Molecular Markers in Follicular and Oncocytic Thyroid Carcinomas: Clinical Application of Molecular Genetic Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Molecular Testing
2.3. Operative Approach and Histopathological Analysis
2.4. Statistical Analysis
3. Results
3.1. Clinicopathological Findings
3.2. Molecular Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miranda-Filho, A.; Lortet-Tieulent, J.; Bray, F.; Cao, B.; Franceschi, S.; Vaccarella, S.; Dal Maso, L. Thyroid Cancer Incidence Trends by Histology in 25 Countries: A Population-Based Study. Lancet Diabetes Endocrinol. 2021, 9, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Gopal, R.K.; Kübler, K.; Calvo, S.E.; Polak, P.; Livitz, D.; Rosebrock, D.; Sadow, P.M.; Campbell, B.; Donovan, S.E.; Amin, S.; et al. Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma. Cancer Cell 2018, 34, 242–255.e5. [Google Scholar] [CrossRef] [PubMed]
- McHenry, C.R.; Phitayakorn, R. Follicular Adenoma and Carcinoma of the Thyroid Gland. Oncol. 2011, 16, 585–593. [Google Scholar] [CrossRef]
- Bai, Y.; Kakudo, K.; Jung, C.K. Updates in the Pathologic Classification of Thyroid Neoplasms: A Review of the World Health Organization Classification. Endocrinol. Metab. 2020, 35, 696–715. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. J. Am. Soc. Cytopathol. 2017, 6, 217–222. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, O. Molecular Testing of Thyroid Nodules: A Review of Current Available Tests for Fine-Needle Aspiration Specimens. Arch. Pathol. Lab. Med. 2016, 140, 1338–1344. [Google Scholar] [CrossRef]
- Ablordeppey, K.K.; Timmaraju, V.A.; Song-Yang, J.W.; Yaqoob, S.; Narick, C.; Mireskandari, A.; Finkelstein, S.D.; Kumar, G. Development and Analytical Validation of an Expanded Mutation Detection Panel for Next-Generation Sequencing of Thyroid Nodule Aspirates. J. Mol. Diagn. 2020, 22, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Baloch, Z.W. Clinical Validation of the ThyroSeq v3 Genomic Classifier in Thyroid Nodules with Indeterminate FNA Cytology. Cancer Cytopathol. 2019, 127, 225–230. [Google Scholar] [CrossRef]
- Morand, G.B.; Tessler, I.; Noik, M.; Krasner, J.; Yamin, T.; Pusztaszeri, M.P.; Avior, G.; Payne, R.J. Molecular Profiling for Bethesda III to VI Nodules: Results of a Multicenter International Retrospective Study. Endocr. Pract. 2024, 30, 319–326. [Google Scholar] [CrossRef]
- Krasner, J.R.; Alyouha, N.; Pusztaszeri, M.; Forest, V.-I.; Hier, M.P.; Avior, G.; Payne, R.J. Molecular Mutations as a Possible Factor for Determining Extent of Thyroid Surgery. J. Otolaryngol. -Head Neck Surg. 2019, 48, 51. [Google Scholar] [CrossRef]
- Mascarella, M.A.; Peeva, M.; Forest, V.-I.; Pusztaszeri, M.P.; Avior, G.; Tamilia, M.; Mlynarek, A.M.; Hier, M.P.; Payne, R.J. Association of Bethesda Category and Molecular Mutation in Patients Undergoing Thyroidectomy. Clin. Otolaryngol. 2022, 47, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Medici, M.; Kwong, N.; Angell, T.E.; Marqusee, E.; Kim, M.I.; Frates, M.C.; Benson, C.B.; Cibas, E.S.; Barletta, J.A.; Krane, J.F.; et al. The Variable Phenotype and Low-Risk Nature of RAS-Positive Thyroid Nodules. BMC Med. 2015, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Cibas, E. The Bethesda System for Reporting Thyroid Cytopathology: Definitions, Criteria and Explanatory Notes; Springer: New York, NY, USA, 2018. [Google Scholar]
- McFadden, D.G.; Sadow, P.M. Genetics, Diagnosis, and Management of Hürthle Cell Thyroid Neoplasms. Front. Endocrinol. 2021, 12, 696386. [Google Scholar] [CrossRef]
- Xu, B.; Lubin, D.J.; Dogan, S.; Ghossein, R.A.; Viswanathan, K. Significance of Oncocytic Features in Poorly Differentiated Thyroid Carcinoma—A Bi-Institutional Experience. Virchows Arch. 2023, 482, 479–491. [Google Scholar] [CrossRef]
- Matsuura, D.; Yuan, A.; Wang, L.; Ranganath, R.; Adilbay, D.; Harries, V.; Patel, S.; Tuttle, M.; Xu, B.; Ghossein, R.; et al. Follicular and Hurthle Cell Carcinoma: Comparison of Clinicopathological Features and Clinical Outcomes. Thyroid 2022, 32, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Kure, S.; Ohashi, R. Thyroid Hürthle Cell Carcinoma: Clinical, Pathological, and Molecular Features. Cancers 2021, 13, 26. [Google Scholar] [CrossRef]
- Chindris, A.-M.; Casler, J.D.; Bernet, V.J.; Rivera, M.; Thomas, C.; Kachergus, J.M.; Necela, B.M.; Hay, I.D.; Westphal, S.A.; Grant, C.S.; et al. Clinical and Molecular Features of Hürthle Cell Carcinoma of the Thyroid. J. Clin. Endocrinol. Metab. 2015, 100, 55–62. [Google Scholar] [CrossRef]
- Alzahrani, A.S. Clinical Use of Molecular Data in Thyroid Nodules and Cancer. J. Clin. Endocrinol. Metab. 2023, 108, 2759–2771. [Google Scholar] [CrossRef]
- Bischoff, L.A.; Ganly, I.; Fugazzola, L.; Buczek, E.; Faquin, W.C.; Haugen, B.R.; McIver, B.; McMullen, C.P.; Newbold, K.; Rocke, D.J.; et al. Molecular Alterations and Comprehensive Clinical Management of Oncocytic Thyroid Carcinoma: A Review and Multidisciplinary 2023 Update. JAMA Otolaryngol. -Head Neck Surg. 2024, 150, 265–272. [Google Scholar] [CrossRef]
- Rajab, M.; Payne, R.J.; Forest, V.-I.; Pusztaszeri, M. Molecular Testing for Thyroid Nodules: The Experience at McGill University Teaching Hospitals in Canada. Cancers 2022, 14, 4140. [Google Scholar] [CrossRef]
- Nikiforova, M.N.; Lynch, R.A.; Biddinger, P.W.; Alexander, E.K.; Dorn, G.W., II; Tallini, G.; Kroll, T.G.; Nikiforov, Y.E. RAS Point Mutations and PAX8-PPARγ Rearrangement in Thyroid Tumors: Evidence for Distinct Molecular Pathways in Thyroid Follicular Carcinoma. J. Clin. Endocrinol. Metab. 2003, 88, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.S.; Angell, T.E.; Barletta, J.A.; Krane, J.F. Hürthle Cell Lesions of the Thyroid: Progress Made and Challenges Remaining. Cancer Cytopathol. 2021, 129, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Hlozek, J.; Pekova, B.; Rotnágl, J.; Holý, R.; Astl, J. Genetic Changes in Thyroid Cancers and the Importance of Their Preoperative Detection in Relation to the General Treatment and Determination of the Extent of Surgical Intervention—A Review. Biomedicines 2022, 10, 1515. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Yang, H.; Yip, L.; Ohori, N.P.; McCoy, K.L.; Stang, M.T.; Hodak, S.P.; Nikiforova, M.N.; Carty, S.E.; Nikiforov, Y.E. PAX8/PPARγ Rearrangement in Thyroid Nodules Predicts Follicular-Pattern Carcinomas, in Particular the Encapsulated Follicular Variant of Papillary Carcinoma. Thyroid 2014, 24, 1369–1374. [Google Scholar] [CrossRef]
- Song, Y.S.; Lim, J.A.; Park, Y.J. Mutation Profile of Well-Differentiated Thyroid Cancer in Asians. Endocrinol. Metab. 2015, 30, 252–262. [Google Scholar] [CrossRef]
- Acuña-Ruiz, A.; Carrasco-López, C.; Santisteban, P. Genomic and Epigenomic Profile of Thyroid Cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101656. [Google Scholar] [CrossRef]
- Ganly, I.; Makarov, V.; Deraje, S.; Dong, Y.; Reznik, E.; Seshan, V.; Nanjangud, G.; Eng, S.; Bose, P.; Kuo, F.; et al. Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell 2018, 34, 256–270.e5. [Google Scholar] [CrossRef]
- Wei, S.; LiVolsi, V.A.; Montone, K.T.; Morrissette, J.J.D.; Baloch, Z.W. PTEN and TP53 Mutations in Oncocytic Follicular Carcinoma. Endocr. Pathol. 2015, 26, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Corver, W.E.; Ruano, D.; Weijers, K.; den Hartog, W.C.E.; van Nieuwenhuizen, M.P.; de Miranda, N.; van Eijk, R.; Middeldorp, A.; Jordanova, E.S.; Oosting, J.; et al. Genome Haploidisation with Chromosome 7 Retention in Oncocytic Follicular Thyroid Carcinoma. PLoS ONE 2012, 7, e38287. [Google Scholar] [CrossRef]
- Doerfler, W.R.; Nikitski, A.V.; Morariu, E.M.; Ohori, N.P.; Chiosea, S.I.; Landau, M.S.; Nikiforova, M.N.; Nikiforov, Y.E.; Yip, L.; Manroa, P. Molecular Alterations in Hürthle Cell Nodules and Preoperative Cancer Risk. Endocr. -Relat. Cancer 2021, 28, 301–309. [Google Scholar] [CrossRef]
- Van der Tuin, K.; de Kock, L.; Kamping, E.J.; Hannema, S.E.; Pouwels, M.-J.M.; Niedziela, M.; van Wezel, T.; Hes, F.J.; Jongmans, M.C.; Foulkes, W.D.; et al. Clinical and Molecular Characteristics May Alter Treatment Strategies of Thyroid Malignancies in DICER1 Syndrome. J. Clin. Endocrinol. Metab. 2019, 104, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Gubbiotti, M.A.; Andrianus, S.; Baloch, Z. THADA-IGF2BP3 Fusions Detected in Fine-Needle Aspiration Specimens of Thyroid Nodules: An Institutional Experience. Diagn. Cytopathol. 2023, 51, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Morariu, E.M.; McCoy, K.L.; Chiosea, S.I.; Nikitski, A.V.; Manroa, P.; Nikiforova, M.N.; Nikiforov, Y.E. Clinicopathologic Characteristics of Thyroid Nodules Positive for the THADA-IGF2BP3 Fusion on Preoperative Molecular Analysis. Thyroid 2021, 31, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Ganly, I.; Ricarte Filho, J.; Eng, S.; Ghossein, R.; Morris, L.G.T.; Liang, Y.; Socci, N.; Kannan, K.; Mo, Q.; Fagin, J.A.; et al. Genomic Dissection of Hurthle Cell Carcinoma Reveals a Unique Class of Thyroid Malignancy. J. Clin. Endocrinol. Metab. 2013, 98, E962–E972. [Google Scholar] [CrossRef]
Variables | FTC 1 n (%) | OTC 2 n (%) | p-Value |
---|---|---|---|
Number of patients | 27 | 23 | N/A |
Age (years) | 51.1 (SD ± 15.4) | 61.8 (SD ± 13.2) | 0.013 * |
Sex
| 23 (85.2%) 4 (14.8%) | 15 (65.2%) 8 (34.8%) | 0.099 ** |
Type of surgery
| 23 (85.2%) 4 (14.8%) | 15 (65.2%) 8 (34.8%) | 0.099 ** |
Bethesda classification
| 8 (29.6%) 16 (59.3%) 2 (7.4%) 1 (3.7%) | 8 (34.8%) 12 (52.2%) 2 (8.7%) 1 (4.3%) | N/A |
Bethesda III and IV Subcategory
| 5 (20.8%) 19 (79.2%) | 17 (85.0%) 3 (15.0%) | 0.002 ** |
Tumor size
| 6 (22.2%) 11 (40.7%) 2 (7.4%) 8 (29.6%) | 5 (21.7%) 4 (17.4%) 6 (26.1%) 8 (34.8%) | N/A |
Invasion
| 22 (81.5%) 2 (7.4%) 3 (11.1%) | 13 (56.5%) 7 (30.4%) 3 (13.0%) | N/A |
Presence of aggressive features 3
| 0 (0.0%) 0 (0.0%) 2 (7.4%) | 1 (4.3%) 3 (13.0%) 1 (4.3%) | N/A |
Tumor aggressiveness 4
| 3 (11.1%) 24 (88.9%) | 9 (39.1%) 14 (60.9%) | 0.021 ** |
Tumor Aggressiveness | Molecular Test | FTC Molecular Result | OTC Molecular Result |
---|---|---|---|
Aggressive | ThyroSeq V3 | CNA + Pax8/PPARy TERT + HRAS + CNA | TP53 + EIF1AX TP53 + EIF1AX + NRAS + CNA TP53 + CNA CNA CNA |
ThyGenX | No alteration | No alteration | |
ThygeNEXT | - | TERT TERT No alteration | |
Non-Aggressive | ThyroSeq V3 | Pax8/PPARy Pax8/PPARy PTEN PTEN CNA CNA NRAS NRAS + GEP GEP DICER1 THADA-IGF2BP3 BRAF p.R462I TP53 | EIF1AX + TERT + PIK3CA EIF1AX HRAS + GEP HRAS + GEP + CNA CNA CNA CNA DICER1 No alteration |
ThyGenX | NRAS No alteration x6 | No alteration × 3 | |
ThygeNEXT | Pax8/PPARy No alteration x3 | TERT No alteration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belaiche, A.; Morand, G.B.; Turkdogan, S.; Kang, E.S.; Forest, V.-I.; Pusztaszeri, M.P.; Hier, M.P.; Mlynarek, A.M.; Richardson, K.; Sadeghi, N.; et al. Molecular Markers in Follicular and Oncocytic Thyroid Carcinomas: Clinical Application of Molecular Genetic Testing. Curr. Oncol. 2024, 31, 5919-5928. https://doi.org/10.3390/curroncol31100441
Belaiche A, Morand GB, Turkdogan S, Kang ES, Forest V-I, Pusztaszeri MP, Hier MP, Mlynarek AM, Richardson K, Sadeghi N, et al. Molecular Markers in Follicular and Oncocytic Thyroid Carcinomas: Clinical Application of Molecular Genetic Testing. Current Oncology. 2024; 31(10):5919-5928. https://doi.org/10.3390/curroncol31100441
Chicago/Turabian StyleBelaiche, Alicia, Grégoire B. Morand, Sena Turkdogan, Esther ShinHyun Kang, Véronique-Isabelle Forest, Marc P. Pusztaszeri, Michael P. Hier, Alex M. Mlynarek, Keith Richardson, Nader Sadeghi, and et al. 2024. "Molecular Markers in Follicular and Oncocytic Thyroid Carcinomas: Clinical Application of Molecular Genetic Testing" Current Oncology 31, no. 10: 5919-5928. https://doi.org/10.3390/curroncol31100441
APA StyleBelaiche, A., Morand, G. B., Turkdogan, S., Kang, E. S., Forest, V. -I., Pusztaszeri, M. P., Hier, M. P., Mlynarek, A. M., Richardson, K., Sadeghi, N., Mascarella, M. A., Da Silva, S. D., & Payne, R. J. (2024). Molecular Markers in Follicular and Oncocytic Thyroid Carcinomas: Clinical Application of Molecular Genetic Testing. Current Oncology, 31(10), 5919-5928. https://doi.org/10.3390/curroncol31100441