anal. 2017, 28, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Arráez-Roman, D.; Segura-Carretero, A.; Menéndez, J.A.; Menéndez-Gutiérrez, M.P.; Micol, V.; Fernández-Gutiérrez, A. Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal. Bioanal. Chem. 2010, 397, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Apostolakis, A.; Grigorakis, S.; Makris, D.P. Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea europaea) using heated water/glycerol mixtures. Sep. Purif. Technol. 2014, 128, 89–95. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C.G. Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol. 2016, 53, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Zaïri, A.; Nouir, S.; Zarrouk, A.; Haddad, H.; Khelifa, A.; Achour, L. Phytochemical profile, cytotoxic, antioxidant, and allelopathic potentials of aqueous leaf extracts of Olea europaea. Food Sci. Nutr. 2020, 8, 4805–4813. [Google Scholar] [CrossRef] [PubMed]
- Angelis, A.; Mavros, P.; Nikolaou, P.E.; Mitakou, S.; Halabalaki, M.; Skaltsounis, L. Phytochemical analysis of olive flowers’ hydroalcoholic extract and in vitro evaluation of tyrosinase, elastase and collagenase inhibition activity. Fitoterapia 2020, 143, 104602. [Google Scholar] [CrossRef] [PubMed]
Extract Name | Extraction Solvent | Raw Material Treatment |
---|---|---|
w/e/g | water/ethanol/glycerin | frozen |
e/g | ethanol/glycerin | frozen |
w/g | water/glycerin | frozen |
w/e | water/ethanol | frozen |
e | ethanol | frozen |
g | glycerin | frozen |
Fresh w/e/g | water/ethanol/glycerin | fresh |
Extract Name | Extraction Yield (mg/g DW) |
---|---|
w/e/g | 94.8 ± 2.6 |
e/g | 163.8 ± 2.6 |
w/g | 73.8 ± 0.9 |
w/e | 274.4 ± 2.4 |
e | 253.0 ± 5.5 |
g | 174.5 ± 14.2 |
Rt (min) a | λmax (nm) | m/z for [M-H]− b | m/z for [M+H]+ b | w/e/g | e/g | w/g | w/e | e | g | Fresh w/e/g | |
---|---|---|---|---|---|---|---|---|---|---|---|
Sugar 1 | 1.7 | - | - | - | - | - | - | 1.2 ± 1.0 | - | - | - |
D-mannitol | 1.8 | - | 181 (101, 85, 71) | - | 2.3 ± 0.3 | 2.2 ± 0.6 | 5.8 ± 0.6 | 32.7 ± 0.5 | 9.0 ± 0.4 | 9.7 ± 5.8 | 2.2 ± 0.7 |
Disaccharide | 2.8 | - | 341 | 343 | 7.9 ± 0.9 | 8.1 ± 1.4 | 38.0 ± 3.3 | 198.9 ± 2.3 | 132.9 ± 2.5 | 164.9 ± 17.9 | 13.4 ± 5.5 |
Total sugars | 10.2 ± 0.6 | 10.2 ± 1.9 | 43.8 ± 3.2 | 232.7 ± 2.4 | 142.0 ± 2.9 | 174.5 ± 14.2 | 15.6 ± 6.2 | ||||
Organic acid 1 | 2.9 | 258 | - | - | - | - | - | 19.5 ± 0.5 | 25.0 ± 0.8 | - | - |
Citric/Quinic acid | 3.3 | 258 | 191 (173, 111, 87, 85/173, 127, 93, 85) | - | - | - | - | 5.8 ± 0.3 | 2.2 ± 0.3 | - | - |
Total organic acids | - | - | - | 25.3 ± 0.3 | 27.2 ± 0.8 | - | |||||
Hydroxytyrosol-O-glucoside | 14.2 | 230/280 | 315 (153, 135, 123) | 317 | - | - | 0.4 ± 0.1 | - | - | - | - |
Secologanoside | 14.3 | 220/277 | 389 (345, 227, 209, 183, 165, 121, 119) | 391 | 1.1 ± 0.2 | 7.2 ± 0.3 | 4.1 ± 0.3 | - | 3.2 ± 0.1 | - | 0.9 ± 0.3 |
Calceolarioside | 14.7 | 234/278 | 477 (323, 315, 179, 161, 135) | - | 3.9 ± 0.4 | 5.1 ± 0.4 | 4.1 ± 0.4 | - | 0.7 ± 0.1 | - | 15.2 ± 1.7 |
Phenylethanoid 1 | 15.0 | 260 | - | - | - | - | - | - | - | - | 0.2 ± 0.3 |
Phenylethanoid 2 | 15.6 | 220/275 | - | - | 0.8 ± 0.1 | 0.5 ± 0.8 | 0.9 ± 0.5 | - | - | - | - |
Phenylethanoid 3 | 16.0 | 220/260/295 | 313 | 315 | 0.4 ± 0.4 | - | 0.8 ± 0.1 | - | - | - | - |
Loganin | 16.7 | 234/274/325 | 389 (345, 209, 183, 165, 121, 119) | - | - | - | 0.5 ± 0.1 | 3.0 ± 0.1 | 4.0 ± 0.2 | - | - |
Phenylethanoid 4 | 17.0 | 220/275 | - | - | - | - | - | - | - | - | 0.5 ± 0.1 |
Phenylethanoid 5 | 17.2 | 280 | - | - | 3.0 ± 0.2 | - | - | 1.9 ± 0.0 | 1.6 ± 0.1 | - | 0.9 ± 0.0 |
Phenylethanoid 6 | 17.8 | 225/280 | - | - | - | - | 0.5 ± 0.1 | - | - | - | - |
Total phenylethanoids | 9.3 ± 1.1 | 12.8 ± 1.3 | 11.3 ± 1.5 | 4.9 ± 0.1 | 9.5 ± 0.4 | - | 17.7 ± 1.9 | ||||
Flavonoid 1 | 18.0 | 220/285/325 | - | - | - | - | 0.5 ± 0.0 | - | - | - | - |
Flavonoid 2 | 18.3 | 220/275/325 | - | - | 1.0 ± 0.1 | - | 1.3 ± 0.1 | - | - | - | - |
Flavonoid 3 | 18.6 | 225/275/335 | - | - | - | - | 0.2 ± 0.3 | - | - | - | - |
Flavonoid 4 | 18.7 | 260/290/330 | - | - | 0.3 ± 0.4 | - | 0.2 ± 0.3 | - | - | - | - |
Flavonoid 5 | 19.4 | 220/275/320 | - | - | 1.9 ± 0.2 | 1.4 ± 0.3 | 1.8 ± 0.2 | - | - | - | 0.7 ± 0.1 |
Flavonoid 6 | 19.7 | 280 | - | - | - | - | 0.2 ± 0.3 | - | - | - | - |
Luteolin-O-rutinoside 1 | 20.8 | 220/280/300 | 593 (447, 285) | 595 (449, 287) | 0.6 ± 0.1 | - | - | - | - | - | - |
Rutin | 20.9 | 254/357 | 609 (463, 343, 301, 300, 179) | 611 (303) | 1.7 ± 0.2 | 3.5 ± 0.4 | 1.0 ± 0.2 | - | 2.2 ± 0.1 | - | - |
Luteolin-O-rutinoside 2 | 21.3 | 290 | 593 (447, 285) | 595 (449, 287) | 1.2 ± 0.1 | - | 0.8 ± 0.1 | - | - | - | 0.7 ± 0.1 |
Luteolin-O-glucoside 1 | 21.5 | 250/265/350 | 447 (285) | 449 (287) | 4.9 ± 0.6 | 10.2 ± 2.0 | 0.8 ± 0.2 | 2.5 ± 0.0 | 8.4 ± 0.7 | - | 2.4 ± 0.3 |
Flavonoid 7 | 21.8 | 280 | 463 | 465 | 0.4 ± 0.6 | - | 0.8 ± 0.1 | - | - | - | 0.4 ± 0.4 |
Apigenin-O-rutinoside | 22.1 | 220/265/332 | 577 (269) | 579 (433, 271) | 1.9 ± 0.2 | 2.4 ± 0.3 | 0.6 ± 0.1 | - | - | - | 0.6 ± 0.2 |
Taxifolin | 22.7 | 220/290/330 | 303 (287, 285, 197, 177, 125) | - | 2.5 ± 0.1 | 2.5 ± 0.3 | 1.4 ± 0.1 | - | - | - | 1.9 ± 0.1 |
Apigenin-O-glucoside | 23.1 | 220/255/337 | 431 (269, 268) | 433 | 2.0 ± 0.1 | 2.6 ± 0.1 | - | - | - | - | 1.2 ± 0.1 |
Luteolin-O-glucoside 2 | 23.2 | 240/265/340 | 447 (285) | 449 (287) | 3.2 ± 0.3 | 7.4 ± 0.6 | - | 2.1 ± 0.1 | 5.9 ± 0.3 | - | 1.6 ± 0.1 |
Luteolin | 27.5 | 250/265/290/345 | 285 | 287 | 5.2 ± 0.3 | 3.4 ± 0.4 | 0.6 ± 0.2 | 1.7 ± 0.0 | - | - | 2.8 ± 0.3 |
Total flavonoids | 26.9 ± 2.3 | 33.4 ± 3.2 | 10.1 ± 1.8 | 6.2 ± 0.1 | 16.5 ± 0.8 | - | 12.3 ± 1.4 | ||||
Iridoid 1 | 22.5 | 220/290 | 377 | 379 | 0.3 ± 0.5 | - | 0.6 ± 0.1 | - | - | - | - |
Oleuropein | 23.6 | 230/280 | 539 (403, 377, 307, 275, 345) | 541 | 5.6 ± 0.3 | 14.9 ± 0.7 | 0.8 ± 0.1 | 1.8 ± 0.0 | 28.3 ± 0.3 | - | 3.7 ± 0.2 |
Oleuroside | 23.8 | 230/290/330 | 539 (377, 345, 307, 275) | - | 3.6 ± 0.4 | - | - | 1.5 ± 0.1 | - | - | 2.8 ± 0.8 |
Iridoid 2 | 24.0 | 220/290 | - | - | - | - | - | - | - | - | 2.1 ± 0.2 |
Lucidumoside C | 24.6 | 234/282 | 583 (537, 403, 351, 223, 197, 179) | - | 12.0 ± 2.3 | 12.0 ± 0.5 | 1.6 ± 0.1 | - | 1.7 ± 0.1 | - | 4.1 ± 0.1 |
Iridoid 3 | 24.7 | 225/280 | - | - | 7.5 ± 0.2 | 12.4 ± 1.6 | 3.5 ± 0.2 | - | 2.3 ± 0.3 | - | - |
Ligstroside | 25.2 | 230/279 | 523 (361, 291, 259, 223) | - | 9.5 ± 2.5 | 14.4 ± 2.7 | 1.7 ± 0.2 | - | 3.4 ± 0.9 | - | 1.9 ± 0.2 |
Iridoid 4 | 26.4 | 290 | 453 | 455 | - | - | 1.2 ± 2.0 | - | - | - | 1.4 ± 0.1 |
Iridoid 5 | 26.7 | 230/280 | 255 | 257 | - | - | - | - | - | - | 0.6 ± 1.0 |
Iridoid 6 | 26.9 | 250/290/350 | 533 | 535 | 4.2 ± 0.8 | - | - | 2.0 ± 0.3 | - | - | 5.0 ± 1.5 |
Oleuropein aglycone | 30.5 | 230/280 | 377 (345, 307, 275, 241, 217, 197, 153, 149, 139, 111) | 379 | 1.5 ± 0.3 | 15.2 ± 1.0 | - | - | 12.8 ± 0.4 | - | 7.4 ± 1.0 |
Iridoid 7 | 31.1 | 225/280 | 377 | 379 | - | - | - | - | - | - | 0.7 ± 0.7 |
Iridoid 8 | 32.7 | 225/280 | 391 | 393 | 3.1 ± 0.5 | 9.4 ± 0.4 | - | - | - | - | 15.4 ± 1.2 |
Iridoid 9 | 33.1 | 280 | - | - | - | 0.4 ± 0.7 | - | - | - | - | 0.2 ± 0.4 |
Iridoid 10 | 33.3 | 230/280 | 361 | 363 | - | - | - | - | - | - | 0.6 ± 0.1 |
Iridoid 11 | 35.3 | 225/275 | - | - | - | - | - | - | - | - | 0.2 ± 0.4 |
Total iridoids | 47.0 ± 2.8 | 78.7 ± 2.1 | 8.8 ± 2.1 | 5.3 ± 0.4 | 48.5 ± 0.6 | - | 46.2 ± 3.3 | ||||
Oleanolic acid | 44.0 | - | 455 | - | 0.8 ± 0.0 | 22.1 ± 2.0 | - | - | 4.4 ± 0.7 | - | - |
Total triterpens | 0.8 ± 0.0 | 22.1 ± 2.0 | - | - | 4.4 ± 0.7 | - | - | ||||
Chlorophyll A | 52.2 | 410/440/575 | - | - | - | 9.6 ± 2.6 | - | - | 4.4 ± 1.4 | - | - |
Total chlorophylls | - | 9.6 ± 2.6 | - | - | 4.4 ± 1.4 | - | - |
Extract Name | Extraction Yield (mg/g DW) |
---|---|
w/e/g | 94.8 ± 2.6 |
Fresh w/e/g | 91.9 ± 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bréard, D.; Esselin, H.; Bugeia, L.; Boisard, S.; Guilet, D.; Richomme, P.; Le Ray, A.-M.; Ripoll, C. Influence of Maceration Solvent on Chemical Composition of Gemmotherapy Macerates—A Case Study on Olea europaea Young Shoots. Nutraceuticals 2023, 3, 574-590. https://doi.org/10.3390/nutraceuticals3040041
Bréard D, Esselin H, Bugeia L, Boisard S, Guilet D, Richomme P, Le Ray A-M, Ripoll C. Influence of Maceration Solvent on Chemical Composition of Gemmotherapy Macerates—A Case Study on Olea europaea Young Shoots. Nutraceuticals. 2023; 3(4):574-590. https://doi.org/10.3390/nutraceuticals3040041
Chicago/Turabian StyleBréard, Dimitri, Hélène Esselin, Lucie Bugeia, Séverine Boisard, David Guilet, Pascal Richomme, Anne-Marie Le Ray, and Christophe Ripoll. 2023. "Influence of Maceration Solvent on Chemical Composition of Gemmotherapy Macerates—A Case Study on Olea europaea Young Shoots" Nutraceuticals 3, no. 4: 574-590. https://doi.org/10.3390/nutraceuticals3040041
APA StyleBréard, D., Esselin, H., Bugeia, L., Boisard, S., Guilet, D., Richomme, P., Le Ray, A. -M., & Ripoll, C. (2023). Influence of Maceration Solvent on Chemical Composition of Gemmotherapy Macerates—A Case Study on Olea europaea Young Shoots. Nutraceuticals, 3(4), 574-590. https://doi.org/10.3390/nutraceuticals3040041