Targeted Next-Generation Sequencing of Circulating Tumor DNA Mutations among Metastatic Breast Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects and Blood Collection
2.2. DNA Extraction and Assessment
2.3. Gene Panel Design and Target-Capture Sequencing
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Patients and Target-Capture Sequencing
3.2. Identification of ctDNA Mutations and Related Genes
3.3. Distribution of Gene Mutations and Clinical Characteristics
3.4. Dynamics of ctDNA Mutations during Chemotherapy
3.5. ctDNA Mutations and Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullah, M.F. Breast Cancer: Current Perspectives on the Disease Status. Adv. Exp. Med. Biol. 2019, 1152, 51–64. [Google Scholar]
- Altobelli, E.; Rapacchietta, L.; Angeletti, P.M.; Barbante, L.; Profeta, F.V.; Fagnano, R. Breast Cancer Screening Programmes across the WHO European Region: Differences among Countries Based on National Income Level. Int. J. Environ. Res. Public Health 2017, 14, 452. [Google Scholar] [CrossRef]
- Peart, O. Metastatic Breast Cancer. Radiol. Technol. 2017, 88, 519M–539M. [Google Scholar] [PubMed]
- Welch, H.G.; Gorski, D.H.; Albertsen, P.C. Trends in Metastatic Breast and Prostate Cancer—Lessons in Cancer Dynamics. N. Engl. J. Med. 2015, 373, 1685–1687. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Zhang, H.; Song, X.; Yang, Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin. Cancer Biol. 2020, 60, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Winters, S.; Martin, C.; Murphy, D.; Shokar, N.K. Breast Cancer Epidemiology, Prevention, and Screening. Prog. Mol. Biol. Transl. Sci. 2017, 151, 1–32. [Google Scholar]
- Yates, L.R.; Gerstung, M.; Knappskog, S.; Desmedt, C.; Gundem, G.; Van Loo, P.; Aas, T.; Alexandrov, L.B.; Larsimont, D.; Davies, H.; et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 2015, 21, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, X.; Zhang, H.; Wang, K.; He, J. Cell-free circulating tumor DNA analysis for breast cancer and its clinical utilization as a biomarker. Oncotarget 2017, 8, 75742–75755. [Google Scholar] [CrossRef]
- Cheng, F.; Su, L.; Qian, C. Circulating tumor DNA: A promising biomarker in the liquid biopsy of cancer. Oncotarget 2016, 7, 48832–48841. [Google Scholar] [CrossRef] [Green Version]
- Campos-Carrillo, A.; Weitzel, J.N.; Sahoo, P.; Rockne, R.; Mokhnatkin, J.V.; Murtaza, M.; Gray, S.W.; Goetz, L.; Goel, A.; Schork, N.; et al. Circulating tumor DNA as an early cancer detection tool. Pharmacol. Ther. 2020, 207, 107458. [Google Scholar] [CrossRef]
- Oliveira, K.C.S.; Ramos, I.B.; Silva, J.M.C.; Barra, W.F.; Riggins, G.J.; Palande, V.; Pinho, C.T.; Frenkel-Morgenstern, M.; Santos, S.E.B.; Assumpcao, P.P.; et al. Current Perspectives on Circulating Tumor DNA, Precision Medicine, and Personalized Clinical Management of Cancer. Mol. Cancer Res. 2020, 18, 517–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohanizadegan, M. Analysis of circulating tumor DNA in breast cancer as a diagnostic and prognostic biomarker. Cancer Genet. 2018, 228–229, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, R.B.; Chabner, B.A. Application of Cell-free DNA Analysis to Cancer Treatment. N. Engl. J. Med. 2018, 379, 1754–1765. [Google Scholar] [CrossRef] [Green Version]
- Kingston, B.; Cutts, R.J.; Bye, H.; Beaney, M.; Walsh-Crestani, G.; Hrebien, S.; Swift, C.; Kilburn, L.S.; Kernaghan, S.; Moretti, L.; et al. Genomic profile of advanced breast cancer in circulating tumour DNA. Nat. Commun. 2021, 12, 2423. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Kingston, B.; Kilburn, L.S.; Kernaghan, S.; Wardley, A.M.; Macpherson, I.R.; Baird, R.D.; Roylance, R.; Stephens, P.; Oikonomidou, O.; et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): A multicentre, multicohort, phase 2a, platform trial. Lancet Oncol. 2020, 21, 1296–1308. [Google Scholar] [CrossRef]
- Arnedos, M.; Vicier, C.; Loi, S.; Lefebvre, C.; Michiels, S.; Bonnefoi, H.; Andre, F. Precision medicine for metastatic breast cancer--limitations and solutions. Nat. Rev. Clin. Oncol. 2015, 12, 693–704. [Google Scholar] [CrossRef]
- Buono, G.; Gerratana, L.; Bulfoni, M.; Provinciali, N.; Basile, D.; Giuliano, M.; Corvaja, C.; Arpino, G.; Del Mastro, L.; De Placido, S.; et al. Circulating tumor DNA analysis in breast cancer: Is it ready for prime-time? Cancer Treat. Rev. 2019, 73, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Yao, G.; Cao, L.; Liu, M.; Chen, L.; Hu, X.; Ye, C. Gemcitabine and Capecitabine Combination Chemotherapy in Patients with Metastatic Breast Cancer Pretreated with Anthracyclines and/or Taxanes. Chemotherapy 2016, 61, 171–178. [Google Scholar] [CrossRef]
- Budny, A.; Staroslawska, E.; Budny, B.; Wojcik, R.; Hys, M.; Kozlowski, P.; Budny, W.; Brodzik, A.; Burdan, F. Epidemiology and diagnosis of breast cancer. Pol. Merkur Lek. 2019, 46, 195–204. [Google Scholar]
- Reiland-Smith, J. Diagnosis and surgical treatment of breast cancer. South Dak. Med. 2010, 31–37. [Google Scholar]
- Tyagi, N.K.; Dhesy-Thind, S. Clinical practice guidelines in breast cancer. Curr. Oncol. 2018, 25 (Suppl. 1), S151–S160. [Google Scholar] [CrossRef]
- Garcia-Murillas, I.; Schiavon, G.; Weigelt, B.; Ng, C.; Hrebien, S.; Cutts, R.J.; Cheang, M.; Osin, P.; Nerurkar, A.; Kozarewa, I.; et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 2015, 7, 302ra133. [Google Scholar] [CrossRef]
- Pessoa, L.S.; Heringer, M.; Ferrer, V.P. ctDNA as a cancer biomarker: A broad overview. Crit. Rev. Oncol. Hematol. 2020, 155, 103109. [Google Scholar] [CrossRef] [PubMed]
- Alimirzaie, S.; Bagherzadeh, M.; Akbari, M.R. Liquid biopsy in breast cancer: A comprehensive review. Clin. Genet. 2019, 95, 643–660. [Google Scholar] [CrossRef]
- Zhang, X.; Ju, S.; Wang, X.; Cong, H. Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin. Exp. Med. 2019, 19, 271–279. [Google Scholar] [CrossRef]
- Butler, T.M.; Spellman, P.T.; Gray, J. Circulating-tumor DNA as an early detection and diagnostic tool. Curr. Opin. Genet. Dev. 2017, 42, 14–21. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Wei, W.; You, Z.; Ou, X.; Sun, M.; Yin, Y.; Tang, X.; Zhao, Z.; Hu, C.; et al. Parallel Analyses of Somatic Mutations in Plasma Circulating Tumor DNA (ctDNA) and Matched Tumor Tissues in Early-Stage Breast Cancer. Clin. Cancer Res. 2019, 25, 6546–6553. [Google Scholar] [CrossRef] [Green Version]
- Eigeliene, N.; Saarenheimo, J.; Jekunen, A. Potential of Liquid Biopsies for Breast Cancer Screening, Diagnosis, and Response to Treatment. Oncology 2019, 96, 115–124. [Google Scholar] [CrossRef]
- Nicolini, A.; Ferrari, P.; Duffy, M.J. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Semin. Cancer Biol. 2018, 52 Pt 1, 56–73. [Google Scholar] [CrossRef]
- Clatot, F. Review ctDNA and Breast Cancer. Recent Results Cancer Res. 2020, 215, 231–252. [Google Scholar]
- Tzanikou, E.; Lianidou, E. The potential of ctDNA analysis in breast cancer. Crit. Rev. Clin. Lab. Sci. 2020, 57, 54–72. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.; Gong, Y.; Zhang, Y.; Lu, Y.; Wang, C.; Yao, R.; Li, P.; Guan, Y.; Wang, J.; et al. Clinical factors associated with circulating tumor DNA (ctDNA) in primary breast cancer. Mol. Oncol. 2019, 13, 1033–1046. [Google Scholar] [CrossRef] [Green Version]
- Gorgannezhad, L.; Umer, M.; Islam, M.N.; Nguyen, N.T.; Shiddiky, M.J.A. Circulating tumor DNA and liquid biopsy: Opportunities, challenges, and recent advances in detection technologies. Lab Chip 2018, 18, 1174–1196. [Google Scholar] [CrossRef]
- Ma, F.; Guan, Y.; Yi, Z.; Chang, L.; Li, Q.; Chen, S.; Zhu, W.; Guan, X.; Li, C.; Qian, H.; et al. Assessing tumor heterogeneity using ctDNA to predict and monitor therapeutic response in metastatic breast cancer. Int. J. Cancer 2020, 146, 1359–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, D. Breast cancer: Tracking ctDNA to evaluate relapse risk. Nat. Rev. Clin. Oncol. 2015, 12, 624. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Xu, Y.; Li, L.; Gong, Y.; Zhang, K.; Zhang, M.; Guan, Y.; Chang, L.; Xia, X.; et al. Pan-cancer circulating tumor DNA detection in over 10,000 Chinese patients. Nat. Commun. 2021, 12, 11. [Google Scholar] [CrossRef]
- Fernandez-Garcia, D.; Hills, A.; Page, K.; Hastings, R.K.; Toghill, B.; Goddard, K.S.; Ion, C.; Ogle, O.; Boydell, A.R.; Gleason, K.; et al. Plasma cell-free DNA (cfDNA) as a predictive and prognostic marker in patients with metastatic breast cancer. Breast Cancer Res. 2019, 21, 149. [Google Scholar] [CrossRef]
Characteristics | N (%) | |
---|---|---|
Diagnostic age (years) | Mean (rang) | 51.30 (33–68) |
Menarche age (years) | Mean (rang) | 14.33 (11–19) |
ER status | ER(+) | 17 (62.96%) |
PR a status | PR a (+) | 16 (59.26%) |
HER2 status | HER2(+) | 17 (62.96%) |
* HER2(+) only | 7 (25.93%) | |
Menopause | YES | 11 (44.44%) |
Size of tumor | >3cm | 14 (51.85%) |
≤3cm | 13 (48.15%) | |
T stage | T3 | 4 (14.81%) |
T4 | 23 (85.19%) | |
N stage | N2 | 6 (22.22%) |
N3 | 21 (77.78%) | |
M stage | M1 | 27 (100.00%) |
Metastatic sites | Lymph nodes | 24 (88.89%) |
Pulmonary | 9 (33.33%) | |
Hepatic | 14 (51.85%) | |
Bone | 15 (55.56%) | |
Brain | 1 (3.70%) | |
Parturitions | ≥3 | 11 (40.74%) |
<3 | 16 (59.26%) | |
Therapeutic effect | PR b/SD | 16 (59.26%) |
PD | 11 (40.74%) |
Factors | Coefficient (SE) | Adjusted OR | 95% CI | p Value |
---|---|---|---|---|
Diagnostic age | 0.12 | 0.92 | 0.73–1.16 | 0.475 |
Menarche age | 0.41 | 1.57 | 0.70–3.55 | 0.274 |
ER status, ER(+) vs. ER(−) | 2.29 | 2.51 | 0.03–222.34 | 0.687 |
PR a status, PR a (+) vs. PR a (−) | 2.07 | 0.07 | 0–4.30 | 0.210 |
HER2 status, HER2(+) vs. HER2(−) | 1.70 | 0.02 | 0–0.62 | 0.025 |
Menopause, YES vs. NO | 2.02 | 1.48 | 0.03–77.85 | 0.847 |
Size of tumor, >3 cm vs. ≤3 cm | 1.55 | 10.28 | 0.50–213.38 | 0.132 |
Parturitions NO. ≥3 vs. <3 | 0.50 | 1.02 | 0.38–2.72 | 0.965 |
Therapeutic effect, PR b/SD vs. PD | 1.33 | 4.26 | 0.31–58.24 | 0.277 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.-Y.; Lin, F.-Q.; Chen, L.-J.; Li, H.; Lin, W.-Q.; Du, H.-Y.; Yang, X.-X.; Li, M. Targeted Next-Generation Sequencing of Circulating Tumor DNA Mutations among Metastatic Breast Cancer Patients. Curr. Oncol. 2021, 28, 2326-2336. https://doi.org/10.3390/curroncol28040214
Sun M-Y, Lin F-Q, Chen L-J, Li H, Lin W-Q, Du H-Y, Yang X-X, Li M. Targeted Next-Generation Sequencing of Circulating Tumor DNA Mutations among Metastatic Breast Cancer Patients. Current Oncology. 2021; 28(4):2326-2336. https://doi.org/10.3390/curroncol28040214
Chicago/Turabian StyleSun, Min-Ying, Fang-Qin Lin, Lu-Jia Chen, Hong Li, Wei-Quan Lin, Hong-Yan Du, Xue-Xi Yang, and Ming Li. 2021. "Targeted Next-Generation Sequencing of Circulating Tumor DNA Mutations among Metastatic Breast Cancer Patients" Current Oncology 28, no. 4: 2326-2336. https://doi.org/10.3390/curroncol28040214
APA StyleSun, M. -Y., Lin, F. -Q., Chen, L. -J., Li, H., Lin, W. -Q., Du, H. -Y., Yang, X. -X., & Li, M. (2021). Targeted Next-Generation Sequencing of Circulating Tumor DNA Mutations among Metastatic Breast Cancer Patients. Current Oncology, 28(4), 2326-2336. https://doi.org/10.3390/curroncol28040214