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Abstract: The detection of gene fusions by RNA-based next-generation sequencing (NGS) is an
emerging method in clinical genetic laboratories for oncology biomarker testing to direct targeted
therapy selections. A recent Canadian study (CANTRK study) comparing the detection of NTRK gene
fusions on different NGS assays to determine subjects’ eligibility for tyrosine kinase TRK inhibitor
therapy identified the need for recommendations for best practices for laboratory testing to optimize
RNA-based NGS gene fusion detection. To develop consensus recommendations, representatives
from 17 Canadian genetic laboratories participated in working group discussions and the completion
of survey questions about RNA-based NGS. Consensus recommendations are presented for pre-
analytic, analytic and reporting aspects of gene fusion detection by RNA-based NGS.
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1. Introduction

Next-generation sequencing (NGS) targeted panel testing is routinely used in Cana-
dian clinical molecular diagnostic laboratories for detection of somatic variants that are
useful for cancer diagnosis, prognosis and therapy in solid tumors [1]. Somatic tumor
NGS tests require the detection of multiple variant types, including single nucleotide
variants (SNV), small insertions and deletions, copy number variants and gene fusions in
well-defined, clinically relevant genes. However, due to regional differences in expertise,
funding and NGS platform availability, there is variability in the specific NGS platforms or
assays that are adopted by different clinical laboratories within Canada.

Recently, a Canada-wide project (CANTRK) compared the performance of seven RNA-
based NGS targeted panels for the detection of gene fusions involving neurotrophic tyrosine
receptor kinase genes (NTRK1, NTRK2 and NTRK3) in 16 diagnostic clinical laboratories
across Canada [2]. NGS assays included four different amplicon-based panels, one hybrid-
capture panel, one anchored multiplex PCR panel and one single primer extension and
amplification panel. Twelve formalin-fixed paraffin-embedded tumor samples containing
a gene fusion involving one of NTRK1, NTRK2 or NTRK3, with six different fusion gene
partners, were tested by each laboratory. The findings of the comparative study indicated
that eight of the twelve samples were detected by all NGS Panels. Three of four amplicon
NGS panels did not detect two fusions involving NTRK2 (fusions WNK2: NTKR2 and
STRN3: NTRK2) due to absence of primers in the panel design. For one amplicon panel, two
NTRK1 fusions (TPM3: NTRK1 and LMNA: NTRK1) were not detected due to bioinformatic
challenges. The one hybrid capture panel did not detect an NTRK3 fusion, ETV6: NTRK3,
found at low levels in one sample. Overall, the CANTRK project indicated good but variable
ability of the different RNA-based NGS panels implemented in Canadian laboratories to
detect NTRK gene fusions [2].

It was also evident during the CANTRK study that there was limited consensus guid-
ance on how to best to perform gene fusion detection for NTRK, or other fusion genes,
using the emerging method of RNA-based NGS. Several publications have addressed the
topic of diagnostic test algorithms for detecting NTRK gene fusions or TRK fusion proteins,
using methods such as immunohistochemistry, fluorescence in situ hybridization, reverse
transcriptase-polymerase chain reaction (RT-PCR), and DNA or RNA-based NGS [3–10].
Other publications have described the validation or the clinical implementation of NGS
panels capable of detecting gene fusions in solid tumors or hematologic malignancies,
providing useful information on defining quality metrics, performance characteristic assess-
ment, verification of novel fusions and troubleshooting [11–16]. However, testing for gene
fusions using RNA-based NGS is based on different principles than for DNA-based NGS.
The output of RNA-based NGS for gene fusions is only positive when gene fusions are
present, and so a negative result (i.e., no gene fusions) is a common occurrence, and quality
metrics used in DNA-based NGS testing, such as variant allele fraction or read depth, do
not have direct equivalents in RNA-based NGS. For this reason, best practices are needed
for RNA-based NGS for detection of gene fusions. As a partner activity to the CANTRK
study, and to address this need in the Canadian context, a national Canadian clinical labora-
tory expert group convened to share approaches to gene fusion detection using RNA-based
NGS and to develop consensus recommendations relevant to national laboratories to ensure
high-quality detection of NTRK and other gene fusions from RNA-based NGS.

2. Materials and Methods

An expert working group of eighteen Canadian clinical molecular laboratory directors
and pathologists was formed, with members representing sixteen participating CANTRK
study laboratories plus one additional Canadian laboratory and seven provinces (Nova
Scotia, Quebec, Ontario, Manitoba, Saskatchewan, Alberta and British Columbia). The
aim of the group was to develop guidance for gene fusion detection in solid tumors using
RNA-based NGS on formalin-fixed, paraffin-embedded (FFPE) tumor tissue, with a focus
on NGS assays used in Canada [2]. All participants had experience with RNA-based
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NGS in their associated laboratories, whether from the CANTRK study testing or from
routine clinical testing in their laboratories. The expert working group members completed
pre-meeting surveys (Supplementary Table S1) and met virtually to discuss and reach a
consensus on the findings of the survey, spanning the testing pathway from pre-analytic
and analytic phases to clinical reporting.

3. Pre-Analytic Considerations

The working group consensus recommendations addressing specific pre-analytic
activities relevant to NGS RNA-based fusion detection are shown in Table 1, with discussion
points following.

Table 1. Summary of pre-analytical recommendations to optimize RNA-based NGS for gene fusion detection.

I
If tumor enrichment is used for samples to be analyzed for gene fusions by RNA-based next
generations sequencing (NGS), laboratories should ensure standardization of pre-analytic
technical procedures and minimized variability among samples.

II
Decisions regarding use of tumor enrichment should be based on the particular RNA-based
NGS assay used and the required lower limit of sensitivity of the assay to detect
gene fusions.

III
If macrodissection is used for tumor enrichment, a hematoxylin and eosin-stained section
taken after macrodissection should be assessed to ensure that target tissue was obtained for
NGS testing.

IV

Due to the lability of RNA in tissue, pre-analytic treatment of tissue and formalin-fixed,
paraffin-embedded (FFPE) blocks should be optimized to ensure that extraction of RNA is
appropriate for testing for gene fusions (e.g., monitoring pre-ischemic time for tissue
formalin fixation, ensuring optimal storage and transportation of FFPE tissue materials).

V
Education should be undertaken to ensure that pathology laboratory professionals
(pathologists, laboratory technicians and technologists) are informed of the impact of tumor
tissue treatments and tumor enrichment on downstream testing using RNA-based NGS.

3.1. Tissue Treatment and Tumor Enrichment

As reported in the CANTRK study, local pre-analytical practices for gene fusion detec-
tion by NGS varied based on the specific RNA-based NGS assay or platform used [2]. Most
laboratories co-extracted DNA and RNA from the same tumor sample. The enrichment
of tumors prior to NGS was performed among the CANTRK participant laboratories by
macrodissection of FFPE tissue to enrich for tumor material prior to extraction, as indi-
cated by 71% (12/17) of respondents (Supplementary Table S1), versus the non-enrichment
techniques used in the remaining five labs (such as RNA extraction from FFPE scrolls
without enrichment). Diverse enrichment techniques introduce variability to pre-analytical
workflows, and the working group consensus was that approaches to minimize variability
among samples tested in the same laboratory are essential. In some cases, technology may
help reduce variability, for example, by using automated macrodissection systems, which
mitigate user-variation by documenting the workflow and capturing images before and
after enrichment. Decisions regarding tumor enrichment should be based on the particular
NGS assay used by each laboratory and the required lower limit of sensitivity of the assay.
Any variability also carries over to the assessment of tumor cellularity due to differences in
estimation (i.e., over- or underestimation), which can affect the evaluation of borderline
samples. In addition, tumor cellularity estimates may be impacted by how far from the
hematoxylin and eosin-stained slide the sections are taken for DNA/RNA extraction, and
the tumor cell count may be a poor surrogate for potential DNA or RNA quantity due to
tumor cell aneuploidy.

The discussion of optimal approaches for macrodissection enrichment included the
proposal of performing a hematoxylin and eosin staining on a final section after macrodis-
section to ensure that the target tissue was obtained. If possible, macrodissection was
preferred to the coring of tumor tissue in an FFPE block (using a small 1–2 mm punch) to
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maintain the integrity of the FFPE block, especially for tumors that were small in volume
or size. Reviews were performed by board-certified pathologists in most of the laboratories
(94%; 16/17), with a minimum tumor cellularity of 10% or more required in 65% (11/17) of
laboratories (Supplementary Table S1).

There was discussion that due to the lability of RNA, laboratories should ensure
optimal treatment of tumor tissue prior to FFPE treatment, including monitoring the
pre-ischemic time for formalin fixation and maintaining ideal storage and transportation
conditions for FFPE blocks. It was noted that international standards exist as a reference
for pre-analytic considerations for RNA extraction from FFPE tumor tissue [17].

There was a consensus that, in order to understand the impact of tumor cellularity
and necrosis on assay sensitivity and downstream testing, a critical aspect of pre-analytic
variability was appropriate education and training of pathologists who select tumor tissue
for enrichment. Continuing education for laboratory technologists to raise their awareness
of the importance of proper tumor tissue fixation and embedding practices is also essential
to minimize pre-analytic variability or failures. Laboratories may also wish to restrict the
selection of tumor regions for macrodissection to specific pathologists to mitigate variability,
although this is not feasible in every laboratory or pathology department, depending on
pathologists’ expertise, work distribution and roles.

3.2. Input RNA for RNA-Based NGS Testing

For RNA input requirements, 65% (11/17) of respondents used 10–30 ng of RNA
(cDNA), likely reflecting the widespread use of amplicon library methods in Canadian
laboratories at the time of the survey and as previously reported [2]. It was noted that
different RNA quantification methods are also a potential source of pre-analytic variability.
Most participants (71%; 12/17) stated that for challenging tumor specimens where no
alternative tissue specimen existed, they would proceed by testing input RNA amounts
at the lower validated limit of their assay, and they may report any finding from such
testing with report caveats for negative samples or perform complementary testing (such
as TRK IHC) if required to confirm a positive result. The consideration to use input RNA
below a lab-defined threshold reflected the biological difference in the detection of gene
fusions using RNA rather than DNA, as gene fusion drivers may be expressed at high
levels, thus, allowing for their detection even with reduced RNA input. In addition, there
was discussion among the participants that tumor cellularity estimates are not always
accurate for RNA-based assays, as the amount of the RNA fusion does not necessarily
relate to the amount of tumor present in the tissue due to the impact of the RNA expression
on each specific target fusion.

4. Analytic and Interpretive Considerations

The working group consensus recommendations addressing analytic and interpretive
aspects of RNA-based NGS for gene fusion detection are shown in Table 2.

4.1. Quality Control during Library Preparation

During the NGS library and sequencing workflow, there are multiple points for the
capture of quality metrics to assess the overall process and any detected gene fusions. While
the majority of quality control metrics are platform-dependent, recommended activities
include the assessment of cDNA size, quantity and/or quality prior to use in library
preparation (8 of 17 laboratories indicated doing so by either measuring the cDNA size
and quantity or by doing the previous and additionally ensuring the cDNA quality by
amplifying a housekeeping gene; Supplementary Table S1). It is also recommended to use
internal and/or external controls to ensure the detection of target genes (eight laboratories
used both internal and external controls, with the remainder of the laboratories using one
type of control; Supplementary Table S1).
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Table 2. Summary of the analytical and interpretive recommendations for RNA-based NGS for gene
fusion detection.

I Laboratories should assess complementary DNA (cDNA) size, quantity and/or quality
prior to use in library preparation for RNA-based NGS.

II
Laboratories should use internal and/or external controls to ensure detection of target
genes/gene fusions. At minimum, external control samples should be used routinely to
confirm reliable detection of gene fusions targeted by the assay.

III

Quality metrics to assess gene fusions detected after NGS testing should be defined by the
laboratory. Recommended metrics include:

• A required minimum number of supporting reads spanning the gene fusion junction;
• A required minimum percentage of supporting reads spanning the fusion gene

(percentage calculated as fusion reads compared to total mapped reads);
• A required minimum number of unique start sites, where a subset of the unique

reads has unique fragment lengths;
• A required minimum number of base pairs on either side of the fusion breakpoint.

IV Laboratories should ensure that negative results (no fusion detected) are valid by
confirming that a minimum number of total reads were obtained after sequencing.

V Laboratories should use published literature and gene fusion databases to assess whether
an identified gene fusion is novel or previously known.

VI
Laboratories should assess the functional aspects of identified gene fusions (particularly
for novel fusions), such as the potential to generate productive in-frame transcripts or the
non-disruption of protein functional domains.

VII For novel gene fusions, additional orthogonal testing may be required to confirm the
presence of the gene fusion.

4.2. Quality Control for Gene Fusion Calling

A critical aspect of quality control for gene fusion detection by RNA-based NGS is
ensuring that any gene fusions detected are true fusions and not arising from artifacts. This
is particularly true for NGS methods using amplicon libraries, where the amplification
method produces a greater number of transcripts containing the fusion and may produce
artifacts such as misaligned transcripts. The participants used a variety of quality metrics
to assess the detected gene fusions and to determine if they were true fusions; the most
frequently recommended metrics included:

• A minimum number of supporting reads spanning the gene fusion junction;
• A minimum percentage of supporting reads spanning the fusion gene (percentage

calculated as fusion reads compared to total mapped reads);
• A minimum number of unique start sites, where a subset of the unique reads has

unique fragment lengths;
• A minimum number of base pairs on either side of the fusion breakpoint.

The participants also discussed the importance of ensuring that negative results (no
fusion detected) were valid, which was mainly assessed by ensuring a minimum number
of total reads after sequencing.

Once a detected gene fusion was confirmed to meet quality metrics and, so, was
deemed a reliable call, laboratories used a variety of approaches to further inspect and con-
firm the fusion. The initial assessment was to determine if the gene fusion was previously
known or was novel, which was achieved by searching the detected fusion in published
literature or in relevant databases (such as Quiver Fusion Database [18], CIViC [19], Tumor-
Fusions portal [20] and FusionGDB [21]). Other assessments included the requirements that
fusions should generate productive in-frame transcripts, have non-disrupted important
functional domains (such as the kinase domain in NTRK genes [22]) and, where relevant,
involve the concordance of variants seen on DNA with RNA fusions in the same sample
(for example, MET gene fusions of exons 13 and 15, which can also often be detected by
MET exon 14 splice variants on DNA-based NGS). In addition, it was noted that when
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two gene fusions are detected in the same sample that are similar but differ by only one
exon, only the most abundant transcript was reported in 59% (10/17) labs. For novel gene
fusions, it was recommended to use a follow-up orthogonal assay, such as amplification
with gene-specific primers flanking the fusion junction and Sanger sequencing, immuno-
histochemistry or FISH. It is imperative that the appropriate orthogonal assay is applied to
the relevant tissue type; for example, immunohistochemistry for an NTRK gene fusion is
not appropriate in central nervous system tumors due to the known intrinsic expression of
TRK proteins, which prevent the discrimination of NTRK-rearranged and non-rearranged
tissue, in this tissue.

There was agreement regarding the benefit of using controls to confirm appropriate
test performance, although no consensus was reached on the type of control or how often
the controls should be assayed. The discussion included the utility of internal controls, such
as the detection of housekeeping genes included in the assay, and external controls, such as
reference standard samples with known gene fusion variants. It was recommended that
at a minimum, external control samples should be used routinely to confirm the reliable
detection of target gene fusions by the assay. Some participants noted that they use controls
on a rotational basis, such as when there is a reagent lot change in the laboratory workflow.

5. Post-Analytic and Reporting Recommendations

The working group consensus recommendations addressing post-analytic and report-
ing of RNA-based NGS for gene fusion detection are shown in Table 3.

Table 3. Summary of post-analytic and reporting recommendations for RNA-based NGS for gene
fusion detection.

I Laboratory reports should include an interpretive statement of the clinical relevance of gene
fusions reported.

II Laboratories should report the exon boundaries of detected gene fusions with reference
sequences.

III Variant nomenclature guidelines for gene fusions should be used, e.g., HUGO
guidelines [23].

IV
Laboratories should use variant classification tier schemes to report the clinical significance
of gene fusions, with appropriate references for any schemes used included in the
report text.

V Laboratories should participate in external quality assurance programs specific to gene
fusion detection by NGS.

With respect to the clinical reports generated from RNA-based NGS, all participant
laboratories include an interpretive statement regarding the clinical relevance of gene
fusions deemed to meet quality metrics for inclusion in the report. For ease of report
understandability, participants suggested that interpretive statements regarding NGS-
detected fusions should document clinically relevant information in a simplified section
at the top of the report, with additional supporting data presented later in the report
if needed.

For gene fusion nomenclature, recent HUGO guidelines recommend the use of a
double-colon separator for describing gene fusions (e.g., BCR: ABL) [23]. There was a con-
sensus that fusion nomenclature should also include the exons of the fusion partners, with
reference sequences (mRNA transcript numbers and human reference genome sequence).
While reporting exons for gene fusion may be clinically relevant for some fusions (for
example, ALK fusions) and not for others, it was considered that it is more appropriate
to implement exon reporting in general practice, particularly for clarity in the use of the
information. Additional information for clinical reports included quality metrics such as
the total number of reads, the number or percentage of reads spanning the fusion junction
and the minimum number of unique start sites for reads containing a fusion.
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For gene fusions tested on panels with both DNA and RNA library analysis, detection
of variants on DNA and RNA is possible. For example, mutations in the intron-exon
boundaries of MET exon 14, which may be detectable at the DNA level, can give rise to
gene transcripts where MET exon 13 and exon 15 are fused, with the resultant gene fusion
also detectable at the RNA level. In this scenario, the majority of the participant laboratories
(71%; 12/17) stated that they reported both the DNA variant and the resulting RNA fusion.

Participants were agreed that variant classification schemes for RNA-based NGS
assays should be same as the schemes currently in use for DNA variants, such as the
scheme reported in [24]. In the system of [24], known or previously reported gene fusions
with clinical actionability should be classified as strongly clinically actionable (i.e., Tier I).
Novel fusions that have not been reported previously, or for which there is no known
prognostic or therapy-related information, should be reported as either Tier II (potentially
clinically actionable) or Tier III (unknown clinical significance) depending on the particular
genes involved in the fusion.

Molecular laboratory reporting of gene fusion detection by NGS was integrated into
an overall pathology report for all tumor histologies tested in 41% (7/17) of participant
laboratories and only integrated for certain tumor histologies in 24% (4/17) of laboratories.
There was no consensus among the participants on how an integrated report should be
formulated, and there was a concern that a lack of training in integrating molecular results
into pathology reports could lead to misinterpretations or misinformation on reports,
highlighting the importance of educating pathologists on NGS and interpretation of NGS
results. Finally, the group discussed the importance of participating in external quality
assurance (EQA) programs specific to gene fusion detection by NGS assays as a benchmark
to ensure optimal test performance.

6. Discussion

Canadian molecular diagnostic laboratories are increasingly using targeted paired
library DNA- and RNA-based NGS assays to detect somatic tissue variants in solid tumors,
including for the detection of gene fusions of high clinical actionability, such as NTRK,
ALK, RET and other fusions. The significant clinical impact of the detection of such fusions
requires that clinical laboratories use optimal approaches to detect all fusions, a need which
is complicated by the current lack of standardization on how best to perform RNA-based
NGS for fusion detection. As a companion activity to the CANTRK Canadian study to
optimize detection of NTRK gene fusions [2], we report on the discussion and survey
results of the 17 CANTRK participant laboratories regarding the current practices and
consensus for RNA-based NGS. The understanding of laboratory practices for quality
metrics, detection of fusions and assessment of clinical impact provide information that
can be used to standardize practices across Canada.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/curroncol30040302/s1, Table S1: Survey questions and responses
from 17 participant laboratories.
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