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Abstract: Background: It is widely acknowledged that the molecular biological characteristics of
diffuse-type gastric cancer are different from intestinal-type gastric cancer. Notwithstanding that
significant progress in high-throughput sequencing technology has been made, there is a paucity
of effective prognostic biomarkers for diffuse gastric cancer for clinical practice. Methods: We
downloaded four GEO datasets (GSE22377, GSE38749, GSE47007 and GSE62254) to establish and
validate a prognostic two-gene signature for diffuse gastric cancer. The TGCA-STAD dataset was
used for external validation. The optimal gene signature was established by using Cox regression
analysis. Receiver operating characteristic (ROC) methodology was used to find the best prognostic
model. Gene set enrichment analysis was used to analyze the possible signaling pathways of
the two genes (MEF2C and TRIM15). Results: A total of four differently expressed genes (DEGs)
(two upregulated and two downregulated) were identified. After a comprehensive analysis, two
DEGs (MEF2C and TRIM15) were utilized to construct a prognostic model. A prognostic prediction
model was constructed according to T stage, N stage, M stage and the expression of MEF2C and
TRIM15. The area under the time-dependent receiver operator characteristic was used to evaluate the
performance of the prognosis model in the GSE62254 dataset. Conclusions: We demonstrated that
MEF2C and TRIM15 might be key genes. We also established a prognostic nomogram based on the
two-gene signature that yielded a good performance for predicting overall survival in diffuse-type
gastric cancer.

Keywords: diffuse-type gastric cancer; prognosis; nomogram; gene signature

1. Introduction

Gastric cancer (GC) is the third most common cause of cancer-related death globally,
with a low 5-year survival rate [1]. Indeed, in recent years, with the establishment of multi-
disciplinary team (MDT) care, GC treatment has substantially improved. Albeit multiple
therapeutic approaches are available currently, it is difficult to accurately determine the
optimal treatment for an individual gastric cancer (GC) patient due to clinical and genetic
heterogeneity [2]. The Lauren classification is an internationally recognized histopatho-
logical classification that sorts GC into three subtypes: intestinal type, diffuse type and
mixed type [3]. However, several studies have shown significant heterogeneity in biologi-
cal behavior among the three subtypes of gastric cancers [4–7]. Importantly, diffuse-type
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GC has been documented to exhibit more aggressive behavior and a poorer prognosis,
accounting for one-third of all GC patients [5]. This subtype of GC is more common in
women and younger patients and is more genetic-related [8]. Nowadays, the AJCC TNM
staging system is widely used to evaluate the prognosis of GC patients [9,10]. Nevertheless,
multiple studies reported that the AJCC TNM staging system sometimes exhibited poor
accuracy in predicting the prognosis of cancer patients, partly due to staging migration [11].
With the advancement of cancer molecular biology, cancer-specific gene signatures have
been harnessed to develop new prediction tools. However, there are limited prognosis-
related genes associated with diffuse-type GC. Accordingly, an effective prediction model
is urgently needed to help oncologists evaluate GC patient prognosis in the clinic.

In this study, we obtained three GC datasets with Lauren classification data from
the GEO database to identify differentially expressed genes (DEGs). Then, the DEGs
were validated with external datasets. Univariate regression analysis and Kaplan–Meier
analysis were applied to select the overall survival-related DEGs. A prognostic nomogram
incorporating prognostic gene signatures and clinical survival-related characteristics was
established to predict overall survival. In summary, we uncovered new gene signatures
for diffuse-type GC and established a nomogram that exhibited good performance in
predicting the overall survival of diffuse-type GC patients.

2. Materials and Methods
2.1. Data Collection and Processing

The gene expression profile data (GSE22377, GSE38749, GSE47007 and GSE62254)
were searched and downloaded from the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/ (accessed on 1 June 2022)) database. All included datasets
met the following criteria: (1) histopathological information with detailed records of the
Lauren classification available; (2) more than ten samples included; (3) gene expression
profile in RNA level; (4) datasets were described in English language. Exclusion criteria
included not diffuse- and intestinal-type gastric cancer; normal tissue of diffuse-type gastric
cancer patients. In addition, data of 83 diffuse-type gastric cancer patients were extracted
from TCGA-STAD dataset (https://portal.gdc.cancer.gov (accessed on 1 June 2022)) for
external validation.

Probes were matched to the gene symbols using the annotation files provided by the
manufacturer. The median expression value was calculated if multiple probes matched a
single gene. Robust multi-array average (RMA)-normalized data were log2-transformed
for further analysis. Limma package [12] in R/Bioconductor software (version 3.6.1, R
Foundation for Statistical Computing, Vienna, Austria) was applied to screen the DEGs
between diffuse-type GC and intestinal-type GC in GSE22377, GSE38749 and GSE47007
datasets. | log2Fold change (FC) | ≥ 1 and p value < 0.05 were set as the thresholds for
significant differential expression.

2.2. Validation of Expression Level of DEGs

The screened DEGs were validated with a large dataset (GSE62254). Diffuse-type and
intestinal-type histopathological data were available from the dataset. We analyzed the
expression of DEGs between these two subtypes. Finally, a boxplot was constructed to
visualize the expression level.

2.3. Kaplan–Meier Plotter Analysis

Kaplan–Meier Plotter (https://kmplot.com/analysis/ (accessed on 1 June 2022)) is
an online website that integrates RNA-sequencing data of GEO dataset and survival
information [13]. We used Gastric Cancer section of Kaplan–Meier Plotter (https://kmplot.
com/analysis/index.php?p=service&cancer=gastric (accessed on 1 June 2022)) to explore
the prognostic value of DEGs in diffuse-type gastric cancer [14].

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov
https://kmplot.com/analysis/
https://kmplot.com/analysis/index.php?p=service&cancer=gastric
https://kmplot.com/analysis/index.php?p=service&cancer=gastric
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2.4. Clinical Correlation Analysis and Biological Process Prediction

We extracted the clinical information from the GSE62254 dataset. SPSS 24.0 was used
to perform a Chi-square test between every single gene and clinical pathological charac-
teristics. A p value less than 0.05 was considered statistically significant. To understand
the biological process of the identified prognostic gene signatures, gene set enrichment
analysis (GSEA) was performed by using a Java GSEA desktop application (downloaded
from http://www.broad.mit.edu/gsea (accessed on 1 June 2022)). The GSE62254 samples
were divided into high- and low-expression groups according to the median value. The
GSE62254 dataset was analyzed with the GTM file (c2.KEGG.v6.2) to identify enriched
KEGG pathways. Four files containing expression datasets, gene sets, phenotype labels
and chip platforms were required for running GSEA. |NES| > 1 and FDR < 0.25 were
considered statistically significant.

2.5. The Establishment of the Predictive Nomogram

After testing for collinearity, prognostic gene signatures and relevant clinical param-
eters were included to establish a prognostic nomogram via a stepwise Cox regression
model to predict the 1-, 3- and 5-year overall survival of diffuse-type gastric cancer patients
in the GSE62254 dataset. A time-dependent ROC curve, Harrell’s concordance index and
a calibration curve were utilized to assess the performance of the prognostic nomogram.
Decision curve analysis was used to evaluate the net benefit of the program compared with
TNM staging alone.

Based on the prognostic nomogram, the diffuse-type gastric cancer samples from the
GSE62254 dataset were assigned to high-risk and low-risk score groups according to the
median risk score. Kaplan–Meier analysis was performed to demonstrate the relationship
between risk score and overall survival time by using the “survival” package. A log-rank
test was used to distinguish the differences between groups.

2.6. External Validation of Two-Gene Signature-Based Nomogram by TCGA Dataset

To further confirm the prediction value of the two-gene signature nomogram, we
performed ROC analysis to show the predictive performance of TNM staging and the
nomogram-based model. Kaplan–Meier analysis and the log-rank test were applied to
demonstrate the survival difference between the high-risk group and low-risk group.
Decision curve analysis was also utilized to quantify the clinical benefits of the nomogram at
different threshold probabilities. The above analyses of external validation were performed
by using the TCGA-STAD dataset.

3. Results
3.1. Identification of Diffuse-Type Gastric Cancer-Specific Gene Signatures

The flowchart of the screening process used in our study to identify diffuse-type gastric
cancer gene signatures is shown in Figure 1. The details of the GEO datasets included
in this study are displayed in Table 1. A total of 991 (GSE22377), 166 (GSE38749) and
171 (GSE47007) DEGs were identified between the diffuse-type and intestinal-type gastric
cancer datasets. Two genes (COL4A3, MEF2C) were highly expressed in diffuse-type gastric
cancer, whereas two (TRIM15, MMP12) were lowly expressed in diffuse-type gastric cancer.

http://www.broad.mit.edu/gsea
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Figure 1. Flowchart showing the process of establishing the gene signature and prognostic nomo-

gram of diffuse-type gastric cancer in this study. 

Table 1. Details of GEO datasets in this study. 
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Validation 

3.2. Validation of the Expression Level of Four Differentiated Expressed Genes 

In this study, the expression level of the four DEGs identified was validated in a large 

dataset (GSE62254). Two upregulated and one downregulated gene were identified (Figure 

2B). 

Figure 1. Flowchart showing the process of establishing the gene signature and prognostic nomogram
of diffuse-type gastric cancer in this study.

Table 1. Details of GEO datasets in this study.

Datasets Platform Case No. Sample Size Submitter Application

GSE22377
(G-U133_Plus_2)

Affymetrix Human
Genome U133 Plus 2.0 Array

43 24 intestinal
19 diffuse

Förster S, MDC,
Berlin, Germany

Identification
of DEGs

GSE38749
(HG-U133_Plus_2)
Affymetrix Human

Genome U133 Plus 2.0 Array
15

4 intestinal
10 diffuse
1 mixed

Pasini FS, Faculdade
de Medicina da USP,

São Paulo, Brazil

Identification
of DEGs

GSE47007
(HG_U95Av2)

Affymetrix Human
Genome U95 Version 2 Array

30 18 intestinal
12 diffuse

Sasaki H, National
Cancer Center Reseach
Institute, Tokyo, Japan

Identification
of DEGs

GSE62254
(HG-U133_Plus_2)
Affymetrix Human

Genome U133 Plus 2.0 Array
300

146 intestinal
134 diffuse
17 mixed

3 indeterminate

Nebozhyn M,
Merck, Inc., PA, USA Validation

3.2. Validation of the Expression Level of Four Differentiated Expressed Genes

In this study, the expression level of the four DEGs identified was validated in a
large dataset (GSE62254). Two upregulated and one downregulated gene were identified
(Figure 2B).

3.3. Clinical Correlation Analysis of Three DEGs

Detailed clinical information of 134 patients from the GSE62254 dataset was extracted.
A Chi-square test was used to evaluate the relationship between the three DEGs and clinical
pathological characteristics (Table 2). In brief, the expression level of COL4A3 and TRIM15
were significantly correlated with the T stage and age, respectively, while the expression
level of MEF2C was significantly correlated with age, T stage and TNM stage.
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Figure 2. (A) The Venn diagram shows the DEGs with upregulated genes and downregulated genes
in diffuse-type GC. (B) Expression levels of four DEGs between diffuse-type and intestinal-type
gastric cancer were validated in GSE62254 dataset.

3.4. Kaplan–Meier Analysis and Evaluation of Prognostic Factors in Diffuse-Type Gastric Cancer

The survival information of COL4A3, MEF2C and TRIM15 was freely obtained in
Kaplan–Meier Plotter. In this study, we assessed the difference between the expression level
of the three DEGs and overall survival in diffuse-type gastric cancer. Notably, in the results
of Kaplan–Meier Plotter, we used the best cutoff value of COL4A3, MEF2C and TRIM15
expression to divide diffuse-type gastric cancer patients into a high expression- and low
expression-group, respectively. It was found that the high expression of COL4A3 and
MEF2C and the low expression of TRIM15 were associated with worse OS for diffuse-type
gastric cancer patients (Figure 3). However, the false discovery rate (FDR) was 50%, 50%
and over 50% for the survival difference of COL4A3, MEF2C and TRIM15, respectively.
These FDR values were high. Thus, it made it difficult for us to evaluate the prognostic
value of these genes.
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Table 2. Stratified analysis of COL4A3, MEF2C and TRIM15 for diffuse-type gastric cancer patients
(n = 134) in terms of prognosis.

Clinical Features
COL4A3 Expression p Value MEF2C Expression p Value TRIM15 Expression p Value

High Low High Low High Low

Age ≤60 32 36 0.151 45 23 0.016 * 31 37 0.014 *
>60 23 43 30 36 44 22

Gender Male 28 32 0.234 38 22 0.122 31 29 0.366
Female 27 47 37 37 44 30

Depth of invasion T2 18 46 0.014 * 25 39 0.001 ** 40 24
T3 32 28 43 17 31 29
T4 5 5 7 3 4 6

Lymph node N0 4 4 0.178 5 3 0.33 4 4 0.678
metastasis N1 16 37 25 28 33 20

N2 18 23 27 14 22 19
N3 17 15 18 14 16 16

Distant metastasis M0 45 69 0.377 60 54 0.063 64 50 0.925
M1 10 10 15 5 11 9

AJCC stage I 1 4 0.59 2 3 0.008 ** 4 1 0.51
II 8 26 11 23 21 13
III 23 26 33 16 27 22
IV 23 23 29 17 23 23

* p value < 0.05; ** p value < 0.01.
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Figure 3. Validation of prognostic value of three genes in diffuse-type gastric cancer (n = 241) by
Kaplan–Meier Plotter.

A univariate Cox regression analysis was performed to evaluate the prognostic value
and identify the risk factors in diffuse-type gastric cancer. The results of the univariate
Cox regression analysis demonstrated that T stage (p < 0.01), N stage (p < 0.01), M stage
(p < 0.001) and the expression level of MEF2C (p < 0.01) and TRIM15 (p < 0.05) were
significantly correlated with overall survival in diffuse-type gastric cancer (Table 3).

3.5. Establishment of the Prognostic Nomogram of Diffuse-Type Gastric Cancer

The clinical information of the 134 diffuse-type gastric cancer patients from the
GSE62254 dataset was used to construct a prognostic nomogram for predicting 1-, 3-,
5-year overall survival based on a stepwise Cox regression model (Figure 4A). T stage, N
stage, M stage and the expression of TRIM15 and MEF2C were parameters included in the
nomogram. The calibration curves showed a good consistency between the actual and the
nomogram-predicted 1-, 3- and 5-year overall survival probabilities (Figure 4B). The risk
score was calculated as Formula (1):

eˆ((−0.52425 + [0.621×Expression value of MEF2C] + [(−1.2188) × Expression
value of TRIM15] + βT + βN + βM))

(1)

When T stage is T2, T3 or T4, the value of βT is 0, 0.3812 or −0.2084, respectively.
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When N stage is N0, N1, N2 or N3, the value ofβN is 0, 0.8741, 1.4293 or 2.7244, respectively.
When M stage is M0 or M1, the value of βM is 0 or 0.994, respectively.

Table 3. The univariate Cox regression analysis between three genes and other clinical characteristics
and OS in diffuse-type gastric cancer.

Characteristics HR 95% CI p Value

Age 1.005 0.987–1.023 0.617
Gender Female 1

Male 0.7712 0.495–1.203 0.252
Depth of Invasion T2 1

T3 1.906 1.181–3.078 0.008 **
T4 2.769 1.301–5.893 0.008 **

Lymph Node of
Metastasis N0 1

N1 1.488 0.346–6.398 0.593
N2 3.177 0.753–13.411 0.115
N3 11.017 2.608–46.539 0.001 **

Distant Metastasis M0 1
M1 3.677 2.172–6.224 <0.0001 ***

Gene Expression
COL4A3 expression 1.281 0.685–2.395 0.438
MEF2C expression 3.97 1.512–10.430 0.005 **
TRIM15 expression 0.2861 0.104–0.790 0.015 *

* p value < 0.05; ** p value < 0.01; *** p value < 0.001; HR, hazard ratio; CI, confidence interval.
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Figure 4. Construction and internal validation of nomogram. (A) The predictive nomogram was
established with T-stage, N-stage, M-stage and expression level of MEF2C and TRIM15 in diffuse-type
gastric cancer. (B) A comparison of predictive and actual outcome for 1-, 3- and 5-year survival
probabilities in the nomogram is demonstrated in calibration curves for internal validation.
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3.6. Evaluation the Predictive Performance of Nomogram and External Validation of Nomogram

The AUC of the predicted 1-, 3- and 5-year overall survival were 0.82, 0.84 and 0.87,
respectively (Figure 5A). When the seventh AJCC TNM stage was used, the AUC values
for the 1-, 3- and 5-year overall survival predictions were 0.79, 0.79 and 0.84, respectively
(Figure 5A). As seen in Figure 4A, the calculated overall score could estimate the survival
prognosis (1-, 3- and 5-year survival probabilities), and the C-index of our nomogram
model was 0.766 (95% CI = 0.711 ~ 0.821). The Kaplan–Meier analysis showed a significant
difference in prognostic value between the high-risk and low-risk groups (Figure 5B).
Decision curve analysis showed the effectiveness of the nomogram was better than the
seventh AJCC TNM staging system.
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Figure 5. (A) Receiver operating characteristic (ROC) curves were used to compare the predictive
ability of nomogram model and TNM stage for 1-, 3- and 5-year survival probabilities in training
set. (B) The Kaplan–Meier curve shows the high-risk group with worse prognosis in training set.
(C) Decision curve analysis of nomogram in training set for OS. (D) The ROC curves of nomogram in
external validation set (TCGA-STAD). (E) Kaplan–Meier analysis of high-risk group and low-risk
group in external validation set (TCGA-STAD). (F) Decision curve analysis of nomogram in external
validation set.

For external validation, using the TCGA-STAD dataset, the results of ROC curves,
Kaplan–Meier analysis and decision curve analysis were similar with the training set
(GSE62254). The AUC of predicted 1-, 3- and 5-year overall survival were 0.61, 0.69 and
0.77, which were better than the TNM stating system (Figure 5D) in the TCGA-STAD
dataset. Also, the patients in the low-risk group had a more favorable overall prognosis
than the high-risk group in the validation set (Figure 5E). Similarly, decision curve analysis
also demonstrated the net benefit of the nomogram was better than the TNM staging
system in the TCGA-STAD dataset (Figure 5F). Therefore, the nomogram showed better
discriminatory ability than the seventh AJCC TNM classification.
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3.7. Scatter Point

The patients were divided into two groups according to the scoring of the nomogram
(Figure 6A). We utilized a scatter plot to reveal the relationship between the level of risk
score and the overall survival of diffuse-type GC. As a result, the high-risk group exhibited
significantly poorer overall survival (Figure 6B).
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3.8. Gene Set Enrichment Analysis (GSEA)

To further investigate the molecular mechanism of MEF2C and TRIM15 in diffuse-
type gastric cancer, GSEA was conducted. The results showed high expression MEF2C
enriched in the MAPK signaling pathway (Figure 7A) and low expression TRIM15 en-
riched in glycosaminoglycan biosynthesis chondroitin sulfate (Figure 7B). In addition,
the high-risk group was compared to the low-risk group in GSEA. We demonstrated
that the high-risk group was significantly enriched in the top 13 biological pathways,
including “Regulation of actin cytoskeleton”, “Focal adhesion”, “Vasopressin regulated
water reabsorption”, “Dilated cardiomyopathy”, “Glycosaminoglycan biosynthesis chon-
droitin sulfate”, “Calcium signaling pathway”, “Notch signaling pathway”, “ECM receptor
interaction”, “Phosphatidylinositol signaling system”, “MAPK signaling pathway”, ”Hy-
pertrophic cardiomyopathy”, “Vascular smooth muscle contraction”, “FcγR-Mediated
Phagocytosis” (Supplementary Materials Figure S1).
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4. Discussion

Compared to intestinal-type gastric cancer, diffuse-type gastric cancer exhibits a more
aggressive phenotype with a relatively poor prognosis and a 5-year overall survival rate
of 32.1% [15]. It is widely acknowledged that the treatment failure of diffuse-type gastric
cancer is due to drug resistance and disease progression, including tumor recurrence and
metastasis. The prognostic model is important to clinicians to provide individualized treat-
ment by determining which patients would benefit most from a particular or a combination
of treatment approaches, including radical surgery, adjuvant chemotherapy, neoadjuvant
chemotherapy, targeted molecular medicine or immunotherapy. However, today the big
problem is that the prognostic model based on clinical characteristics and histopathologi-
cal characteristics is not accurate [16,17]. Accordingly, it is important to develop a novel
prognostic model for improving patient management by stratifying patients according to
their characteristics.

In the present study, we constructed a nomogram that incorporated a two-gene
(MEF2C and TRIM15) signature and clinicopathological parameters to assist clinicians
in determining the prognosis of individual diffuse-type GC patients. The sensitivity and
specificity of our prognostic model were more satisfying than the TNM staging system
(Figure 5). Gene set enrichment analysis showed that MEF2C and TRIM15 were closely
related to invasive and metastasis signaling pathways in diffuse-type gastric cancer. The
MAPK signaling pathway was the most significant in the high MEF2C expression group
of diffuse-type gastric cancer (Figure 7A). Moreover, the glycosaminoglycan biosynthesis
chondroitin sulfate signaling pathway was the most enriched in the low TRIM15 expres-
sion group of diffuse-type gastric cancer (Figure 7B). MEF2C upregulation and TRIM15
downregulation in diffuse-type gastric cancer were related to poor prognoses.

In recent years, multiple gene signatures, mRNAs or non-coding RNAs have been
used to evaluate the prognosis of gastric cancer patients [18–20]. Nevertheless, rare studies
have focused on the Lauren subtype-specific gene signature to evaluate the prognosis
of diffuse-type gastric cancer. Moreover, few studies have sought to combine the TNM
stage with the multi-gene signature to assess the prognosis of diffuse-type gastric cancer.
A previous study reported a three-gene signature to predict the prognosis of diffuse-
type gastric cancer [21]. However, the prognostic model only considered the three-gene
expression level, but lacked the clinical parameters of the diffuse-type gastric cancer
patients. The TNM staging system only considers tumor invasion depth, lymph node
metastasis and distant metastasis. The biological characteristics of the tumors, such as
the immune infiltration status, drug response and intracellular signal pathways are not
reflected in the TNM staging system. However, the genomic sequence of the tumor is an
effective tool to uncover heterogeneous malignance [22,23]. Several tumor biomarkers can
help guide treatment decisions, including Human Epidermal Growth Factor Receptor-2
(HER2), Programmed Cell Death-Ligand 1 (PDL1) and Vascular Endothelial Growth Factor
Receptor (VEGFR) [24–26]. Accordingly, in the current study, we identified risk factors,
including age, T stage, N stage, M stage, the expression level of TRIM15 and MEF2C and
established a prognostic model. Finally, a nomogram integrating a two-gene signature and
clinicopathologic features was constructed and yielded an accurate prediction of overall
survival. Through ROC curves, Kaplan–Meier analysis and decision curve analysis of
the external validation in the TCGA-STAD dataset, as a supplement to AJCC staging, our
two-gene signature and nomogram demonstrated a similar predictive performance with
the training set (Figure 5). Our predictive nomogram will exhibit a potential value of
diffuse-type GC in future clinical practice. Similarly, several previous studies integrated
clinical features and risk scores based on the expression level of risk genes into a novel
prognostic nomogram [27–29]. The predictive value of their integrated nomograms was
also better than using the risk factor alone. These studies and our present study have a
certain reference significance for future clinical research.

MEF2C and TRIM15 have previously been reported to be associated with gastric cancer.
Interestingly, Myocyte Enhancer Factor 2C (MEF2C) has been documented in pathways of
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organelle biogenesis and maintenance and transcriptional misregulation in cancer, which
involved DNA-binding transcription factor activity and protein heterodimerization activity.
MEF2C has been associated with DNA methylation and enhanced PD-L1 expression in
gastric cancer [30,31]. Recent studies have also shown that MEF2C plays an important role
in myocilin mediating cancer-induced muscle wasting and cachexia in cancer patients [32]
and regulates chemotherapeutic resistance [33] and the disease progression of acute myeloid
leukemia [34]. TRIM15 is a member of the tripartite motif (TRIM) family. The protein
encoded by TRIM15 has a TRIM motif, including three zinc-binding domains, a RING, a
B-box type 1, a B-box type 2 and a coiled-coil region. However, the biological function of
TRIM15 remains unknown. Our GSEA results showed that TRIM15 was correlated with
the glycosaminoglycan biosynthesis chondroitin sulfate signaling pathway in diffuse-type
gastric cancer. Importantly, a recent study has found that the expression of TRIM15 is an
independent risk factor of prognosis in gastric cancer patients [35]. However, the roles of
the MEF2C and TRIM15 genes in diffuse-type gastric cancer are still unclear. Our current
study disclosed that MEF2C and TRIM15 could promote invasion and metastasis through
cancer-related signaling pathways: the MEF2C-activated MAPK signaling pathway and the
TRIM15-activated glycosaminoglycan biosynthesis chondroitin sulfate signaling pathway
(Figure 7). Moreover, our studies revealed poor prognoses associated with upregulated
MEF2C and downregulated TRIM15 expression in diffuse-type gastric cancer. Accordingly,
the present research revealed the roles of these two genes in diffuse-type gastric cancer
and established a risk model to complement the AJCC staging system to improve the
outcomes of diffuse-type gastric cancer. However, further in vivo studies are needed to
explore the molecular mechanism underlying the oncological function of these two genes
in diffuse-type gastric cancer.

This study contains several limitations. First, our study was based on RNA sequence
data rather than proteomics, which could have affected the accuracy of our prediction
model. Accordingly, the expression of these two genes should be analyzed in another
study with a large sample of diffuse-type gastric cancer patients to validate the predictive
performance of our model. Furthermore, it may be hard to promote the utilization of
multi-genome sequencing during clinical practice due to its high price and practicability.
With the development of sequencing technology and precision medicine, the identified
two-gene signature will be clinically feasible. Moreover, our predictive model should be
externally validated with another large sample of diffuse-type gastric cancer patients.

5. Conclusions

In summary, we constructed a nomogram that incorporated a two-gene signature
and clinicopathological parameters to assist clinicians in determining the prognosis of
individual GC patients. Our nomogram is simple to use and can be harnessed to provide
optimal treatment and make medical decisions. To the best of our knowledge, the two-gene
prognostic signature described and the nomogram constructed have not been reported
previously. The current study provides a new perspective of the molecular mechanisms
underlying prognosis prediction in diffuse-type gastric cancer. In addition, MEF2C and
TRIM15 were obtained by a pooled analysis of multiple datasets and are accordingly highly
reliable. Importantly, these two genes may be potential molecular targets for the treatment
of diffuse-type gastric cancer.
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