Molecular Profile and Matched Targeted Therapy for Advanced Breast Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Testa, U.; Castelli, G.; Pelosi, E. Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Med. Sci. 2020, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.-J. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Hempel, D.; Ebner, F.; Garg, A.; Trepotec, Z.; Both, A.; Stein, W.; Gaumann, A.; Güttler, L.; Janni, W.; DeGregorio, A.; et al. Real world data analysis of next generation sequencing and protein expression in metastatic breast cancer patients. Sci. Rep. 2020, 10, 10459. [Google Scholar] [CrossRef]
- Kimbung, S.; Loman, N.; Hedenfalk, I. Clinical and molecular complexity of breast cancer metastases. Semin Cancer Biol. 2015, 35, 85–95. [Google Scholar] [CrossRef] [Green Version]
- De Mattos-Arruda, L.; Sammut, S.-J.; Ross, E.M.; Bashford-Rogers, R.; Greenstein, E.; Markus, H.; Morganella, S.; Teng, Y.; Maruvka, Y.; Pereira, B.; et al. The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer. Cell Rep. 2019, 27, 2690–2708.e10. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Incorvaia, L.; Capoluongo, E.; Tagliaferri, P.; Galvano, A.; Del Re, M.; Malapelle, U.; Chiari, R.; Conte, P.; Danesi, R.; et al. The challenge of the Molecular Tumor Board empowerment in clinical oncology practice: A Position Paper on behalf of the AIOM- SIAPEC/IAP-SIBioC-SIC-SIF-SIGU-SIRM Italian Scientific Societies. Crit. Rev. Oncol. Hematol. 2022, 169, 103567. [Google Scholar] [CrossRef]
- Tamborero, D.; Dienstmann, R.; Rachid, M.H.; Boekel, J.; Lopez-Fernandez, A.; Jonsson, M.; Razzak, A.; Braña, I.; De Petris, L.; Yachnin, J.; et al. Author Correction: The Molecular Tumor Board Portal supports clinical decisions and automated reporting for precision oncology. Nat. Cancer 2022, 3, 649. [Google Scholar] [CrossRef]
- Marchetti, A.; Barbareschi, M.; Barberis, M.; Buglioni, S.; Buttitta, F.; Fassan, M.; Fontanini, G.; Marchiò, C.; Papotti, M.; Pruneri, G.; et al. Real-World Data on NGS Diagnostics: A survey from the Italian Society of Pathology (SIAPeC) NGS Network. Pathologica 2021, 113, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.; Biffoni, M.; Popoli, P.; Marchetti, A.; Marchetti, P.; Martini, N.; Normanno, N. Molecular tests and target therapies in oncology: Recommendations from the Italian workshop. Future Oncol. 2021, 17, 3529–3539. [Google Scholar] [CrossRef] [PubMed]
- Koopman, B.; Groen, H.J.; Ligtenberg, M.J.; Grünberg, K.; Monkhorst, K.; de Langen, A.J.; Boelens, M.C.; Paats, M.S.; von der Thüsen, J.H.; Dinjens, W.N.; et al. Multicenter Comparison of Molecular Tumor Boards in The Netherlands: Definition, Composition, Methods, and Targeted Therapy Recommendations. Oncologist 2021, 26, e1347–e1358. [Google Scholar] [CrossRef]
- Jacobs, A.T.; Castaneda-Cruz, D.M.; Rose, M.M.; Connelly, L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem. Pharmacol. 2022, 204, 115209. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.E.; Tolaney, S.M. Role of Immunotherapy in Triple-Negative Breast Cancer. J. Natl. Compr. Canc. Netw. 2020, 18, 479–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortés, J.; Kim, S.-B.; Chung, W.-P.; Im, S.-A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.-M.; Petry, V.; Chung, C.-F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N. Engl. J. Med. 2022, 386, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Garber, J.E. PARP inhibition in breast cancer: Progress made and future hopes. NPJ Breast Cancer 2022, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.T.; Gray, R.; Chen, A.; Li, S.; Patton, D.; Hamilton, S.R.; Williams, P.M.; Mitchell, E.P.; Iafrate, A.J.; Sklar, J.; et al. The Molecular Analysis for Therapy Choice (NCI-MATCH) Trial: Lessons for Genomic Trial Design. J. Natl. Cancer Inst. 2020, 112, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.C.; Kingston, B.; Kilburn, L.S.; Kernaghan, S.; Wardley, A.M.; Macpherson, I.R.; Baird, R.D.; Roylance, R.; Stephens, P.; Oikonomidou, O.; et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): A multicentre, multicohort, phase 2a, platform trial. Lancet Oncol. 2020, 21, 1296–1308. [Google Scholar] [CrossRef]
- Bruzas, S.; Kuemmel, S.; Harrach, H.; Breit, E.; Ataseven, B.; Traut, A.; Rüland, A.; Kostara, A.; Chiari, O.; Dittmer-Grabowski, C.; et al. Next-Generation Sequencing-Directed Therapy in Patients with Metastatic Breast Cancer in Routine Clinical Practice. Cancers 2021, 13, 4564. [Google Scholar] [CrossRef]
- Sturgill, E.G.; Misch, A.; Lachs, R.; Jones, C.C.; Schlauch, D.; Jones, S.F.; Shastry, M.; Yardley, D.A.; Burris, H.A.; Spigel, D.R.; et al. Next-Generation Sequencing of Patients with Breast Cancer in Community Oncology Clinics. JCO Precis Oncol. 2021, 5, 1297–1311. [Google Scholar] [CrossRef]
- Frampton, G.M.; Fichtenholtz, A.; A Otto, G.; Wang, K.; Downing, S.R.; He, J.; Schnall-Levin, M.; White, J.; Sanford, E.; An, P.; et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 2013, 31, 1023–1031. [Google Scholar] [CrossRef]
- Marchesi, E.; Monti, M.; Nanni, O.; Bassi, L.; Piccinni-Leopardi, M.; Cagnazzo, C. New requirements for phase I trials: A challenge for Italian clinical research. Tumori 2018, 104, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Cagnazzo, C.; Nanni, O.; Arizio, F.; Franchina, V.; Cenna, R.; Tabaro, G.; Vannini, F.; Procopio, G.; Gori, S.; Di Costanzo, A. Phase I studies: A test bench for Italian clinical research. Tumori 2020, 106, 295–300. [Google Scholar] [CrossRef]
- Ying, J.; Yang, L.; Yin, J.C.; Xia, G.; Xing, M.; Chen, X.; Pang, J.; Wu, Y.; Bao, H.; Wu, X.; et al. Additive effects of variants of unknown significance in replication repair-associated DNA polymerase genes on mutational burden and prognosis across diverse cancers. J. Immunother. Cancer 2021, 9, e002336. [Google Scholar] [CrossRef]
- Domchek, S.M.; Postel-Vinay, S.; Im, S.-A.; Park, Y.H.; Delord, J.-P.; Italiano, A.; Alexandre, J.; You, B.; Bastian, S.; Krebs, M.G.; et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): An open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020, 21, 1155–1164. [Google Scholar] [CrossRef]
- Bertheau, P.; Lehmann-Che, J.; Varna, M.; Dumay, A.; Poirot, B.; Porcher, R.; Turpin, E.; Plassa, L.-F.; de Roquancourt, A.; Bourstyn, E.; et al. p53 in breast cancer subtypes and new insights into response to chemotherapy. Breast 2013, 22 (Suppl. 2), S27–S29. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulou, A.; Terpos, E.; Chatzinikolaou, S.; Apostolidou, K.; Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Dimopoulos, M.-A.; Zagouri, F. TP53 mutations determined by targeted NGS in breast cancer: A case-control study. Oncotarget 2021, 12, 2206–2214. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Navas, M.C.; García-Díaz, A.; Molina-Vallejo, M.P.; González-Martínez, C.; Lucena, M.A.; Cañas-García, I.; Bayarri, C.; Delgado, J.R.; González, E.; Lorente, J.A.; et al. The Polemic Diagnostic Role of TP53 Mutations in Liquid Biopsies from Breast, Colon and Lung Cancers. Cancers 2020, 12, 3343. [Google Scholar] [CrossRef] [PubMed]
- Meegdes, M. Real-world time trends in overall survival, treatments and patient characteristics in HR+/HER2− metastatic breast cancer: An observational study of the SONABRE Registry. Lancet Reg. Health Eur. 2023, 100573. [Google Scholar] [CrossRef]
- Smith, M.L. NGS testing use and results: A survey of U.S. oncologists. J. Clin. Oncol. 2020, 38, e19145. [Google Scholar] [CrossRef]
- Freedman, A.N.; Klabunde, C.N.; Wiant, K.; Enewold, L.; Gray, S.; Filipski, K.K.; Keating, N.L.; Leonard, D.G.; Lively, T.; McNeel, T.S.; et al. Use of Next-Generation Sequencing Tests to Guide Cancer Treatment: Results from a Nationally Representative Survey of Oncologists in the United States. JCO Precis Oncol. 2018, 2. [Google Scholar] [CrossRef]
N = 38 (%) | |
---|---|
Gender female male | 38 (100%) - |
Ethnicity white other | 37 (97%) 1 (3%) |
Age at NGS testing median, IQR | 52, 48–59 |
Histology HR+/HER2− HR+/HER2+ HR−/HER2+ TNBC other | 20 (53%) 1 (2.6%) 1 (2.6%) 15 (39%) 1 (2.6%) |
N metastatic sites mean (min–max) | 3 (1–6) |
N previous TR median, IQR | 5 (3–7) |
Concurrent medications median, IQR | 3 (1–4) |
Charlson comorbidity index (CCI) median, IQR | 8 (7–9) |
ECOG PS 0 1 ≥2 | 19 (50%) 18 (47%) 1 (3%) |
Tissue for NGS solid tissue blood na | 27 (71%) 8 (21%) 3 (8%) |
N mutations median, IQR | 6 (4–10) |
TMB (mut/MB) median, IQR | 5.06 (2.5–10.1) |
N VUS median, IQR | 11 (8–14) |
Microsatellite status MSS MSI-H na | 21 (55%) - 17 (45%) |
Associated mutations: TP53 PIK3CA BRCA2 ESR1 RAD21 CDH1 FGFR1 ZNF703 FGF3/19 | 22 (58%) 9 (24%) 8 (21%) 7 (18%) 6 (16%) 5 (13%) 5 (13%) 5 (13%) 5 (13%) |
TP53 | Tissue | Histology |
---|---|---|
R213* | blood, soft tissue | TNBC |
Y220C | lymph node | TNBC |
LOSS EXONS 2–9 | lymph node | HR+/HER2− |
G302fs*41 | soft tissue | HR−/HER2+ |
S241C | breast | TNBC |
R248Q | lymph node | TNBC |
V157D | blood | TNBC |
P152fs*14 | breast | TNBC |
F270C | breast | TNBC |
E336_L350del | lung | HR+/HER2− |
H193D | blood | HR+/HER2− |
M237I | blood | HR+/HER2− |
P278A | blood | HR+/HER2− |
R273C | liver | TNBC |
splice site 919+1G>A | blood | HR+/HER2+ |
C176Y | blood | HR+/HER2+ |
R342* | breast | TNBC |
C176F | liver | HR+/HER2− |
loss | liver | HR+/HER2− |
E326fs*11 | liver | HR+/HER2− |
S121fs*25 | lymph node | HR+/HER2− |
R273C | soft tissue | HR+/HER2− |
R248W | liver | HR+/HER2− |
R249M | liver | HR+/HER2− |
C275F | soft tissue | TNBC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcone, R.; Lombardi, P.; Filetti, M.; Fabi, A.; Altamura, V.; Scambia, G.; Daniele, G. Molecular Profile and Matched Targeted Therapy for Advanced Breast Cancer Patients. Curr. Oncol. 2023, 30, 2501-2509. https://doi.org/10.3390/curroncol30020191
Falcone R, Lombardi P, Filetti M, Fabi A, Altamura V, Scambia G, Daniele G. Molecular Profile and Matched Targeted Therapy for Advanced Breast Cancer Patients. Current Oncology. 2023; 30(2):2501-2509. https://doi.org/10.3390/curroncol30020191
Chicago/Turabian StyleFalcone, Rosa, Pasquale Lombardi, Marco Filetti, Alessandra Fabi, Valeria Altamura, Giovanni Scambia, and Gennaro Daniele. 2023. "Molecular Profile and Matched Targeted Therapy for Advanced Breast Cancer Patients" Current Oncology 30, no. 2: 2501-2509. https://doi.org/10.3390/curroncol30020191
APA StyleFalcone, R., Lombardi, P., Filetti, M., Fabi, A., Altamura, V., Scambia, G., & Daniele, G. (2023). Molecular Profile and Matched Targeted Therapy for Advanced Breast Cancer Patients. Current Oncology, 30(2), 2501-2509. https://doi.org/10.3390/curroncol30020191