Is an Endorectal Balloon Beneficial for Rectal Sparing after Spacer Implantation in Prostate Cancer Patients Treated with Hypofractionated Intensity-Modulated Proton Beam Therapy? A Dosimetric and Radiobiological Comparison Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. CT-MRI Simulation
2.2. Target Volumes and OARs Delineation
2.3. SIB-IMPT Planning Process
2.4. DVH Analysis and Rectal NTCP Calculation
- For the whole rectum: RV (rectal volume in cc), Dmax, Dmean, Dmedian, and RVxGy = percentage of rectal volume received X dose in Gy (RV72Gy, RV70Gy, RV65Gy, RV60Gy, RV55Gy, RV50Gy, RV40Gy, RV30Gy, RV20Gy, and RV10Gy).
- For the anterior rectum: Dmax and Ant-RVxGy = percentage of anterior rectal volume received x dose in Gy.
- For the posterior rectum: Dmax and Post-RVxGy = percentage of posterior rectal volume received x dose in Gy.
3. Results
3.1. DVH Analysis
3.2. NTCP Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalski, J.M.; Moughan, J.; Purdy, J.; Bosch, W.; Bruner, D.W.; Bahary, J.P.; Lau, H.; Duclos, M.; Parliament, M.; Morton, G.; et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e180039. [Google Scholar] [CrossRef]
- Kuban, D.A.; Tucker, S.L.; Dong, L.; Starkschall, G.; Huang, E.H.; Cheung, M.R.; Lee, A.K.; Pollack, A. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 67–74. [Google Scholar] [CrossRef]
- Zietman, A.L.; Bae, K.; Slater, J.D.; Shipley, W.U.; Efstathiou, J.A.; Coen, J.J.; Bush, D.A.; Lunt, M.; Spiegel, D.Y.; Skowronski, R.; et al. Randomized Trial Comparing Conventional-Dose With High-Dose Conformal Radiation Therapy in Early-Stage Adenocarcinoma of the Prostate: Long-Term Results From Proton Radiation Oncology Group/American College of Radiology 95-09. J. Clin. Oncol. 2010, 28, 1106–1111. [Google Scholar] [CrossRef] [Green Version]
- Heemsbergen, W.D.; Al-Mamgani, A.; Slot, A.; Dielwart, M.F.; Lebesque, J.V. Long-term results of the Dutch randomized prostate cancer trial: Impact of dose-escalation on local, biochemical, clinical failure, and survival. Radiother. Oncol. 2014, 110, 104–109. [Google Scholar] [CrossRef]
- Beckendorf, V.; Guerif, S.; Le Prisé, E.; Cosset, J.-M.; Bougnoux, A.; Chauvet, B.; Salem, N.; Chapet, O.; Bourdain, S.; Bachaud, J.-M.; et al. 70 Gy Versus 80 Gy in Localized Prostate Cancer: 5-Year Results of GETUG 06 Randomized Trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1056–1063. [Google Scholar] [CrossRef]
- Dearnaley, D.P.; Jovic, G.; Syndikus, I.; Khoo, V.; Cowan, R.A.; Graham, J.D.; Aird, E.G.; Bottomley, D.; Huddart, R.A.; Jose, C.C.; et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: Long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2014, 15, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Peeters, S.T.; Heemsbergen, W.D.; Koper, P.C.; Van Putten, W.L.; Slot, A.; Dielwart, M.F.; Bonfrer, J.M.; Incrocci, L.; Lebesque, J.V. Dose-Response in Radiotherapy for Localized Prostate Cancer: Results of the Dutch Multicenter Randomized Phase III Trial Comparing 68 Gy of Radiotherapy With 78 Gy. J. Clin. Oncol. 2006, 24, 1990–1996. [Google Scholar] [CrossRef]
- Dearnaley, D.P.; Sydes, M.R.; Graham, J.D.; Aird, E.G.; Bottomley, D.; Cowan, R.A.; Huddart, R.A.; Jose, C.C.; Matthews, J.H.; Millar, J.; et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: First results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2007, 8, 475–487. [Google Scholar] [CrossRef]
- Delobel, J.-B.; Gnep, K.; Ospina, J.D.; Beckendorf, V.; Chira, C.; Zhu, J.; Bossi, A.; Messai, T.; Acosta, O.; Castelli, J.; et al. Nomogram to predict rectal toxicity following prostate cancer radiotherapy. PLoS ONE 2017, 12, e0179845. [Google Scholar] [CrossRef] [Green Version]
- Vargas, C.; Martinez, A.; Kestin, L.L.; Yan, D.; Grills, I.; Brabbins, D.S.; Lockman, D.M.; Liang, J.; Gustafson, G.S.; Chen, P.Y.; et al. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 1297–1308. [Google Scholar] [CrossRef]
- Kupelian, P.A.; Reddy, C.A.; Carlson, T.P.; Willoughby, T.R. Dose/volume relationship of late rectal bleeding after external beam radiotherapy for localized prostate cancer: Absolute or relative rectal volume? Cancer J. 2002, 8, 62–66. [Google Scholar] [CrossRef]
- Marzi, S.; Arcangeli, G.; Saracino, B.; Petrongari, M.G.; Bruzzaniti, V.; Iaccarino, G.; Landoni, V.; Soriani, A.; Benassi, M. Relationships Between Rectal Wall Dose–Volume Constraints and Radiobiologic Indices of Toxicity for Patients With Prostate Cancer. Int. J. Radiat. Oncol. 2007, 68, 41–49. [Google Scholar] [CrossRef]
- Ishikawa, H.; Tsuji, H.; Kamada, T.; Hirasawa, N.; Yanagi, T.; Mizoe, J.-E.; Akakura, K.; Suzuki, H.; Shimazaki, J.; Tsujii, H. Risk factors of late rectal bleeding after carbon ion therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Wachter, S.; Gerstner, N.; Goldner, G.; Pötzi, R.; Wambersie, A.; Pötter, R. Rectal sequelae after conformal radiotherapy of prostate cancer: Dose-volume histograms as predictive factors. Radiother. Oncol. 2001, 59, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Afkhami Ardekani, M.; Ghaffari, H.; Navaser, M.; Zoljalali Moghaddam, S.H.; Refahi, S. Effectiveness of rectal displacement devices in managing prostate motion: A systematic review. Strahlenther. Onkol. 2021, 197, 97–115. [Google Scholar] [CrossRef] [PubMed]
- van Lin, E.N.; Hoffmann, A.L.; van Kollenburg, P.; Leer, J.W.; Visser, A.G. Rectal wall sparing effect of three different endorectal balloons in 3D conformal and IMRT prostate radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 565–576. [Google Scholar] [CrossRef]
- Wong, A.T.; Schreiber, D.; Agarwal, M.; Polubarov, A.; Schwartz, D. Impact of the use of an endorectal balloon on rectal dosimetry during stereotactic body radiation therapy for localized prostate cancer. Pract. Radiat. Oncol. 2016, 6, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Teh, B.S.; Lewis, G.D.; Mai, W.; Pino, R.; Ishiyama, H.; Butler, E.B. Long-term outcome of a moderately hypofractionated, intensity-modulated radiotherapy approach using an endorectal balloon for patients with localized prostate cancer. Cancer Commun. 2018, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wortel, R.C.; Oomen-de Hoop, E.; Heemsbergen, W.D.; Pos, F.J.; Incrocci, L. Moderate Hypofractionation in Intermediate- and High-Risk, Localized Prostate Cancer: Health-Related Quality of Life From the Randomized, Phase 3 HYPRO Trial. Int. J. Radiat. Oncol. Biol. Phys. 2018, 103, 823–833. [Google Scholar] [CrossRef]
- Deville, C.; Both, S.; Bui, V.; Hwang, W.-T.; Tan, K.-S.; Schaer, M.; Tochner, Z.; Vapiwala, N. Acute gastrointestinal and genitourinary toxicity of image-guided intensity modulated radiation therapy for prostate cancer using a daily water-filled endorectal balloon. Radiat. Oncol. 2012, 7, 76. [Google Scholar] [CrossRef]
- Vlachaki, M.T.; Teslow, T.N.; Ahmad, S. Impact of Endorectal Balloon in the Dosimetry of Prostate and Surrounding Tissues in Prostate Cancer Patients Treated with IMRT. Med. Dosim. 2007, 32, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Smeenk, R.J.; van Lin, E.N.; van Kollenburg, P.; Kunze-Busch, M.; Kaanders, J.H. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy. Radiother. Oncol. 2009, 93, 131–136. [Google Scholar] [CrossRef]
- Patel, R.R.; Orton, N.; Tomé, W.A.; Chappell, R.; Ritter, M.A. Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer. Radiother. Oncol. 2003, 67, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.; Mahajan, C.; Fryer, A.; Indelicato, D.; Henderson, R.H.; McKenzie, C.; Horne, D.; Chellini, A.; Lawlor, P.; Li, Z.; et al. Rectal Dose–Volume Differences Using Proton Radiotherapy and a Rectal Balloon or Water Alone for the Treatment of Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Wootton, L.S.; Kudchadker, R.J.; Beddar, A.S.; Lee, A.K. Effectiveness of a novel gas-release endorectal balloon in the removal of rectal gas for prostate proton radiation therapy. J. Appl. Clin. Med. Phys. 2012, 13, 190–197. [Google Scholar] [CrossRef]
- Hedrick, S.G.; Fagundes, M.; Robison, B.; Blakey, M.; Renegar, J.; Artz, M.; Schreuder, N. A comparison between hydrogel spacer and endorectal balloon: An analysis of intrafraction prostate motion during proton therapy. J. Appl. Clin. Med. Phys. 2017, 18, 106–112. [Google Scholar] [CrossRef]
- Agren Cronqvist, A.K.; Kallman, P.; Turesson, I.; Brahme, A. Volume and heterogeneity dependence of the dose-response relationship for head and neck tumours. Acta Oncol. 1995, 34, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Vanneste, B.G.L.; van Wijk, Y.; Lutgens, L.C.; Van Limbergen, E.J.; van Lin, E.N.; van de Beek, K.; Lambin, P.; Hoffmann, A.L. Dynamics of rectal balloon implant shrinkage in prostate VMAT: Influence on anorectal dose and late rectal complication risk. Strahlenther. Onkol. 2018, 194, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Qamhiyeh, S.; Geismar, D.; Pöttgen, C.; Stuschke, M.; Farr, J. The effects of motion on the dose distribution of proton radiotherapy for prostate cancer. J. Appl. Clin. Med. Phys. 2012, 13, 3–11. [Google Scholar] [CrossRef]
- Rancati, T.; Fiorino, C.; Gagliardi, G.; Cattaneo, G.M.; Sanguineti, G.; Borca, V.C.; Cozzarini, C.; Fellin, G.; Foppiano, F.; Girelli, G.; et al. Fitting late rectal bleeding data using different NTCP models: Results from an Italian multi-centric study (AIROPROS0101). Radiother. Oncol. 2004, 73, 21–32. [Google Scholar] [CrossRef]
- Dale, E.; Hellebust, T.P.; Skjønsberg, A.; Høgberg, T.; Olsen, D.R. Modeling normal tissue complication probability from repetitive computed tomography scans during fractionated high-dose-rate brachytherapy and external beam radiotherapy of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 963–971. [Google Scholar] [CrossRef]
- Elsayed, H.; Bolling, T.; Moustakis, C.; Müller, S.-B.; Schüller, P.; Ernst, I.; Willich, N.; Könemann, S. Organ Movements and Dose Exposures in Teletherapy of Prostate Cancer using a Rectal Balloon. Strahlenther. Onkol. 2007, 183, 617–624. [Google Scholar] [CrossRef]
- Hille, A.; Schmidberger, H.; Töws, N.; Weiss, E.; Vorwerk, H.; Hess, C.F. The Impact of Varying Volumes in Rectal Balloons on Rectal Dose Sparing in Conformal Radiation Therapy of Prostate Cancer. A prospective three-dimensional analysis. Strahlenther. Onkol. 2005, 181, 709–716. [Google Scholar] [CrossRef]
- Wachter, S.; Gerstner, N.; Dorner, D.; Goldner, G.; Colotto, A.; Wambersie, A.; Pötter, R. The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 91–100. [Google Scholar] [CrossRef]
- Storey, M.R.; Pollack, A.; Zagars, G.; Smith, L.; Antolak, J.; Rosen, I. Complications from radiotherapy dose escalation in prostate cancer: Preliminary results of a randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 635–642. [Google Scholar] [CrossRef]
- Huang, E.H.; Pollack, A.; Levy, L.; Starkschall, G.; Dong, L.; Rosen, I.; Kuban, D.A. Late rectal toxicity: Dose-volume effects of conformal radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 1314–1321. [Google Scholar] [CrossRef]
- Zapatero, A.; García-Vicente, F.; Modolell, I.; Alcántara, P.; Floriano, A.; Cruz-Conde, A.; Torres, J.J.; Pérez-Torrubia, A. Impact of mean rectal dose on late rectal bleeding after conformal radiotherapy for prostate cancer: Dose–volume effect. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 1343–1351. [Google Scholar] [CrossRef]
- Tucker, S.L.; Dong, L.; Cheung, R.; Johnson, J.; Mohan, R.; Huang, E.H.; Liu, H.H.; Thames, H.D.; Kuban, D. Comparison of rectal dose–wall histogram versus dose–volume histogram for modeling the incidence of late rectal bleeding after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1589–1601. [Google Scholar] [CrossRef]
- Jackson, A.; Skwarchuk, M.W.; Zelefsky, M.J.; Cowen, D.M.; Venkatraman, E.S.; Levegrun, S.; Burman, C.M.; Kutcher, G.J.; Fuks, Z.; Liebel, S.A.; et al. Late rectal bleeding after conformal radiotherapy of prostate cancer. II. Volume effects and dose-volume histograms. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 685–698. [Google Scholar] [CrossRef]
Study Group | Mean | SD | Range | Diff (Δ) d | p Value | ||
---|---|---|---|---|---|---|---|
Mean | SD | ||||||
RV a | non-ERB ERB | 90.79 228.14 | 42.34 31.65 | 42.08–183.51 179.79–267.54 | 137.35 | 32.58 | 0.000 |
Dmax b | non-ERB ERB | 73.62 72.98 | 0.77 0.55 | 72.6–74.8 72.6–74.4 | 0.64 | 0.85 | 0.103 |
Dmean b | non-ERB ERB | 31.42 22.91 | 4.98 3.0 | 24.20–42.29 18.79–27.53 | 8.51 | 5.25 | 0.000 |
Dmedian b | non-ERB ERB | 26.34 10.57 | 9.66 5.89 | 13.06–45.25 4.39–21.52 | 15.76 | 11.11 | 0.001 |
D1 b | non-ERB ERB | 72.49 72.38 | 0.53 0.16 | 71.59–73.29 72.21–72.78 | 0.11 | 0.52 | 0.363 |
RV72Gy c | non-ERB ERB | 3.42 3.80 | 1.73 1.07 | 0.34–5.60 1.96–5.30 | −0.38 | 2.24 | 0.734 |
RV70Gy c | non-ERB ERB | 7.90 7.32 | 3.4 2.03 | 2.12–13.29 3.89–9.84 | 0.58 | 4.42 | 0.597 |
RV65Gy c | non-ERB ERB | 13.98 12.31 | 4.3 2.54 | 5.93–21.28 7.66–15.98 | 1.66 | 5.45 | 0.257 |
RV60Gy c | non-ERB ERB | 18.74 17.64 | 4.85 5.62 | 9.63–27.32 11.17–31.51 | 1.10 | 6.99 | 0.345 |
RV55Gy c | non-ERB ERB | 23.37 19.35 | 6.37 3.15 | 13.11–37.72 14.85–23.96 | 4.02 | 8.15 | 0.082 |
RV50Gy c | non-ERB ERB | 26.87 22.29 | 5.59 3.43 | 16.49–37.51 17.52–27.51 | 4.58 | 7.37 | 0.034 |
RV40Gy c | non-ERB ERB | 34.50 27.68 | 6.19 3.74 | 23.45–46.37 22.36–33.83 | 6.82 | 8.02 | 0.008 |
RV30Gy c | non-ERB ERB | 42.67 33.10 | 6.60 4.4 | 32.64–54.68 27.05–40.37 | 9.57 | 8.23 | 0.003 |
RV20Gyc | non-ERB ERB | 52.33 39.46 | 7.75 5.09 | 42.85–65.88 32.58–47.58 | 12.87 | 8.75 | 0.001 |
RV10Gy c | non-ERB ERB | 64.57 48.77 | 8.55 6.13 | 54.38–81.85 40.99–57.68 | 15.78 | 8.91 | 0.001 |
Study Group | Mean | SD | Range | Diff (Δ) c | p Value | ||
---|---|---|---|---|---|---|---|
Mean | SD | ||||||
Ant-Dmax a | non-ERB ERB | 73.62 72.98 | 0.77 0.545 | 72.6–74.8 72.6–74.4 | 0.64 | 0.85 | 0.103 |
Ant-D1 a | non-ERB ERB | 72.77 72.56 | 0.72 0.23 | 71.31–73.73 72.30–73.01 | 0.21 | 0.69 | 0.326 |
Ant-RV72Gy b | non-ERB ERB | 5.99 7.13 | 3.17 2.1 | 0.66–12.32 3.78–10.29 | −1.14 | 3.71 | 0.290 |
Ant-RV70Gy b | non-ERB ERB | 14.44 15.39 | 5.36 3.98 | 4.98–21.80 8.28–20.98 | −0.95 | 6.49 | 0.705 |
Ant-RV65Gy b | non-ERB ERB | 22.84 24.05 | 5.75 5.7 | 11.39–31.05 14.79–31.02 | −1.22 | 8.41 | 0.940 |
Ant-RV60Gy b | non-ERB ERB | 31.74 30.81 | 7.51 6.61 | 18.49–41.66 21.55–39.18 | 0.93 | 9.11 | 0.545 |
Ant-RV55Gy b | non-ERB ERB | 38.66 37.47 | 8.32 7.16 | 25.13–48.53 28.65–48.53 | 1.19 | 10.52 | 0.734 |
Ant-RV50Gy b | non-ERB ERB | 47.34 43.46 | 7.41 7.29 | 31.36–56.39 34.42–54.28 | 3.88 | 11.14 | 0.226 |
Ant-RV40Gy b | non-ERB ERB | 59.11 52.51 | 7.64 8.60 | 42.45–68.87 42.48–65.22 | 6.6 | 11.88 | 0.174 |
Ant-RV30Gy b | non-ERB ERB | 69.25 61.60 | 7.9 9.05 | 52.49–78.39 50.20–76.17 | 7.65 | 12.21 | 0.059 |
Ant-RV20Gy b | non-ERB ERB | 78.84 70.53 | 9.65 9.03 | 61.83–89.52 58.28–84.13 | 8.31 | 12.81 | 0.059 |
Ant-RV10Gy b | non-ERB ERB | 85.2 81.03 | 9.44 7.9 | 71.7−96.11 68.21−91.01 | 4.17 | 11.75 | 0.174 |
Study Group | Mean | SD | Range | Diff (Δ) c | p Value | ||
---|---|---|---|---|---|---|---|
Mean | SD | ||||||
Dmax a | non-ERB ERB | 60.24 56.41 | 9.16 10.54 | 47.60−72.60 42.80−70.60 | 3.83 | 12.41 | 0.406 |
D1 a | non-ERB ERB | 37.36 72.56 | 11.82 0.23 | 23.66−57.94 72.3−73.01 | 11.11 | 13.93 | 0.059 |
Post-RV72Gy b | non-ERB ERB | 0.11 0 | 0.35 0 | 0−1.14 0 | 0.11 | 0.36 | 0.317 |
Post-RV70Gy b | non-ERB ERB | 0.51 0 | 1.6 0 | 0−5.06 0−0.02 | 0.51 | 1.6 | 0.503 |
Post-RV65Gy b | non-ERB ERB | 1.08 0.03 | 3.31 0.07 | 0−10.49 0–0.22 | 1.06 | 3.29 | 0.829 |
Post-RV60Gy b | non-ERB ERB | 1.67 0.11 | 4.5 0.23 | 0–14.4 0–0.71 | 1.56 | 4.44 | 0.518 |
Post-RV55Gy b | non-ERB ERB | 2.38 0.24 | 5.47 0.46 | 0–17.67 0–1.45 | 2.14 | 5.39 | 0.435 |
Post-RV50Gy b | non-ERB ERB | 3.01 0.451 | 6.39 0.70 | 0–20.57 0–2.25 | 2.55 | 6.25 | 0.286 |
Post-RV40Gy b | non-ERB ERB | 4.98 1.148 | 8.05 1.309 | 0.2–27.09 0.06–4.03 | 3.83 | 7.79 | 0.069 |
Post-RV30Gy b | non-ERB ERB | 11.59 2.7 | 10.90 2.26 | 0.88–36.46 0.33–6.68 | 8.86 | 9.92 | 0.019 |
Post-RV20Gy b | non-ERB ERB | 21.92 6.165 | 14.84 3.711 | 3.8–349.00 1.59–10.87 | 15.76 | 12.94 | 0.003 |
Post-RV10Gy b | non-ERB ERB | 39.54 13.88 | 17.17 6.695 | 14.87–71.37 3.97–22.05 | 25.66 | 14.21 | 0.001 |
NTCP a | Study Group | Mean | SD | Range | Diff (Δ) b | p Value | |
---|---|---|---|---|---|---|---|
Mean | SD | ||||||
Late rectal bleeding ≥ 2 | non-ERB ERB | 2.6 3.1 | 0.97 1.1 | 2–5 1–5 | –0.5 | 1.18 | 0.150 |
Necrosis/stenosis | non-ERB ERB | 5.5 5.6 | 1.78 2.22 | 1–7 1–8 | –0.1 | 2.02 | 0.728 |
Late rectal toxicity ≥ 3 | non-ERB ERB | 13.1 13.3 | 1.37 3.02 | 11–15 7–17 | –0.2 | 3.82 | 0.593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad Khalil, D.; Wulff, J.; Jazmati, D.; Geismar, D.; Bäumer, C.; Kramer, P.-H.; Steinmeier, T.; Schleithoff, S.S.; Tschirdewahn, S.; Hadaschik, B.; et al. Is an Endorectal Balloon Beneficial for Rectal Sparing after Spacer Implantation in Prostate Cancer Patients Treated with Hypofractionated Intensity-Modulated Proton Beam Therapy? A Dosimetric and Radiobiological Comparison Study. Curr. Oncol. 2023, 30, 758-768. https://doi.org/10.3390/curroncol30010058
Ahmad Khalil D, Wulff J, Jazmati D, Geismar D, Bäumer C, Kramer P-H, Steinmeier T, Schleithoff SS, Tschirdewahn S, Hadaschik B, et al. Is an Endorectal Balloon Beneficial for Rectal Sparing after Spacer Implantation in Prostate Cancer Patients Treated with Hypofractionated Intensity-Modulated Proton Beam Therapy? A Dosimetric and Radiobiological Comparison Study. Current Oncology. 2023; 30(1):758-768. https://doi.org/10.3390/curroncol30010058
Chicago/Turabian StyleAhmad Khalil, Dalia, Jörg Wulff, Danny Jazmati, Dirk Geismar, Christian Bäumer, Paul-Heinz Kramer, Theresa Steinmeier, Stefanie Schulze Schleithoff, Stephan Tschirdewahn, Boris Hadaschik, and et al. 2023. "Is an Endorectal Balloon Beneficial for Rectal Sparing after Spacer Implantation in Prostate Cancer Patients Treated with Hypofractionated Intensity-Modulated Proton Beam Therapy? A Dosimetric and Radiobiological Comparison Study" Current Oncology 30, no. 1: 758-768. https://doi.org/10.3390/curroncol30010058
APA StyleAhmad Khalil, D., Wulff, J., Jazmati, D., Geismar, D., Bäumer, C., Kramer, P. -H., Steinmeier, T., Schleithoff, S. S., Tschirdewahn, S., Hadaschik, B., & Timmermann, B. (2023). Is an Endorectal Balloon Beneficial for Rectal Sparing after Spacer Implantation in Prostate Cancer Patients Treated with Hypofractionated Intensity-Modulated Proton Beam Therapy? A Dosimetric and Radiobiological Comparison Study. Current Oncology, 30(1), 758-768. https://doi.org/10.3390/curroncol30010058