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Abstract: Antibody–drug conjugates (ADCs) represent an emerging class of targeted anticancer
agents that have demonstrated impressive efficacy in numerous cancer types. In non-small cell lung
cancer (NSCLC), ADCs have become a component of the treatment armamentarium for a subset of
patients with metastatic disease. Emerging data suggest that some ADCs exhibit impressive activity
even in central nervous system (CNS) metastases, a disease site that is difficult to treat and associated
with poor prognosis. Herein, we describe and summarize the existing evidence surrounding ADCs
in NSCLC with a focus on CNS activity.
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1. Introduction

Lung cancer is diagnosed in approximately 32,000 Canadians each year and causes
approximately 21,000 deaths annually, rendering it the number one cause of cancer-related
deaths in Canadian men and women [1]. Globally, lung cancer is similarly the most
common cancer with an incidence rate of over 2,400,000 cases and a mortality rate of
over 1,800,000 deaths in 2022 [2]. The central nervous system (CNS) is a frequent site of
metastasis in both small cell lung cancer and non-small cell lung cancer (NSCLC) and is
associated with a poor prognosis [3–5]. CNS metastases include metastases to the brain
parenchyma (denoted as brain metastases (BM)), as well as leptomeningeal metastases (LM),
which involve cancer cells reaching the subarachnoid space that harbors the cerebrospinal
fluid surrounding the brain and spinal cord [6].

The current management of CNS metastases is multifaceted. Current modalities for
treatment include surgical resection, radiation therapy approaches, such as stereotactic ra-
diosurgery (SRS) and whole-brain radiotherapy (WBRT), and systemic therapies including
chemotherapy, targeted therapies, and immunotherapies [7,8]. Surgical approaches are
generally reserved for NSCLC patients with one or few large and symptomatic BM [9].

The medical management of NSCLC BM remains challenging. The blood–brain barrier
(BBB) and efflux transporters in the brain endothelium represent significant impediments
for traditional chemotherapies from accessing BM lesions [10,11]. However, small molecules
targeting oncogenic driver mutations in NSCLC, such as epidermal growth factor receptor
(EGFR) (osimertinib, gefitinib, erlotinib, amivantanab/lazertinib), anaplastic lymphoma
kinase (ALK) (crizotinib, ceritinib, brigatinib, lorlatinib), ROS1 (entrectinib, lorlatinib),
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hepatocyte growth factor (MET) exon 14 skipping mutations (ex14mut) (capmatinib, tepo-
tinib), rearranged during transfection (RET) fusions (selpercatinib), v-raf murine sarcoma
viral oncogene homolog B1 (BRAF) V600E (dabrafenib/trametinib), Kirsten rat sarcoma
virus (KRAS) G12C (sotorasib), and neurotrophic tyrosine receptor kinase (NTRK) fusions
(entrectinib, larotrectinib) have demonstrated activity in both LM and BM [12–25]. Immune
checkpoint inhibitors (ICI) have similarly demonstrated efficacy in patients with NSCLC
CNS metastases, particularly when combined with radiotherapy [26]. Interestingly, preclin-
ical data suggest a mechanism of action for immunotherapy in BM whereby immune cells
are primed against CNS metastases via exposure to cancer cells in the primary tumor or
extracranial metastases following treatment with immunotherapy before homing to CNS
metastases [27].

Antibody–drug conjugates (ADCs) represent a novel class of anticancer drugs that
have arrived at the forefront of new treatment strategies for NSCLC in recent years with an
emerging interest for its use in CNS metastases [28,29]. In this review, we will summarize
and describe the literature evaluating ADCs in NSCLC, with a particular focus on BM.

2. Antibody–Drug Conjugates

ADCs are comprised of three key components: a monoclonal antibody targeting a
tumor-expressed antigen, a cytotoxic payload, and a cleavable linker. These key compo-
nents of an ADC play important roles in establishing its therapeutic, pharmacological, and
toxicity profiles.

2.1. Antibodies and Antigens

The antibody moiety of an ADC molecule plays a significant role in its pharmacology,
including its plasma circulation time, target specificity, and immunogenicity. The landscape
of approved ADCs predominantly includes full-size immunoglobulin G (IgG), particularly
IgG1 [30]. The IgG1 subclass offers a long serum half-life and robust Fc-mediated effector
functions, including antibody cell- and complement-mediated cytotoxicity, and antibody-
dependent cellular phagocytosis [31]. Murine and chimeric antibodies used in the design of
early ADCs have been largely replaced with humanized variants to minimize immunogenic
adverse effects [32].

The selection of a suitable target antigen for these antibody moieties has also proven
to be critical to the successful development of effective ADC molecules. An ideal target can
be described as one that is highly expressed on malignant cells and minimally expressed
on healthy cells [33]. Current targets of ADCs for NSCLC that are either approved or in
late-stage clinical development include human epidermal growth factor receptor 2 (HER2),
trophoblast cell-surface antigen 2 (TROP2), human epidermal growth factor receptor 3
(HER3), and MET [34]. ADCs directed against these targets are currently being clinically
evaluated as both monotherapy and in combination with other agents, such as immune
checkpoint inhibitors (ICI) [34].

Several of these targets are significant in the context of BM given expression patterns
of the target antigens specifically in CNS lesions. HER2 and HER3 have both been found to
be consistently overexpressed in breast and NSCLC BM, representing targets poised for
clinical activity in this setting [35–40]. MET is also commonly overexpressed or amplified
in NCSLC BM, potentially establishing MET as an important functional mediator of BM
that can be targeted for therapeutic benefit [41–44]. Together, the antigen targets of many
of the ADCs that are approved or in the late stages of development for NSCLC are primed
for promising activity in the CNS given their overexpression in BM.

2.2. Linkers

Linkers are molecular sequences that covalently connect the antibody to a cytotoxic
payload. Their main roles are to prevent the premature release of the payload in the cir-
culation while ensuring its release at the target site. Linkers can be broadly categorized
into either cleavable or non-cleavable variants depending on the release mechanisms of
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their cytotoxic payloads [45]. Cleavable linkers are versatile and widely employed in ADC
development. These linkers chemically release the payload through reduction, proteolysis,
or hydrolysis based on specific tumor cell–associated processes, such as acidification, glu-
tathione reduction, or lysosomal protease activity [46,47]. Non-cleavable linkers consist
of chemical structures that are not fragmented by enzymatic degradation. They resist
conventional biochemical processes and require complete lysosomal degradation for pay-
load release. This increases the likelihood of payload release within the target cells while
minimizing cytotoxic effects on healthy cells [48]. Non-cleavable linkers generally result in
less toxicity and have a longer half-life when compared to cleavable linkers [32,49]. One
major disadvantage of non-cleavable linkers, however, is the lack of antitumor activity
against adjacent neoplastic cells that may not express the target antigen of the ADC (i.e.,
bystander killing) [50].

2.3. Cytotoxic Payloads

Payloads are the cytotoxic component with the direct tumor-killing activity. Ideally,
the payload must have a low molecular weight, high stability, and high cytotoxicity [49,51].
In fact, payloads used in ADCs are generally 100- to 1000-fold more potent than chemother-
apies because they are designed to specifically target cancer cells [49]. To achieve potent
cytotoxic activity, recent ADC design strategies have focused on the optimization of the
drug–antibody ratio (DAR) [33]. The DAR is the average number of payload molecules
conjugated to each antibody molecule, with common DARs ranging from 2 to 8 [52].
Although ADCs with higher DARs have expectedly greater in vitro potency, preclinical
studies suggest that these molecules may be subject to unfavorable pharmacokinetic prop-
erties, including increased hepatic clearance and less favorable toxicity profiles that lead to
narrower therapeutic indices [53].

General categories of cytotoxic payloads include tubulin inhibitors and DNA-damaging
agents. Examples of tubulin inhibitors are the auristatins (e.g., MMAE and MMAF) and the
maytansinoids (e.g., DM1 and DM4). These agents disrupt the assembly and disassembly
of microtubules, leading to cell cycle arrest and apoptosis [49,51,54]. DNA-damaging drugs
act as crosslinkers and alkylators. The most used DNA-damaging payloads are topoiso-
merase I inhibitors, such as camptothecin derivatives. Non-chemotherapeutic payloads
such as immunostimulatory agents that generate an antitumoral immune response and ra-
dionuclides that deliver cytotoxic radiation to tumor cells are also being developed [55,56].

3. Antibody–Drug Conjugates and Brain Metastases

ADCs have become a part of the standard of care for various cancer types, including
breast, gynecological, urological, and hematological cancers [57]. Because patients with
active and/or untreated BM are often excluded from clinical trials, the intracranial activity
of ADCs specifically for CNS metastases has been largely undefined [28]. However, several
recent clinical trials in breast cancer have evaluated the ADC trastuzumab deruxtecan
(TDXd) specifically for patients with BM, demonstrating encouraging results. The phase II
TUXEDO-1 trial evaluated TDXd in 15 HER2-positive breast cancer patients with active
BM who were either previously untreated or were refractory to local treatment [58]. The
trial demonstrated an intracranial overall response rate (ORR) of 73.3% and a median
progression-free survival (mPFS) of 21.0 months [59,60]. The phase II DEBBRAH trial
evaluated TDXd in HER2-positive breast cancer in distinct cohorts, including patients
with stable BM treated with local therapy, patients with asymptomatic and untreated BM,
patients with progressive BM refractory to local therapy, and patients with LM. The first
data read out from this study, which excluded the LM cohort, demonstrated an intracranial
ORR of 66.7% and a 6-month PFS rate of 78.7% [61]. Separate publication of the LM
cohort demonstrated an mPFS of 8.9 months and a median overall survival (mOS) of
13.3 months [62]. Most recently, the DESTINY-Breast12 study enrolled 263 patients with
HER2-positive breast cancer and BM. CNS-specific ORR and 12-month CNS-specific PFS
were, respectively, 79.2% and 57.8% in patients with stable BM and 62.3% and 60.1% in
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patients with active BM [63]. Thus far, no clinical trials have been performed with ADCs
in NSCLC specifically for patients with CNS metastases. However, multiple studies have
included subsets of patients with BM.

4. HER2 Antibody–Drug Conjugates

HER2 is a transmembrane receptor tyrosine kinase encoded by the ERBB2 gene that,
under normal conditions and upon ligand binding by its dimerization partner (e.g., EGFR
or HER3), heterodimerizes to activate a variety of downstream signaling pathways such as
the phosphoinositide 3-kinases (PI3K) and the mitogen-activated protein kinase (MAPK)
pathways. When HER2 is mutated or amplified during tumorigenesis, it becomes con-
stitutively activated in the absence of ligand binding, leading to enhanced dimerization
resulting in downstream signaling and cell proliferation [64]. In NSCLC, HER2 is impli-
cated as an oncogene via amplification, protein overexpression, or HER2 mutations, the
most common of which are exon 20 insertion mutations [65,66].

Approximately 2% of tumors from patients with NSCLC harbor HER2-activating
mutations [64]. HER2 mutations in NSCLC are associated with young age, female sex,
never smoker status, and advanced, more aggressive disease that is associated with poor
prognoses [67–73]. Patients with HER2-mutant NSCLC have a high incidence of BM, with
point estimates between 9–32% of patients, making these patients more likely to develop
BM than KRAS or EGFR-mutant NSCLC [66–71,74,75].

HER2 is amplified in 2–5% of patients with NSCLC, and the prevalence of BM in
these patients is between 2 and 22% [65,73,76,77]. In the 2–30% of patients with NSCLC
whose tumor has HER2 protein overexpression, the prevalence of BM is approximately
7–23% [72,73,76]. Compared to HER2-mutant NSCLC, patients with NSCLC whose tumors
have HER2 amplification or protein overexpression are not associated with any specific
clinicopathological features, such as age, sex, smoking status, or stage at diagnosis [66,72].
Furthermore, the prognosis of NSCLC patients with HER2 amplification appears to be
similar to that of NSCLC patients with HER2 mutations [78].

4.1. Trastuzumab Emtansine

Trastuzumab emtansine (T-DM1) is an ADC with a DAR of 3.5:1 that consists of
trastuzumab, a humanized anti-HER2 IgG1 monoclonal antibody, and emtansine, a deriva-
tive of the tubulin inhibitor drug maytansine, which are linked via a nonreducible thioether
linker (Figure 1) [79]. While it has been primarily studied in HER2-amplified breast cancer,
it has also been investigated in patients with advanced-stage NSCLC, including those
with HER2 mutations and HER2 overexpression [80–87]. In HER2-mutant NSCLC pa-
tients with locally advanced, recurrent, or metastatic disease, T-DM1 showed an ORR of
38–44%, an mPFS of 2.8–5.0 months, and an mOS of 5.0–8.1 months (Figure 1) [84,85,88].
In patients with HER2 overexpressing locally advanced, recurrent, or metastatic NSCLC,
T-DM1 demonstrated an ORR of 6.7–20.0%, an mPFS of 2.0–2.6 months, and an mOS
of 10.9–12.2 months (Figure 1) [86–88]. Together, these results suggest a limited role for
T-DM1 in HER2-altered NSCLC.

To date, no clinical trials using T-DM1 for patients with NSCLC have included sub-
group analyses on patients with BM, nor have there been studies specifically analyzing
this patient population. However, in patients with HER2-positive breast cancer with BM,
the KAMILLA trial, which studied patients with advanced HER2-positive breast cancer,
also included BM patients with untreated and asymptomatic or previously irradiated
and controlled disease. The study has shown an ORR of 21.4%, an mPFS of 5.5 months,
and an mOS of 18.9 months with T-DM1 [83]. Furthermore, a subgroup analysis of the
DESTINY-Breast03 trial comparing T-DM1 to TDXd in patients with HER2-positive breast
cancer demonstrated a clinical inferiority of T-DM1 versus TDXd [82].
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Figure 1. Antibody–drug conjugates evaluated for non-small cell lung cancer. HER2-targeting anti-
body–drug conjugates (ADCs) include trastuzumab emtansine (T-DM1), SHR-A1811, and 
trastuzumab deruxtecan (TDXd). TROP2-targeting ADCs include Sacituzumab govetican, datopo-
tomab deruxtecan (Dato-DXd), and Sacituzumab tirumotecan. HER3-targeting ADCs include patri-
tumab deruxtecan and the EGFR-HER3 bispecific ADC BL-B01D1. MET-targeting ADC includes 
Telisotuzumab vedotin. Outcomes for patients with non-small cell lung cancer are described. Ab-
breviations. ADC, antibody–drug conjugate; DAR, drug-to-antibody ratio; IgG, immunoglobulin G; 
mOS, median overall survival; mPFS median progression-free survival; NSCLC, non-small cell lung 
cancer; ORR, overall response rate. Original figure made with Biorender©. 

Figure 1. Antibody–drug conjugates evaluated for non-small cell lung cancer. HER2-targeting
antibody–drug conjugates (ADCs) include trastuzumab emtansine (T-DM1), SHR-A1811, and
trastuzumab deruxtecan (TDXd). TROP2-targeting ADCs include Sacituzumab govetican, datopo-
tomab deruxtecan (Dato-DXd), and Sacituzumab tirumotecan. HER3-targeting ADCs include pa-
tritumab deruxtecan and the EGFR-HER3 bispecific ADC BL-B01D1. MET-targeting ADC includes
Telisotuzumab vedotin. Outcomes for patients with non-small cell lung cancer are described. Ab-
breviations. ADC, antibody–drug conjugate; DAR, drug-to-antibody ratio; IgG, immunoglobulin G;
mOS, median overall survival; mPFS median progression-free survival; NSCLC, non-small cell lung
cancer; ORR, overall response rate. Original figure made with Biorender©.
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4.2. Trastuzumab Deruxtecan

TDXd is an ADC with a DAR of 8:1 consisting of trastuzumab and deruxtecan (DXd),
an exatecan with potent topoisomerase I inhibitory activity (Figure 1) [50]. The antibody
and payload are linked by a protease-cleavable maleimide tetrapeptide linker, which is
cleaved through lysosomal enzyme activity during ADC internalization.

TDXd has been granted accelerated approval by the U.S. Food and Drug adminis-
tration (FDA) for treatment-refractory, unresectable HER2-mutated NSCLC, as well as
for adult patients with unresectable or metastatic HER2-positive solid tumors who have
received prior systemic therapy and have no alternative treatment options [89,90].

The phase II DESTINY-Lung01 study investigated TDXd in patients with either HER2-
mutant or HER2-overexpressing NSCLC. In patients whose tumors harbored HER2 muta-
tions, TDXd elicited an ORR of 55%, an mPFS of 8.2 months, and an mOS of 17.8 months
(Figure 1) (Table 1). Importantly, the DESTINY-Lung01 study included a cohort of HER2-
mutant NSCLC patients with stable BM, comprising 33 of the 91 (36.3%) patients included
in the study (Figure 2) (Table 1). These patients experienced an ORR of 54.5%, an mPFS of
7.1 months, and an mOS of 13.8 months, results that are comparable to the cohort-at-large
(Table 1) (Figure 2) [89].

The DESTINY-Lung01 trial also included a cohort of patients with treatment-refractory
advanced NSCLC with HER2 overexpression. This arm of the trial included two dosing
regimens with TDXd given at 5.4 mg/kg and 6.4 mg/kg. In the cohort-at-large, the
5.4 mg/kg regimen produced an ORR of 34.1%, an mPFS of 6.7 months, and an mOS
of 11.2 months, while the 6.4 mg/kg regimen resulted in an ORR of 26.5%, an mPFS of
5.7 months, and an mOS of 12.4 months (Figure 1) (Table 1). Of the patients included in the
study, 12 out of 41 (29.3%) in the 5.4 mg/kg cohort and 17 of 49 (34.7%) in the 6.4 mg/kg
cohort had stable BM (Figure 2) (Table 1). In this subgroup of BM patients, the 5.4 mg/kg
regimen showed an ORR of 50.0%, an mPFS of 7.1 months, and an mOS that was not
reached, while the 6.4 mg/kg regimen showed an ORR of 29.0%, an mPFS of 4.6 months,
and an mOS of 13.5 months (Figure 2) (Table 1) [91].

This study was followed by the DESTINY-Lung02 trial, which was performed to
compare clinical benefits of TDXd with 5.4 mg/kg versus 6.4 mg/kg dosing in patients
with advanced NSCLC and HER2 mutations. In the cohort-at-large, the ORR was 49%
and 56% in patients receiving 5.4 mg/kg and 6.4 mg/kg of TDXd, respectively (Figure 1)
(Table 1). Of the patients included in the study, 35 out of 102 (34.3%) in the 5.4 mg/kg
cohort and 22 of 50 (44.0%) in the 6.4 mg/kg cohort had stable BM (Figure 2) (Table 1). In
this cohort of BM patients, the ORR was 60% and 45.5% in patients receiving 5.4 mg/kg
and 6.4 mg/kg of TDXd, respectively (Figure 2) (Table 1) [92].
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Table 1. Summary of available clinical trials of antibody–drug conjugates in non-small cell lung cancer patients containing survival data of brain metastases.

Trial PMID Patient Population Treatment
Arms

CNS
Metastasis
Eligibility

ALL PATIENTS PATIENTS WITH BM

Population
Size (N) ORR DCR Median

DOR
Median

PFS
Median

OS
Population

Size (N) ORR DCR Median
DOR

Median
PFS

Median
OS

HERTHENA-
Lung01

PMID:
37689979

[93]

Previously treated
patients (EGFR-TKI or

platinum-based
chemotherapy) with
locally advanced or
metastatic NSCLC

with EGFR-activating
mutations (exon

19 deletion or L858R)

Patritumab
deruxtecan
5.6 mg/kg

Stable BM 225 29.8% 73.8% 6.4 months 5.5 months 11.9
months 115 28.7% 70.4% 5.5

months
4.3

months
11.6

months

U31402-A-
U102

PMID:
34548309

[94]

Previously treated
patients (EGFR-TKI)

with locally advanced
or metastatic NSCLC
with EGFR-activating

mutations

Patritumab
deruxtecan
5.6 mg/kg

Stable BM 57 39.0% 72.0% 6.9 months 8.2 months NA 25 32.0% NA NA NA NA

BL-B01D1
PMID:

38823410
[95]

Locally advanced or
metastatic patients
with solid tumors,

including NSCLC for
which no standard

treatment was
available

BL-
B01D1 dose
escalation to
3.0 mg/kg,

3.5 mg/kg, or
6.0 mg/kg

Stable BM
mEGFR:

40;
wt EGFR:

62

mEGFR:
52.9%;

wtEGFR:
30.6%

mEGFR:
87.5%;

wtEGFR:
87.1%

mEGFR:
8.5 months;
wtEGFR:

NE

mEGFR:
5.6 months;
wtEGFR:

5.4 months
NA

mEGFR:
17;

wtEGFR:
10

mEGFR:
41.2%;

wtEGFR:
20.0%

mEGFR:
100.0%;

wtEGFR:
100.0%

NA NA NA

DESTINY
Lung-01

PMID:
38547891

[91]

Unresectable or
metastatic NSCLC
patients that was

refractory to standard
treatment with

HER2 overexpression

Trastuzumab
deruxtecan
5.4 mg/kg

versus
6.4 mg/kg

Stable BM
5.4 mg/kg

41;
6.4 mg/kg:

49

5.4 mg/kg:
34.1%;

6.4 mg/kg:
26.5%

5.4 mg/kg:
78.0%;

6.4 mg/kg:
69.4%

5.4 mg/kg:
6.2 months;
6.4 mg/kg:
5.8 months

5.4 mg/kg:
6.7 months;
6.4 mg/kg:
5.7 months

5.4 mg/kg:
11.2

months;
6.4 mg/kg:

12.4
months

5.4 mg/kg
12;

6.4 mg/kg:
17

5.4 mg/kg:
50.0%;

6.4 mg/kg:
29.0%

NA NA

5.4 mg/kg:
7.1

months;
6.4 mg/kg:

4.6
months

5.4 mg/kg:
NE;

6.4 mg/kg:
13.5

months

DESTINY
Lung-01

PMID:
34534430

[89]

Unresectable or
metastatic NSCLC
patients that was

refractory to standard
treatment with

HER2 mutations

Trastuzumab
deruxtecan
6.4 mg/kg

Stable BM 91 55.0% 92.0% 9.3 months 8.2 months 17.8
months 33 54.5% NA NA 7.1

months
13.8

months

DESTINY
Lung-02

PMID:
37694347

[92]

Unresectable or
metastatic NSCLC
patients that was

previously treated
with standard
treatment with

HER2 mutations

Trastuzumab
deruxtecan
5.4 mg/kg

versus
6.4 mg/kg

Stable BM
5.4 mg/kg:

102,
6.4 mg/kg:

50

5.4 mg/kg:
49%,

6.4 mg/kg:
56%

5.4 mg/kg:
93.1%,

6.4 mg/kg:
92.0%

5.4 mg/kg:
16.8

months,
6.4 mg/kg:

NE

5.4 mg/kg:
9.9 months,
6.4 mg/kg:

15.4
months

5.4 mg/kg:
19.5

months,
6.4 mg/kg:

NE

5.4 mg/kg:
35,

6.4 mg/kg:
22

5.4 mg/kg:
60%,

6.4 mg/kg:
45.5%

NA NA NA NA

Abbreviations. BM, brain metastases; CNS, central nervous system; DCR, disease control rate; DOR, duration of response; HER2, human epidermal growth factor receptor 2; kg,
kilogram; mg, milligram; mEGFR, mutant epidermal growth factor receptor; NA, not available; NE, not estimable; NSCLC, non-small cell lung cancer; ORR, overall response rate; OS,
overall survival; PFS, progression-free survival; PMID, PubMed identifier; TKI, tyrosine-kinase inhibitor; wtEGFR, wild-type EGFR.
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Figure 2. Antibody–drug conjugates evaluated for non-small cell lung cancer brain metastases.Out-
comes for patients with non-small cell lung cancer brain metastases are described. Abbreviations. 
ADC, antibody–drug conjugate; BM, brain metastasis; HR, hazard ratio; mOS, median overall sur-
vival; mPFS median progression-free survival; NE, not estimable; NSCLC, non-small cell lung can-
cer; ORR, overall response rate. Original figure made with Biorender©. 

 

Figure 2. Antibody–drug conjugates evaluated for non-small cell lung cancer brain metas-
tases.Outcomes for patients with non-small cell lung cancer brain metastases are described. Abbrevi-
ations. ADC, antibody–drug conjugate; BM, brain metastasis; HR, hazard ratio; mOS, median overall
survival; mPFS median progression-free survival; NE, not estimable; NSCLC, non-small cell lung
cancer; ORR, overall response rate. Original figure made with Biorender©.

Importantly, CNS-specific outcomes were not published for the DESTINY-Lung01,
nor the DESTINY-Lung02 trials. Despite this, the findings from the DESTINY-Lung01 and
DESTINY-Lung02 studies suggest that patients with stable BM experience systemic ORR
and PFS that is similar to the cohort-at-large, and that the additional toxicity seen with the
6.4 mg/kg dose does not add additional therapeutic activity beyond what was observed
with 5.4 mg/kg in both HER2-mutant and overexpressing NSCLC.

Outside of NSCLC, TDXd has demonstrated impressive efficacy in the CNS when
studied in prospective and retrospective cohorts of breast cancer patients who had stable
or active and progressive CNS metastases [58,60–63,96,97]. These findings, in combination
with the DESTINY-Lung01 and DESTINY-Lung02 trials, suggest that patients with HER2-
mutated or overexpressing BM may be uniquely poised to experience similar treatment
outcomes compared to patients without BM when treated with TDXd. While DESTINY-
Lung01 and DESTINY-Lung02 are single-armed studies, it is apparent that HER2-mutated
NSCLC patients would likely experience superior outcomes when treated with TDXd
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compared to an alternative standard of care [89,91,92,98]. Importantly, the same cannot be
said for patients with NSCLC whose extracranial tumors overexpress HER2, for whom
ORR and mPFS in the DESTINY-Lung01 trial are closer to historical controls [91,98]. For
this reason, the subgroup of patients with HER2-overexpressing NSCLC who specifically
have CNS metastases, after further study, may be uniquely positioned to derive benefit
from TDXd compared to alternative agents that possess poor intracranial activity

4.3. Other HER2-Targeting ADCs

Novel ADCs targeting HER2 alterations in NSCLC are currently being investigated
in clinical trials. SHR-A1811 is a novel HER2-targeting ADC consisting of a trastuzumab
antibody conjugated with a novel DNA topoisomerase I inhibitor payload (SHR9265) by a
cleavable tetrapeptide-based linker (Figure 1). With a DAR of 6:1, SHR-A1811 has demon-
strated superior membrane permeability, cytotoxicity, and antitumor activity in in vitro
and in vivo preclinical models when compared with TDXd. Results from a phase I/II
trial investigating SHR-A1811 in HER2-mutated advanced-staged and treatment-refractory
NSCLC patients have shown an ORR of 38.1% and an mPFS of 9.5 months (Figure 1). Of
the patients included in the study, 17 out of 63 (27.0%) had stable BM at enrollment, but
no subgroup analysis on the survival outcomes of these patients has been published to
date [99].

5. HER3 Antibody–Drug Conjugates

HER3, encoded by the ERBB3 gene, is a receptor tyrosine pseudokinase that has
no intrinsic kinase activity but binds to ligands and dimerizes with other receptor tyro-
sine kinases, such as the ligand binding-impaired HER2 [100,101]. The overexpression of
HER3 has been identified in a number of solid tumors in both pre- and post-treatment
settings, including NSCLC [102]. HER3 expression can be identified by immunohistochem-
istry in most NSCLC specimens, and HER3 has consistently been found to be overexpressed
in BM when compared to matched and unmatched primary tumors [36,38,39,103,104].

5.1. Patritumab Deruxtecan

Patritumab deruxtecan (HER3-DXd) is an ADC comprised of patritumab, a human-
ized anti-HER3 IgG1 monoclonal antibody, and deruxtecan. The two components are
covalently linked with a tetrapeptide-based linker, with HER3-DXd having a DAR of 8:1
(Figure 1) [105].

HER3-DXd has been studied in clinical trials that included patients with breast cancer
and NSCLC [93,94,106,107]. In NSCLC, the phase II HERTHENA-Lung01 study included
patients with EGFR mutations who were refractory to EGFR–tyrosine kinase inhibitors
(TKIs) and platinum-based chemotherapy. The trial demonstrated an ORR of 29.8%, an
mPFS of 5.5 months, and an mOS of 11.9 months (Figure 1) (Table 1). Of the patients
included in the trial, 115 out of 225 (51.1%) had stable and asymptomatic BM, with an ORR
of 28.7%, a median duration of response (mDOR) of 5.5 months, an mPFS of 4.3 months,
and an mOS of 11.6 months in this subgroup, which is comparable to the cohort-at-large
(Figure 2) (Table 1). Of note, 30 included patients had BM on diagnosis of NSCLC that
was not pretreated with intracranial radiotherapy. This subgroup demonstrated an ORR of
33.3%, and an mDOR of 8.4 months [93]. The phase III trial HERTHENA-Lung02 is currently
underway, evaluating patients with advanced NSCLC refractory to third-generation EGFR-
TKIs, and also permits patients with stable BM to participate in the study (Table 2) [108].
The ongoing TUXEDO-03 trial is specifically tailored to evaluate HER3-DXd in patients
with breast cancer or NSCLC with active BM who have received at least one previous
line of systemic therapy in the advanced setting, and in metastatic solid tumor patients
who have either treatment-naïve LM or post-radiation recurrent LM who do not require
immediate local treatment (Table 2) [59].
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Table 2. Summary of ongoing clinical trials evaluating antibody–drug conjugates in overall non-small cell lung cancer patients and central-nervous system–specific
non-small cell lung cancer patients.

Trial Trial Type
National Clinical

Trial Number
(NCT)

Patient Population Antibody–Drug
Conjugate

Antibody
Target Payload Type CNS Metastasis

Eligibility Status

C
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sp
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c
N

SC
LC

st
ud
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s

Efficacy and Safety of T-DXd
in HER2-mutant Advanced
Lung Cancer Patients with

Asymptomatic Brain
Metastases (ELPIS)

Phase II NCT06250777

Locally advanced and
unresectable NSCLC with
activating HER2 mutation

and untreated
asymptomatic BM at

baseline

Trastuzumab
deruxtecan HER2 Topoisomerase I

inhibitor

CNS
metastasis-specific

study

Not yet
recruiting

HER3-DXd in Breast Cancer
and NSCLC Brain

Metastases and Solid Tumor
Leptomeningeal Disease

(TUXEDO-3)

Phase II NCT05865990

Previously treated
metastatic NSCLC with

newly diagnosed or
progressive BM

Patritumab
deruxtecan HER3 Topoisomerase I

inhibitor

CNS
metastasis-specific

study
Recruiting

N
on

-C
N

S-
sp

ec
ifi

c
N

SC
LC

st
ud

ie
s

CAB-AXL-ADC Safety and
Efficacy Study in Adults

with NSCLC
Phase II NCT04681131 Metastatic NSCLC CAB-AXL-ADC AXL

Auristatin
microtubule

inhibitor
Uncontrolled CNS
disease excluded Recruiting

A Study of MORAb-202 in
Participants with Previously

Treated Metastatic
Non-Small Cell Lung Cancer
(NSCLC) Adenocarcinoma

(AC)

Phase II NCT05577715

Metastatic NSCLC with
treatment-refractory

progressive disease while
on PD-1/L1-, EGFR-, or

ALK- targeting therapies

Mecbotamab
vedotin, no dosing

available;
mecbotamab
vedotin and a
PD-1 inhibitor

AXL
Auristatin

microtubule
inhibitor

No mention of CNS
disease in the

eligibility criteria
Recruiting

A Study of BL-B01D1 and
BL-B01D1 in Combination
with Osimertinib Mesylate

Tablets in Patients with
Locally Advanced or

Metastatic Non-small Cell
Lung Cancer

Phase II NCT05880706
Locally advanced,

unresectable, or metastatic
NSCLC

BL-B01D1 EGFRxHER3 Topoisomerase I
inhibitor

Active CNS disease
excluded Recruiting

Phase 2 Study to Investigate
Luveltamab Tazevibulin in
Adults with Advanced or
Metastatic Non-small Cell

Lung Cancer

Phase II NCT06555263

Locally advanced,
unresectable, or metastatic

NSCLC with positive
FOLR1 expression and

treatment-refractory
disease

Luveltamab
tazevibulin FOLR1 Tubulin inhibitor

Previously treated
BM included;

untreated CNS
disease excluded

Recruiting

Study to Investigate
Luveltamab Tazevibulin in
Adults with Advanced or
Metastatic Non-small Cell

Lung Cancer

Phase II NCT06555263

Locally advanced,
unresectable or metastatic
NSCLC that is refractory
to systemic therapy with

positive FOLR1 expression

Luveltamab
tazevibulin FOLR1 Tubulin inhibitor Untreated CNS

disease excluded Recruiting
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Table 2. Cont.
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Phase Ib Study of the Safety
of T-DXd and

Immunotherapy Agents with
and Without Chemotherapy
in Advanced or Metastatic

HER2+, Non-squamous
NSCLC (DL03)

Phase I NCT04686305

Locally advanced or
metastatic non-squamous
NSCLC that are refractory

to systemic therapy or
treatment-naïve with
HER2 overexpression

Trastuzumab
deruxtecan HER2 Topoisomerase I

inhibitor

Untreated an
symptomatic CNS
disease excluded

Recruiting

A Clinical Trial of
TQB2102 for Injection in

Non-small Cell Lung Cancer
with HER2 Gene

Abnormality

Phase II NCT06496490

Locally advanced,
unresectable or metastatic
NSCLC that is refractory

to standard of care therapy

TQB2102 HER2 Topoisomerase I
inhibitor

Stable BM included;
symptomatic and
progressive CNS
disease, or LMD

excluded

Recruiting

HER3-DXd in Metastatic or
Unresectable Non-Small Cell

Lung Cancer
Phase I NCT03260491

Locally advanced,
unresectable or metastatic

NSCLC with
EGFR-activating
mutations with

progression on previously
responsive EGFR-TKI

treatment

Patritumab
deruxtecan HER3 Topoisomerase I

inhibitor

Clinically inactive or
treated and

asymptomatic BM
included; untreated
and symptomatic

CNS disease
excluded

Recruiting

HERTHENA-Lung02: A
Study of Patritumab
Deruxtecan Versus

Platinum-based
Chemotherapy in Metastatic

or Locally Advanced
EGFRm NSCLC After

Failure of EGFR TKI Therapy

Phase III NCT05338970

Locally advanced, or
metastatic nonsquamous
NSCLC with EGFR TKI

treatment-refractory
disease and EGFR

mutations

Patritumab
deruxtecan HER3 Topoisomerase I

inhibitor

Untreated and
symptomatic BM,

and history or
presence of LMD

excluded

Active, not
recruiting

A Study of SGN-B6A Versus
Docetaxel in Previously

Treated Non-small Cell Lung
Cancer

Phase III NCT06012435

Locally advanced,
unresectable, or metastatic

NSCLC with
non-squamous histology
and with progression on

previous chemotherapy or
targeted therapy

Sigvotatug
vedotin IB6

Auristatin
microtubule

inhibitor

Stable and treated
BM included; active

CNS disease and
LMD excluded

Recruiting

Clinical Study of
Antibody-Drug Conjugate
MYTX-011 in Subjects with

Non-Small Cell Lung Cancer

Phase I NCT05652868

Locally advanced,
recurrent, or metastatic

NSCLC with MET
alterations that is

refractory to the standard
of care therapy

MYTX-011 MET
Auristatin

microtubule
inhibitor

Uncontrolled and
untreated CNS

disease excluded
Recruiting
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Table 2. Cont.

Trial Trial Type
National Clinical

Trial Number
(NCT)
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A Study to Assess Disease
Activity and Adverse Events

of Intravenous (IV)
Telisotuzumab Vedotin

Compared to IV Docetaxel in
Adult Participants with

Previously Treated
Non-Squamous Non-Small
Cell Lung Cancer (NSCLC)

Phase III NCT04928846

Locally advanced,
unresectable, or metastatic

nonsquamous NSCLC
with treatment-refractory

disease and MET
overexpression

Telisotuzumab
Vedotin MET Microtubule

inhibitor

Stable CNS disease
included; new and

untreated CNS
disease, and LMD

excluded

Recruiting

Study of REGN5093-M114
(METxMET Antibody-Drug
Conjugate) in Adult Patients
with Mesenchymal Epithelial

Transition Factor (MET)
Overexpressing Advanced

Cancer

Phase I/II NCT04982224

Locally advanced,
unresectable or metastatic

NSCLC with MET
overexpression

REGN5093-M114 METxMET Microtubule
inhibitor

Untreated and active
CNS disease and
LMD excluded

Recruiting

First-in-Human Study of
XMT-1536 in Cancers Likely

to Express NaPi2b
Phase I/II NCT03319628 Metastatic NSCLC

adenocarcinoma
Upifitamab
rilsodotin NaPi2b

Auristatin
microtubule

inhibitor

Untreated CNS
disease, such as new
and progressive BM,
and history of LMD

excluded

Active, not
recruiting

An Efficacy and Safety Study
of Cofetuzumab Pelidotin in

Participants with
PTK7-Expressing, Recurrent
Non-Small Cell Lung Cancer

Phase I NCT04189614

Recurrent and
treatment-refractory

NSCLC with
PTK7 expression

Cofetuzumab
pelidotin PTK7

Auristatin
microtubule

inhibitor

Asymptomatic and
treated CNS disease

included; active
CNS disease

excluded

Active, not
recruiting

Datopotamab Deruxtecan
(Dato-DXd) in Combination
with Pembrolizumab with or

Without Platinum
Chemotherapy in Subjects

with Advanced or Metastatic
Non-Small Cell Lung Cancer

(TROPION-Lung02)

Phase I NCT04526691

Locally advanced,
unresectable, or metastatic
NSCLC without actionable
genomic alterations (e.g.,
ROS1, MET, EGFR, ALK,

etc.) and with
treatment-refractory
progressive disase

Datopotamab
deruxtecan TROP2 Topoisomerase I

inhibitor

Active and
untreated CNS

disease excluded
Active, not
recruiting

Phase 1b Study of Dato-DXd
in Combination with

Immunotherapy with or
Without Carboplatin in
Advanced or Metastatic

Non-Small Cell Lung Cancer
(TROPION-Lung04)

Phase I NCT04612751

Locally advanced,
unresectable, or metastatic

NSCLC without EGFR-
nor ALK-mutations

Datopotamab
deruxtecan TROP2 Topoisomerase I

inhibitor

Clinically active
CNS disease

excluded
Recruiting
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A Study of Dato-DXd in
Chinese Patients with

Advanced Non-Small Cell
Lung Cancer, Triple-negative

Breast Cancer and Other
Solid Tumors

(TROPION-PanTumor02)

Phase I/II NCT05460273

Locally advanced,
unresectable, or metastatic

NSCLC with
treatment-refractory
progressive disease

Datopotamab
deruxtecan TROP2 Topoisomerase I

inhibitor LMD excluded Active, not
recruiting

SKB264 Combination
Therapy in Patients with
Advanced or Metastatic

Non-small Cell Lung Cancer.

Phase II NCT05351788
Locally advanced,

unresectable, or metastatic
NSCLC

SKB264 TROP2 Topoisomerase I
inhibitor

Active CNS
metastasis, LMD,
and metastases to
the brainstem and

spinal cord excluded

Recruiting

Study of DS-1062a in
Advanced or Metastatic

Non-small Cell Lung Cancer
with Actionable Genomic

Alterations
(TROPION-Lung05)

Phase II NCT04484142

Locally advanced,
unresectable, or metastatic

NSCLC with actionable
genomic alterations (e.g.,
ROS1, MET, EGFR, ALK,

etc.) and with
treatment-refractory
progressive disase

Datopotamab
deruxtecan TROP2 Topoisomerase I

inhibitor

Inactive BM
included; untreated
and symptomatic
CNS disease, and

LMD excluded

Active, not
recruiting with

results (no
survival data

available)

Study of Dato-DXd Plus
Pembrolizumab vs.

Pembrolizumab Alone in the
First-line Treatment of

Subjects with Advanced or
Metastatic NSCLC Without

Actionable Genomic
Alterations

(TROPION-Lung08)

Phase III NCT05215340

Locally advanced,
unresectable, or metastatic
NSCLC without actionable
genomic alterations (e.g.,
ROS1, MET, EGFR, ALK,

etc.) and with
PD-L1 expression of 50%

or more

Datopotamab
deruxtecan TROP2 Topoisomerase I

inhibitor

Previously treated
and stable BM

included; active and
untreated CNS

disease, and LMD
excluded

Recruiting

Phase III, Open-label,
First-line Study of Dato-DXd

in Combination with
Durvalumab and

Carboplatin for Advanced
NSCLC Without Actionable

Genomic Alterations
(AVANZAR)

Phase III NCT05687266

Locally advanced,
unresectable, or metastatic

NSCLC that is not
amenable to

chemoradiation and
without actionable

genomic alterations (e.g.,
ALK, ROS1, MET, etc.)

Datopotamab
deruxtecan TROP2 Topoisomerase I

inhibitor

Active BM and
history of LMD

excluded
Recruiting
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Sacituzumab Tirumotecan
(MK-2870) Versus

Chemotherapy in Previously
Treated Advanced or

Metastatic Nonsquamous
Non-small Cell Lung Cancer

(NSCLC) with EGFR
Mutations or Other Genomic
Alterations (MK-2870-004)

Phase III NCT06074588

Locally advanced,
unresectable, or metastatic

non-squamous NSCLC
with treatment-refractory

progressive disease

Sacituzumab
tirumotecan TROP2 Topoisomerase I

inhibitor

Previously treated
BM included; active

CNS disease and
LMD excluded

Recruiting

Study of Pembrolizumab
(MK-3475) Monotherapy

Versus Sacituzumab
Govitecan in Combination
with Pembrolizumab for

Participants with Metastatic
Non-small Cell Lung Cancer
(NSCLC) with Programmed
Cell Death Ligand 1 (PD-L1)

Tumor Proportion Score
(TPS) ≥50% (MK-3475-D46)

Phase III NCT05609968

Metastatic NSCLC without
an indication of EGFR-,

ALK-1, or ROS-1 targeted
therapies and with a

PD-L1 tumor proportion
score of 50% or more

Sacituzumab
govitecan TROP2 Topoisomerase I

inhibitor
Active CNS disease
and LMD excluded Recruiting

A Study to Assess the Safety,
Pharmacokinetics, and
Antitumor Activity of

BC3195 in Patients with
Advanced or Metastatic

Cancer

Phase I NCT06548672

Locally advanced or
metastatic solid tumors,

including NSCLC, that is
refractory or not amenable

to the standard of care
therapy

BC3195 CDH3
Auristatin

microtubule
inhibitor

Previously treated
and stable BM

included; active
CNS disease and
LMD excluded

Recruiting

A Study of PF-08046050
(SGN-CEACAM5C) in

Adults with Advanced Solid
Tumors

Phase I NCT06131840

Locally advanced,
unresectable or metastatic

solid tumors, including
NSCLC, that is refractory

or not amenable to the
standard of care therapy

PF-08046050 CEACAM5 Topoisomerase I
inhibitor

Stable and treated
BM included Recruiting

A Phase 1 Study of
CPO301 in Adult Patients

with Advanced or Metastatic
Solid Tumors

Phase I NCT05948865

Advanced or metastatic
solid tumors, including

NSCLC, that is refractory
or not amenable to the

standard of care therapy

CPO301 EGFR NA
Known, active, or
uncontrolled CNS
disease and LMD

excluded
Recruiting
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First in Human Study of
AZD9592 in Solid Tumors

(EGRET)
Phase I NCT05647122

Locally advanced or
metastatic solid tumors,

including metastatic
NSCLC in subgroups of
EGFR-mutant or EGFR

wild-type disease, that is
refractory or not amenable

to the standard of care
therapy

AZD9592 EGFRxMET Topoisomerase I
inhibitor

Stable and treated
BM included; active
and untreated BM

and history of LMD
excluded

Recruiting

AMT-151 in Patients with
Selected Advanced Solid

Tumours
Phase I NCT05498597

Advanced solid tumors,
including NSCLC, that is

refractory or not amenable
to the standard of care

therapy

AMT-151 FOLR1 NA Untreated CNS
disease excluded Recruiting

A Study of LY4170156 in
Participants with Selected
Advanced Solid Tumors

Phase I NCT06400472

Advanced solid tumors,
including NSCLC, that is

refractory or not amenable
to the standard of care

therapy

LY4170156 FOLR1 Topoisomerase I
inhibitor

Active and
untreated BM, and

history of LMD
excluded

Recruiting

A Study to Evaluate the
Safety, Tolerability, and
Efficacy of MORAb-202
(Herein Referred to as

Farletuzumab Ecteribulin), a
Folate Receptor Alpha

(FRα)-Targeting
Antibody-drug Conjugate
(ADC) in Participants with

Selected Tumor Types

Phase I/II NCT04300556

Metastatic solid tumors,
including NSCLC, that is

refractory or not amenable
to the standard of care

therapy

Farletuzumab
ecteribulin FOLR1 Tubulin inhibitor

Treated and stable
BM included;

untreated BM or
subdural disease

excluded

Recruiting

PRO1184 for Advanced Solid
Tumors (PRO1184-001) Phase I/II NCT05579366

Locally advanced,
unresectable or metastatic

solid tumors, including
NSCLC, that is refractory

or not amenable to the
standard of care therapy

PRO1184 FOLR1 Topoisomerase I
inhibitor

Previously treated
and stable BM

included; active
CNS disease

excluded

Recruiting

Safety of GQ1001 in Adult
Patients with HER2-Positive

Advanced Solid Tumors
Phase I NCT04450732

Locally advanced or
metastatic

HER2-expressing solid
tumors, including NSCLC,

that is refractory or not
amenable to the standard

of care therapy

GQ1001 HER2 Pyrotinib,
HER-TKI

Treated and
asymptomatic BM

included; untreated
and symptomatic

BM excluded

Recruiting
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DS8201a and
Pembrolizumab in

Participants with Locally
Advanced/Metastatic Breast

or Non-Small Cell Lung
Cancer

Phase I NCT04042701

Locally advanced or
metastatic breast cancer or

NSCLC with
HER2-overexpression or

HER2-mutant disease

Trastuzumab
deruxtecan HER2 Topoisomerase I

inhibitor
Active CNS disease

excluded Recruiting

A Study of Disitamab
Vedotin in Previously

Treated Solid Tumors That
Express HER2

Phase II NCT06003231

Locally advanced,
unresectable or metastatic

solid tumors, including
NSCLC, that is refractory

or not amenable to the
standard of care therapy,

has received prior
PDL-(L)1, and has a

HER2 overexpression

Disitamab vedotin HER2
Auristatin

microtubule
inhibitor

Active and
untreated CNS

disease and LMD
excluded

Recruiting

A Study of SGN-B6A in
Chinese Participants with
Advanced Solid Tumors

Phase I NCT06549816

Locally advanced,
unresectable or metastatic

solid tumors, including
NSCLC, that is refractory

or not amenable to the
standard of care therapy

Sigvotatug
vedotin IB6

Auristatin
microtubule

inhibitor

Stable and treated
BM included; active

CNS disease
excluded

Not yet
recruiting

A Study of SGN-MesoC2 in
Advanced Solid Tumors Phase I NCT06466187

Locally advanced,
unresectable or metastatic

solid tumors, including
NSCLC, that is refractory

or not amenable to the
standard of care therapy

SGN-MesoC2 MSLN N/A
Stable and treated

BM included;
untreated BM and

LMD excluded
Recruiting

A Study of PHN-010 in
Patients with Advanced

Solid Tumors
Phase I NCT06457997

Advanced or metastatic
solid tumors, including

NSCLC, that is refractory
or not amenable to the

standard of care therapy

PHN-010 NA NA Untreated CNS
disease excluded Recruiting

A Study of LY4101174 in
Participants with Recurrent,

Advanced or Metastatic
Solid Tumors

Phase I NCT06238479

Locally advanced or
metastatic solid tumors,

including NSCLC, that is
refractory or not amenable

to the standard of care
therapy

LY4101174 NECTIN4
Auristatin

microtubule
inhibitor

Known or suspected
uncontrolled CNS
disease excluded

Recruiting
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A Study of LY4052031 in
Participants with Advanced

or Metastatic Urothelial
Cancer or Other Solid
Tumors (NEXUS-01)

Phase I NCT06465069

Locally advanced or
metastatic solid tumors,

including NSCLC, that is
refractory or not amenable

to the standard of care
therapy

LY4052031 NECTIN4 Topoisomerase I
inhibitor

Known or suspected
uncontrolled CNS
disease excluded

Recruiting

Study BT8009-100 in Subjects
with Nectin-4 Expressing
Advanced Malignancies

Phase I/II NCT04561362

Locally advanced,
unresectable or metastatic

solid tumors, including
NSCLC, that is refractory

or not amenable to the
standard of care therapy

BT8009 NECTIN4
Auristatin

microtubule
inhibitor

Active and
untreated CNS and

LMD excluded
Recruiting

CAB-ROR2-ADC Safety and
Efficacy Study in Patients

with TNBC or Head & Neck
Cancer (Ph1) and NSCLC or

Melanoma (Ph2)

Phase I/II NCT03504488

Locally advanced,
unresectable or metastatic

solid tumors, including
NSCLC, that is refractory

or not amenable to the
standard of care therapy

Ozuriftamab
vedotin ROR2

Auristatin
microtubule

inhibitor
Uncontrolled CNS
disease excluded Recruiting

Study of XB002 in Subjects
with Solid Tumors

(JEWEL-101)
Phase I NCT04925284

Locally advanced,
unresectable, or metastatic

solid tumors, including
metastatic NSCLC, that is
refractory or not amenable

to the standard of care
therapy

XB002 TF
Auristatin

microtubule
inhibitor

Treated BM
included; untreated

and active BM or
cranial epidural
disease excluded

Active, not
recruiting

A Study to Evaluate
TROP2 ADC LCB84 Single
Agent and in Combination

with an Anti-PD-1 Ab in
Advanced Solid Tumors

Phase I/II NCT05941507

Advanced solid tumors,
including NSCLC, that is

refractory or not amenable
to the standard of care

therapy

LCB84 TROP2
Auristatin

microtubule
inhibitor

Stable and treated
BM included; active

and progressing
CNS disease or
LMD excluded

Recruiting
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A Phase 1/2 Study of
OBI-992 in Subjects with
Advanced Solid Tumors

Phase I/II NCT06480240

Advanced or metastatic
solid tumors, including

NSCLC, that is refractory
or not amenable to the

standard of care therapy

OBI-992 TROP2 Topoisomerase I
inhibitor

Treated and stable
BM included;

untreated CNS
disease excluded

Recruiting

Phase I-II, FIH, TROP2 ADC,
Advanced

Unresectable/Metastatic
Solid Tumors, Refractory to
Standard Therapies (A264)

Phase I/II NCT04152499

Locally advanced or
metastatic solid tumors,

including NSCLC, that is
refractory or not amenable

to the standard of care
therapy

Sacituzumab
tirumotecan TROP2 Topoisomerase I

inhibitor

Symptomatic and
active BM, history of

LMD, brainstem
metastasis, and

spinal cord
metastasis excluded

Recruiting

Abbreviations: ADC, antibody–drug conjugate; ALK, anaplastic lymphoma kinase; AXL, tyrosine-protein kinase receptor UFO; BM, brain metastases; CDH3, cadherin-3; CEACAM5,
carcinoembryonic antigen-related cell adhesion molecule 5; CNS, central nervous system; EGFR, epidermal growth factor receptor; FOLR1, folate receptor alpha-1; HER2/3, human
epidermal growth factor receptor 2/3; LMD, leptomeningeal disease; MET, hepatocyte growth factor; MSLN, mesothelin; NA, not available; NaPi2b, sodium-dependent phosphate
transport protein 2B; NECTIN4, nectin cell adhesion molecule 4; NSCLC, non-small cell lung cancer; IB6, integrin beta-6; PD-(L)1, programmed cell death (ligand)1; PTK7, tyrosine-protein
kinase-like 7; ROR2, receptor tyrosine kinase like orphan receptor 2; ROS1, ROS proto-oncogene 1; TF, human tissue factor; TKI, tyrosine kinase inhibitor; TROP2, trophoblast cell-surface
antigen 2.
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5.2. Other HER3-Targeting Antibody–Drug Conjugates

BL-B01D1 is a first-in-class EGFR-HER3 bispecific ADC with a DAR of 8:1. BL-
B01D1 consists of a bispecific humanized IgG1 anti-EGFR antibody fused to two anti-
HER3 humanized single-chain fragment variables via glycine-serin linkers, a tetrapeptide-
based cleavable link, and Ed-04, a camptothecin-based topoisomerase I inhibitor (Figure 1).
Of note, the antibody component of BL-B01D1 can target both mutant and wild-type EGFR.
A phase I study evaluated BL-B01D1 in locally advanced and metastatic NSCLC patients
both with and without EGFR mutations, among multiple other solid tumors. The study
included 102 patients with NSCLC, of which 27 (26.5%) had stable BM (Figure 2) (Table 1).
In the NSCLC cohort, the ORR was 52.5% (95% confidence interval (CI): 37.5–67.1%) in
patients with EGFR mutations and 30.6% (95% CI: 20.6–43.0%) in patients with wild-type
EGFR (Figure 1) (Table 1). The mPFS was 5.6 months in patients with EGFR mutations and
5.4 months in patients with wild-type EGFR (Figure 1) (Table 1). In the cohort of patients
with BM at the time of enrollment, the ORR was 41.2% (95% CI: 18.4–67.1%) in patients
whose tumors harbored EGFR mutations, and 20.0% (95% CI: 2.5–55.6%) in patients with
wild-type EGFR (Figure 1) (Table 1) [95]. A phase II trial to further characterize BL-B01D1 in
metastatic NSCLC is currently underway (Table 2).

6. TROP2 Antibody–Drug Conjugates

TROP2 is encoded by the tumor-associated calcium signal transducer 2 (TACSTD2)
gene expressed in many normal tissues [109]. TROP2 overexpression has been implicated
in multiple cancers, including breast cancer, glioblastoma, and NSCLC [110].

In NSCLC, multiple studies have described TROP2 overexpression in patients with
NSCLC, ranging from 42% to 100% of patients tested demonstrating intratumoral TROP2 ex-
pression by IHC [111–114]. Multiple studies have similarly shown that TROP2 overex-
pression has been associated with advanced tumor staging and shorter OS, particularly
in lung adenocarcinomas [111,113–116]. TROP2 overexpression has also been implicated
in treatment resistance and poor outcomes in NSCLC patients previously treated with
ICIs [116].

In NSCLC BM, one study observed high levels of TROP2 expression at the RNA
level that are ubiquitously present in resected BM of NSCLC patients, but no matched nor
unmatched primary tumors were described as controls [117]. More studies are required to
better understand if TROP2 overexpression status is enriched in NSCLC with BM.

6.1. Sacituzumab Govitecan

Sacituzumab govitecan (SG) is an ADC with a DAR of 7.6:1 consisting of a human-
ized anti-TROP2 IgG1 kappa antibody and the topoisomerase I inhibitor SN-38, the ac-
tive metabolite of irinotecan, which are linked by a pH-mediated hydrolysable linker
(Figure 1) [118]. SG has demonstrated prolonged PFS and OS compared to single-agent
physicians’ choice chemotherapy in patients with metastatic triple-negative breast can-
cer [119,120]. In NSCLC, the phase III EVOKE-01 trial compared SG to docetaxel in
patients with advanced NSCLC after progression on platinum-based chemotherapy and/or
immunotherapy. In the study, patients with stable and/or previously treated BM were
included with 35 out of 299 (11.7%) patients in the SG arm compared to 39 out of 304 (12.8%)
patients in the docetaxel arm (Figure 1). The mOS and mPFS were not significantly higher
in the SG arm versus the docetaxel arm, at 11.1 and 4.1 months versus 9.8 and 3.9 months,
respectively (Figure 1). Despite the significant number of NSCLC BM patients included in
the study, the authors did not describe survival outcomes in this subgroup [121].

While no studies have directly evaluated SG in NSCLC BM patients, a phase 0 clinical
trial evaluated SG in 25 recurrent glioblastoma and triple negative breast cancer BM patients
with treatment-refractory disease. This early phase study observed an intracranial ORR of
50% in breast cancer BM and 28% in glioblastoma, an mPFS of 8 months in breast cancer
BM and 2 months in glioblastoma, and an mOS of 35.2 months in breast cancer BM and
9.5 months in glioblastoma [122].
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In the context of negative survival outcomes with SG in NSCLC compared to docetaxel
in the population at-large in the EVOKE-01 trial, and a lack of described subgroup analyses
for the patients with BM included in the trial, it is unlikely that SG represents a viable
therapeutic option with enhanced intracranial efficacy.

6.2. Datopotamab Deruxtecan

Datopotamab deruxtecan (Dato-DXd) is an ADC with a DAR of 4:1 consisting of the
humanized anti-TROP2 IgG1 monoclonal antibody datopotamab and deruxtecan, which
are linked by a cleavable tetrapeptide-based linker (Figure 1) [123]. The phase I TROPION-
PanTumor01 trial evaluated Dato-DXd in advanced-stage, treatment-refractory NSCLC
patients. The study demonstrated an mPFS of 6.9 months, an mOS of 11.4 months, and
an ORR of 26%. Of the patients included in the study, 68 out of 180 (37.8%) had stable
and previously treated BM (Figure 1). However, the authors did not describe the survival
outcomes in the BM subgroup [124].

Additionally, the phase III TROPION-Lung01 study compared Dato-DXd to docetaxel
in advanced-stage NSCLC patients. When comparing Dato-DXd to docetaxel, the study
demonstrated, respectively, an ORR of 26.4% versus 12.8%, an mPFS of 4.4 months versus
3.7 months, and an mOS of 12.9 months versus 11.8 months (Figure 1). Furthermore, a
significant portion of the included patients had previously treated or inactive BM, with
79 out of 299 (26.4%) patients in the Dato-DXd group and 91 out of 305 (29.8%) patients in
the docetaxel group. When comparing the PFS of Dato-DXd to docetaxel, patients with BM
had a hazard ratio (HR) of 0.64 (95% CI: 0.38–1.05) while patients without BM had a HR of
0.76 (95% CI: 0.60–0.94), both favoring Dato-DXd (Figure 2). However, when comparing the
OS of Dato-DXd to docetaxel, patients with BM had a HR of 1.09 (95% CI: 0.68–1.75) and
patients without BM had a HR of 0.89 (95% CI: 0.74–1.12) (Figure 2) [125]. Both Dato-DXd
alone and in combination with other therapies are currently being further investigated in
multiple other clinical trials (Table 2) [126].

6.3. Sacituzumab Tirumotecan

Sacituzumab tirumotecan (SKB264) is an ADC with a DAR of 7.4:1 consisting of the
previously described sacituzumab antibody and the payload tirumotecan, a belotecan-
derivative topoisomerase I inhibitor, which are bound by a cleavable sulfonyl pyrimidine-
CL2A-carbonate linker (Figure 1). In in vivo preclinical studies, SKB264 demonstrated a
significantly longer half-life and superior intratumor payload concentration compared to
SG [127]. In patients with advanced-stage, treatment-refractory NSCLC, SKB264 demon-
strated an ORR of 26.0% and an mPFS of 5.3 months in the wild-type EGFR NSCLC group
and an ORR of 60.0%, and an mPFS of 11.1 months in the TKI-resistant EGFR-mutant
NSCLC group (Figure 1) [128]. In the OptiTROP-Lung01 study, SKB264 was combined with
KL-A167, an anti-PD-L1 agent, for the treatment of advanced-stage NSCLC as first-line ther-
apy. This trial showed an ORR of 77.6% and a 6-month mPFS rate of 84.6% (Figure 1) [129].
According to the trial protocol, asymptomatic patients with clinically inactive or previously
treated BM were eligible for the study, but subset analyses of these patients have yet to be
published (Table 2) [128,129].

7. MET Antibody–Drug Conjugates

MET is a well-described proto-oncogene receptor tyrosine kinase [130]. MET plays a
significant role in tumor proliferation, angiogenesis, invasion, and cell survival [131]. In
breast cancer, MET has been implicated in BM biology through the tumor microenviron-
ment [42,132]. In NSCLC, multiple mechanisms of MET dysregulation have been described,
including ex14mut, amplification, and overexpression.

Amplifications of MET have been described as an adaptive resistance mechanism in
EGFR-mutated NSCLC treated with EGFR-TKIs [102,133]. MET amplification in NSCLC has
been associated with early development of metastasis, including BM [134]. In a recent study
evaluating the genomics of NSCLC BM, the authors observed a significantly increased MET
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amplification frequency of 4.4% in NSCLC BM compared to 2.3% in unmatched NSCLC
primary tumors [135]. In a study by Preusser et al. (2014), the investigators observed a MET
amplification frequency of up to 21.6% in resected NSCLC BM samples, but no matched
nor unmatched primary tumor controls were analyzed [41].

MET ex14mut represents a targetable oncogenic mutation with approved therapeutics
in NSCLC, such as capmatinib. A recent meta-analysis demonstrated a median incidence
of 15.0% of MET ex14mut in NSCLC patients that have BM at the time of diagnosis [136].
However, a retrospective study found a significantly lower frequency of MET ex14mut
in resected NSCLC BMs when compared to unmatched resected NSCLC primary tumors
(1.0% versus 2.3%, respectively) [135].

In NSCLC, MET protein overexpression has been estimated to be 13.7%–25.0% [137–139].
In NSCLC BM, the frequency of MET protein overexpression has been identified in 44.4% of
resected specimens [41].

Given the high expression levels of MET in NSCLC, including in BM, whether via
amplification, oncogenic mutation, or protein overexpression, MET represents a promising
therapeutic target for ADC development.

Telisotuzumab Vedotin

Telisotuzumab vedotin (Teliso-V) is an ADC with a DAR of 3:1 comprising of ABT-
700, a humanized monoclonal anti-MET antibody, conjugated to monomethylauristatin
E, a cytotoxic microtubule inhibitor, through a valine-citrulline linker that is cleavable by
intracellular proteolysis (Figure 1). Teliso-V is notable for its in vitro antitumor activity
against MET-overexpressing tumor cells with or without MET amplification [140]. The
phase II LUMINOSITY trial evaluated Teliso-V in advanced-stage NSCLC patients with
MET overexpression. Of the NSCLC patients included in the study, 33 out of 161 (20.5%)
had previously treated and stable BM. The trial demonstrated an ORR of 28.6%, an mPFS of
5.7 months, and an mOS of 14.5 months in overall NSCLC patients (Figure 1). No subgroup
analysis was presented for NSCLC BM patients, however [141].

The phase II LUNG-MAP S1400K trial was conducted to evaluate the efficacy of Teliso-
V in advanced-stage squamous cell lung cancer patients with MET overexpression. Of the
patients included in the trial, 2 out 23 (8.7%) had stable BM. The trial was terminated with
an ORR of 9.0%, an mPFS of 2.4 months, and an mOS of 5.6 months [142].

The TeliMET NSCLC-1 phase III trial, which will compare Teliso-V monotherapy ver-
sus docetaxel in advanced-stage non-squamous NSCLC patients with MET overexpression,
is currently underway (Table 2). Similar to the LUMINOSITY and LUNG-MAP S1440K
trials, the TeliMET NSCLC-1 trial will include NSCLC patients with stable BMs.

8. Conclusions and Future Directions

In recent years, ADCs have become an important component of the treatment armamen-
tarium for NSCLC, particularly in patients with HER2-mutated tumors with TDXd [89,91,92].
Meanwhile, other ADCs in development, consisting of a variety of novel molecular targets,
linkers, and payloads, may soon become part of the standard of care upon further investiga-
tion. CNS metastases represent an important bottleneck limiting the improvement of survival
outcomes in patients with metastatic NSCLC, creating impetus for the development of agents
for patients specifically with CNS disease [143]. Third-generation EGFR inhibitors represent a
class of therapeutics developed with CNS activity in mind, demonstrating impressive activity
in both BM and LM [16,144–146]. However, EGFR mutations are only present in approxi-
mately 30% of patients with NSCLC, leaving the majority of NSCLC BM patients without
therapies specifically designed for their disease site [147].

CNS metastases are unique due to a lack of activity of conventional chemotherapies in
this setting. The reasons for this are believed to be multifaceted, with the BBB playing an
important role in limiting drug penetration and rapidly removing a drug that enters the
CNS via efflux transporters [11]. Despite the fact that, dogmatically, small molecules such as
TKIs more readily penetrate CNS lesions than bulkier molecules such as antibodies, ADCs
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have elicited robust activity in proof-of-concept studies, such as in the TUXEDO-1 and
DESTINY-Breast12 trials with TDXd in breast cancer BM [58,63].

There are several speculative hypotheses to explain why TDXd seemingly demon-
strates similar outcomes in intracranial versus extracranial lesions in these studies, which
may be translated to NSCLC, with future study. It is possible that, with the long circulating
half-life of TDXd, DXd is slowly cleaved from the antibody, establishing a slowly released
reservoir of drug able to cross the BBB and penetrate CNS lesions. It is also possible that
the increased presence of HER2 dimer partners, such as HER3, or ligands in the brain
microenvironment, such as neuregulin, may lead to increased HER2 internalization, fa-
voring TDXd activity in the CNS despite it likely being present at lower concentrations
compared to the systemic circulation [88]. The ongoing ELPIS study evaluating untreated,
and asymptomatic BM in advanced NSCLC and breast cancer will further describe the
activity of TDXd for solid tumor BM, but there is an impetus for additional studies that
include patients with active BM and LM (Table 2). The lack of CNS-specific studies will
continue to make strong claims about the activity of any ADC in the CNS of NSCLC
patients challenging.

Beyond TDXd, it remains to be seen whether other ADCs will similarly demonstrate
robust activity in CNS lesions. HER3-DXd represents a target that may similarly lead to
augmented intracranial activity because of the well-established upregulation of HER3 in
BM. The ongoing TUXEDO-3 study of HER3-DXd in NSCLC BM and LM will shed light as
to whether this hypothesis holds true (Table 2).

There is a rapidly expanding number of ADCs that are currently under investigation
for NSCLC. A list of currently ongoing prospective studies is listed in Table 2. Most of
these studies exclude patients with progressive and untreated BMs, with some including
stable BMs in their eligibility criteria.

Together, ADCs represent an expanding component of the therapeutic toolkit used to
treat NSCLC. With further development, there is hope that these agents can be optimized
to the benefit of patients with CNS metastases, who are, given their guarded prognoses,
most in need of new and effective therapeutic strategies.
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