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Abstract: Relapse and metastasis occur in 30–40% of breast cancer patients, even after targeted
treatments like trastuzumab for HER2-positive breast cancer. Accurate individual prognosis is
essential for determining appropriate adjuvant treatment and early intervention. This study aims to
enhance relapse and metastasis prediction using an innovative framework with machine learning
(ML) and ensemble learning (EL) techniques. The developed framework is analyzed using The
Cancer Genome Atlas (TCGA) data, which has 123 HER2-positive breast cancer patients. Our two-
stage experimental approach first applied six basic ML models (support vector machine, logistic
regression, decision tree, random forest, adaptive boosting, and extreme gradient boosting) and
then ensembled these models using weighted averaging, soft voting, and hard voting techniques.
The weighted averaging ensemble approach achieved enhanced performances of 88.46% accuracy,
89.74% precision, 94.59% sensitivity, 73.33% specificity, 92.11% F-Value, 71.07% Mathew’s correlation
coefficient, and an AUC of 0.903. This framework enables the accurate prediction of relapse and
metastasis in HER2-positive breast cancer patients using H&E images and clinical data, thereby
assisting in better treatment decision-making.

Keywords: breast cancer relapse; cancer diagnosis; histopathological images; machine learning;
ensemble learning

1. Introduction

Globally, breast cancer is still among the most common malignancies affecting women.
Among them, HER2-positive breast cancer stands out as a subtype defined by the overex-
pression of the HER2 protein. When cancer cells overexpress the HER2 protein, it can lead
to HER2-positive breast cancer, a subtype of the disease that can grow more aggressively in
tumors. Using histological photographs stained with H&E, one may physically inspect the
tissue samples and aid in identifying and classifying the cancer cells [1,2]. Information like
this might be useful for researchers in various ways, such as monitoring the progression
of an illness, discovering novel therapeutic approaches, and evaluating the effectiveness
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of current therapies. Even with advancements in treatment methods, a major challenge in
clinical practice is predicting the likelihood of sickness return [3,4]. Pathologists may learn a
lot about the cellular architecture and structure of breast tumors from images captured after
staining tissue samples with hematoxylin and eosin (H&E). Researchers have sought to
develop deep learning (DL) and machine learning (ML) models for predicting breast cancer
relapse using the mountain of data available in databases such as The Cancer Genome
Atlas (TCGA). The most recent worldwide statistics from 2020 show that, surpassing even
lung cancer, breast cancer has the highest incidence rate. Although targeted therapy has
greatly enhanced the survival rates of breast cancer patients, around 30–40% of patients
still face the challenge of relapse, and 10–15% ultimately succumb to cancer metastasis or
relapse [5]. Timely identification of the reappearance and spread of cancer increases the
effectiveness of treatment and substantially reduces the death rate. Due to the fast progress
of AI and the increasing volume of multi-modal medical data, there is now a chance to
detect and predict the relapse and spread of cancer at an early stage [6]. The prediction
models should be further optimized to improve the discrimination ability and benefit,
and prospective external validation studies should also be carried out before they are
applied to clinical practice. Researchers conducted a comprehensive study using a network
pharmacology-based strategy to predict therapy targets of Ecliptae Herba in treating breast
cancer [7,8].

1.1. Existing Works

Sakri et al. [9] used the Breast Cancer Wisconsin Prognostic Breast Cancer (WPBC)
Datasets for breast cancer relapse prediction. They employed ML techniques such as
the Reduced Error Pruning Tree (REPTree), Naïve Bayes (NB), and K-Nearest Neighbour
(KNN)-IBK in conjunction with particle swarm optimization (PSO). The results showed
an accuracy rate of 81.3%, a precision of 88.3%, a recall of 93.4%, an F-score of 87.7%, and
an area under the curve (AUC) of 0.820. Alom et al. [10] used the Breast Cancer Dataset
to achieve a classification rate of 100% accuracy, 100% sensitivity, 100% specificity, and
1.00 AUC in breast cancer classification from histopathological images using an inception
recurrent residual convolutional neural network (IRRCNN) that took into account DL
techniques such as the Inception Network (Inception-v4), Residual Network (ResNet), and
Recurrent Convolutional Neural Network (RCNN). Hong et al. [11] utilized a panel of eight
microRNAs to predict the return of triple-negative breast cancer. They used ML techniques,
specifically Logistic Regression (LR) and Gaussian mixture analyses, on the TCGA_TNBC,
GEOD-40525, GSE40049, and GSE19783 datasets. The results showed an AUC of 0.89 for
GSE40049 and 0.90 for GSE19783. Yan et al. [12] developed a prediction model in a primary
cohort consisting of 498 patients with invasive breast cancer, and the data were gathered
from July 2016 to September 2018 to predict pathological complete response and tumor
shrinkage size in breast cancer considering an ML approach, i.e., LR, on Breast Cancer
Cinoma (BCC) using the Harbin Medical University Cancer Hospital (HMUCH) dataset
and resulted in a nomogram for HER2-positive and triple-negative breast cancer (TNBC)
with an AUC of 0.820 and 0.785, respectively. Mosayebi et al. [13] proposed a new model
for the prediction of relapse of breast cancer considering ML approaches, i.e., RF, Learning
Vector Quantization (LVQ), NB, C5.0 DT, Multilayer Perceptron (MLP), Kernel Principal
Component Analysis-SVM (KPCA-SVM), and SVM using Ministry of Health and Medical
Education and the Iran Cancer Research Centre (MHME-ICRC) datasets. They resulted
in 81.9% accuracy, 86.9% sensitivity, 77.7% specificity, 82.2% for the geometric mean of
sensitivity and specificity, 76.9% PPV, 87.4% NPV, 82.0% for the geometric mean of PPV
and NPV, 81.6% for the F-Value, and 77.4% AUC. Comes et al. [14] utilized DL approaches,
specifically a Convolutional Neural Network (CNN) and Support Vector Machine (SVM),
on DCE-MRI exams from the public datasets I-SPY1 TRIAL and BREAST-MRI-NACT-Pilot.
The results showed an accuracy rate of 85.2%, a sensitivity rate of 84.6%, and an AUC of
0.83. Sanyal et al. [15] developed a weakly supervised temporal model that could predict
distant breast cancer relapses using DL techniques (e.g., LSTM and XGBoost) on datasets
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curated manually and by natural language processing experts. The model achieved an
AUC of 0.94, a sensitivity of 89.0%, and a specificity of 84.0%. The HEROHE challenge,
organized by Conde-Sousa et al. [16] as a side event of the 16th European Congress on
Digital Pathology, attempted to determine the HER2 status in breast cancer using solely
H&E-stained tissue samples. The results showed 79% precision, 100% recall, a 79% F-Value,
and 0.88 AUC. Multimodal prediction of five-year breast cancer relapse in women who
receive neoadjuvant chemotherapy was proposed by Rabinovici-Cohen et al. [17]. Using
a real-world retrospective dataset, the authors achieved 57% specificity, a 56% F-Value,
72% balanced accuracy, 41% PPV, 96% NPV, 93% sensitivity, and 0.75 AUC. The study
also considered the DL approach known as CNN. Liu et al. [18] explored the use of color
and texture features in histopathological images to predict the likelihood of breast cancer
recurrence and metastasis. They used ML techniques such as RF, LR, and XGBoost on both a
clinical dataset and formalin-fixed, paraffin-embedded (FFPE) samples from the TCGA. The
results showed that the clinical dataset achieved 80% accuracy, 40% precision, 75% recall,
a 50% F-Value, and 0.75 AUC. In contrast, the TCGA dataset achieved 73% accuracy,
33% precision, 60% recall, 42% F-Value, and 0.72 AUC. Yang et al. [19] suggested using DL
to predict the risk of metastasis and relapse for HER2-positive breast cancer using CNN
and ResNet50 on the datasets of the Cancer of the Chinese Academy of Medical Sciences
(CAMS) and TCGA, respectively, using histopathological images and clinical data, with
AUCs of 0.76 and 0.72. Lu et al. [20] presented a new model called Slide-Graph + that
uses graph neural networks (GNNs) to forecast HER2 status using whole-slide images of
routinely stained slides. The model was tested on the TCGA and two independent test
datasets, HER2C and Nott-HER2, and achieved AUC values of 0.75 and 0.80, respectively.
Su et al. [21] created a DL framework called the Breast Cancer Relapse Network (BCR-Net).
The goal was to use the CNN DL approach on adjacent pairs of H&E and Ki67 breast
cancer resection tissues for 50 patients. The results showed an impressive 80% accuracy,
79.2% F-Value, and 0.811 AUC. Liu et al. [22] developed and validated ML models to predict
changes in visual acuity and keratometry two years after corneal crosslinking (CXL) for
progressive keratoconus. Using patient demographics, visual acuity, spherical equivalence,
and Pentacam parameters from 277 eyes in the Collected dataset from Aier Eye Hospital of
Wuhan University (AEHWU, Wuhan, Hubei province, China), the study found that the
XGBoost model produced the most accurate predictions for corrected distance visual acuity
(CDVA) and maximum keratometry (Kmax) changes, with R-squared values of 0.9993
and 0.9888 for the testing set and 0.8956 and 0.8382 for the validation set. This approach
significantly improved prediction accuracy by incorporating key baseline metrics such
as CDVA and keratometry ratios. Botlagunta et al. [23] used ML techniques such as LR,
KNN, DT, RF, SVM, GB, and XGBoost to classify and diagnose breast cancer metastasis on
clinical data. They achieved 83% accuracy, 83% precision, 100% recall, an 85% F-Value, and
0.87 AUC on medical Metastatic Breast Cancer (MBC) data. Dammu et al. [24] utilized DL
techniques, specifically CNN, to predict pathological complete response, residual cancer
burden, and progression-free survival in breast cancer patients. The model achieved
81% accuracy, 68% sensitivity, 97% specificity, a 76% F-Value, and 0.83 AUC on the I-SPY-1
TRIAL dataset. Table 1 provides a summary of the examined state-of-the-art works.

Table 1. Summary of the considered state-of-the-art works.

Reference Methodologies Dataset(s) Outcomes

Sakri et al. [9] REPTree, NB, and KNN-IBK
with PSO WPBC Accuracy: 81.3%, Precision: 88.3%,

Recall: 93.4%, F-Score: 87.7%, AUC: 0.820

Alom et al. [10] Inception-v4, ResNet, and RCNN BreakHis and BCD Accuracy: 100%, Sensitivity: 100%,
Specificity: 100%, AUC: 1.0

Hong et al. [11] LR and Gaussian mixture TCGA_TNBC, GEOD-40525,
GSE40049 and GSE19783

AUC (GSE40049): 0.89,
AUC (GSE19783): 0.90

Yan et al. [12] LR BCC at HMUCH AUC (HER2-Positive): 0.820,
AUC (TNBC): 0.785
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Table 1. Cont.

Reference Methodologies Dataset(s) Outcomes

Mosayebi et al. [13] RF, LVQ, NB, C5.0 DT, MLP,
KPCA-SVM, and SVM MHME-ICRC

Accuracy: 81.9%, Sensitivity: 86.9%,
Specificity:77.7%, F-Value: 81.6%,

AUC: 0.774

Comes et al. [14] CNN and SVM I-SPY1 TRIAL and
BREAST-MRI-NACT-Pilot

Accuracy: 85.2%, Sensitivity: 84.6%,
AUC: 0.83

Sanyal et al. [15] LSTM and XGBoost Manually and NLP-curated Sensitivity: 89.0%, Specificity: 84.0%,
AUC: 0.94

Conde-Sousa et al. [16] DL HEROHE Precision: 79%, Recall: 100%, F-Value: 79%,
AUC: 0.88

Rabinovici-Cohen et al.
[17] CNN Real-World Retrospective Dataset

Specificity: 57%, F-Value: 56%, Balanced
Accuracy: 72%, PPV: 41%, NPV: 96%,

Sensitivity: 93%, AUC: 0.75

Liu et al. [18] RF, LR, and XGBoost
Clinical dataset Accuracy: 80%, Precision: 40%,

Recall: 75%, F-Value: 50%, AUC: 0.75

TCGA Accuracy: 73%, Precision: 33%,
Recall: 60%, F-Value: 42%, AUC: 0.72

Yang et al. [19] CNN and ResNet50
CAMS AUC: 0.76
TCGA AUC: 0.72

Lu et al. [20] GNN-based Slide Graph TCGA AUC: 0.75
HER2C and Nott-HER2 AUC: 0.80

Su et al. [21] CNN H&E and Ki67 Accuracy: 80%, F-Value: 79.2%,
AUC: 0.811

Liu et al. [22] XGBoost AEHWU R-Square (CVDA): 0.9993, R-Square
(Kmax): 0.9888

Botlagunta et al. [23] LR, KNN, DT, RF, SVM, GB,
and XGBoost Medical data on MBC Accuracy: 83%, Precision: 83%,

Recall: 100%, F-Value: 85%, AUC: 0.87

Dammu et al. [24] CNN I-SPY-1 TRIAL Accuracy: 81%, Sensitivity: 68%,
Specificity: 97%, F-Value: 76%, AUC: 0.83

1.2. Research Gap and Motivation

Relapse prediction using histopathological images and ML/ensemble learning (EL) is
very important in the setting of HER2-positive breast cancer diagnosis. By applying ML
algorithms to these pictures, important features may be extracted, enabling the detection of
subtle patterns and traits linked to the development and return of diseases. By analyzing
many image attributes, ML algorithms can shed light on the biological mechanisms that
cause cancer to relapse [25–27]. EL offers a solid structure for combining many ML models
to improve the precision of forecasts. When trying to predict when breast cancer may recur,
EL approaches can be employed to merge many models that were trained on different
datasets or using various algorithms. The predictive model’s capacity to generalize is im-
proved, and the risk of overfitting is decreased by employing several modeling approaches.
Using EL approaches, which combine the insights of many models to provide more accurate
predictions, can enhance clinical decision-making in treating HER2-positive breast cancer.

This study aims to address the challenge of predicting breast cancer relapse in HER2-
positive patients by employing multimodal analysis of histopathology images. Histological
examinations are the gold standard for detecting breast cancer. The conventional, labor-
intensive, and error-prone histopathology method relies heavily on histopathologists’
subjective expertise. Building a reliable computer-assisted system capable of autonomously
analyzing histological images for cancer diagnosis and prognosis is of the utmost impor-
tance. According to the researchers, we may be able to glean insights from images of tissues
that reveal the disease’s progression or return by merging deep neural networks with ML
algorithms. We aim to develop prediction models that can accurately identify patients
with a higher likelihood of experiencing a relapse by analyzing the TCGA database with
HER2-positive diagnosis. By bringing together researchers from different fields, we hope
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to increase the accuracy of breast cancer management predictions and pave the way for
more individualized approaches to therapy.

1.3. Objective and Contribution

It is critical to use basic numerical characteristics that accurately characterize histo-
logical pictures without changing their visual appearance, which might lead pathologists
to make incorrect diagnoses to save computing costs. We overcame these challenges by
detecting the color features of histopathological pictures using a Wavelet Multi-sub-band
Co-occurrence Matrix and extracting texture information from low-order color moments.
This research aims to develop a model for the early detection of breast cancer relapse using
ML and DL techniques. The study aims to accurately characterize histopathological images
by extracting color and texture features without altering their visual appearance, thereby
minimizing the risk of misdiagnosis and reducing computational costs. Two stages of ex-
periments are carried out in this study. In stage-1, six basic ML approaches, including SVM,
LR, decision tree (DT), random forest (RF), adaptive boosting (AdaBoost), and extreme
gradient boosting (XGBoost), are employed, whereas, in stage-2, these six ML approaches
are ensembled with weighted averaging, soft voting, and hard voting to achieve the tar-
geted improved predictive outcomes in terms of accuracy, precision, etc. These are our
contributions to this study:

• The introduction of an ensemble ML approach for enhanced breast cancer relapse
prediction of histopathological images.

• The creation of an ensemble model that reduces training time and optimizes performance.
• The consideration of various approaches for better image pre-processing and extracting

more relevant features for prediction.
• An improvement in patient outcomes by assisting doctors in making better treat-

ment decisions.

1.4. Paper Structure

The following is the structured analysis of this proposed study: Section 2 details the
methods used in this study, including the suggested dataset. The design, flowchart, block
diagrams, and working principle of the proposed work are covered in Section 3, which
addresses the architectural aspect of the research. In contrast to the relevant outcomes
examined in this study, Section 4 details the fruitful examination of the proposed work.
Section 5 concludes the analysis by outlining a practical expansion of the suggested effort.

2. Materials and Methods

The research methodology and materials employed in this study are thoroughly
elucidated in this section. The dataset, pre-processing procedures, feature extraction
employing diverse methodologies, and the different ML and EL algorithms employed may
be located in the respective subsections.

2.1. Dataset Description

A total of 123 individuals with HER2-positive breast cancer diagnoses were included
in this research [28]. The Cancer Genome Atlas (TCGA) database was used to obtain
the histology images stained with hematoxylin and eosin (H&E). It was shown that 26%
of the people whose lymph nodes tested positive for breast cancer were younger than
50 years old. There is a total of 88 H&E-stained whole slide images (WSIs) preserved in the
formalin-fixed paraffin-embedded (FFPE) format and 53 flash-frozen WSIs of breast cancer.
There were five cases of relapse or metastasis among these WSIs. Patients with relapse or
metastasis are represented by positive samples (labeled 1), whereas patients who did not
have these problems are represented by negative samples (labeled 0). This makes it easier
to explain and calculate what follows. To address the significant imbalance between relapse
(positive) and non-relapse (negative) samples, we applied the Synthetic Minority Over-
sampling Technique (SMOTE) to the training set. SMOTE generates synthetic samples for
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the minority class to balance the dataset, which helps in improving the model’s specificity
and overall predictive performance. Table 2 provides a summary of the TCGA dataset that
was evaluated.

Table 2. An overview of the considered TCGA dataset.

Dataset

Parameters

Stages of Tumor ER PR Lymph Node
Status Age (Years) Outcome Total

I II III ER− ER+ PR− PR+ LMN− LMN+ <50 ≥50 R NR

TCGA 14 77 32 33 90 50 73 58 65 34 89 5 118 123

2.2. Methodology

The current work utilizes the Contrast Limited Adaptive Histogram Equalization
(CLAHE) method to enhance picture contrast. Subsequently, the Two-Dimensional Wavelet
Packet Transform (2DWPT) integrated Multi-sub-bands Co-occurrence Matrix (WMCM)
is used to extract texture characteristics from the images. Next, the collected features are
evaluated using six distinct ML classifiers: SVM, LR, RF, DT, AdaBoost, and XGBoost.
These classifiers are used as the base learners to make the first predictions. Three ensemble
strategies, weighted averaging, hard voting, and soft voting are used to make the final
prediction based on the initial predictions obtained using these ML classifiers.

2.2.1. Preprocessing: CLAHE

Splitting an image into tiny, non-overlapping tiles is what contrast-limited adaptive
histogram equalization (CLAHE) does to boost the local contrast [29,30]. CLAHE is used
to enhance the contrast of histopathological images. This technique is chosen because
it improves the local contrast and enhances the visibility of features without amplifying
noise, making it suitable for medical images where subtle differences are crucial. Each
tile’s pixel intensity values are used to create a histogram. In order to keep noise levels
from getting too high, the cumulative distribution function of the histogram for each tile
is clipped at a certain limit (CP Limit). Using clipping ensures that the brightness of each
pixel stays below a certain limit. After that, we use the clipped CDF to build a lookup table
that converts the raw intensity values to their histogram-equalized equivalents. Finally,
the image is transformed pixel-by-pixel using the lookup table, which improves the local
contrast without changing the image’s overall quality. One may control the amount of
augmentation and the dimensions of the local regions by adjusting parameters like the tile
size and clipping limit. Because of this quality, CLAHE is very effective at improving the
aesthetic appeal of photographs with dynamic contrast and lighting. The detailed working
of CLAHE is as follows:

• Divide the original image into small, non-overlapping tiles.
• For each tile, compute the cumulative distribution function (C) as in Equation (1):

C(i) =
∑i

k=0 H(k)
M× N

(1)

where C(i) is the cumulative distribution function at intensity level i, H(k) is the
histogram value at intensity level k, and M× N is the dimension of the image. H(k)
can be defined as Equation (2).

H(k) = ∑M
m=1 ∑N

n=1

{
1, i f the pixel intensity at position (m, n) = k

0, Otherwise
(2)

• Clip C to limit the contrast level for the current intensity level k as in Equation (3).

Cclipped(k) = Clip(C(i), 0, Clipmax) (3)



Curr. Oncol. 2024, 31 6583

where Clip(C(i), 0, Clipmax) is the method used to limit the cumulative distribution
function (C(i)) in the range of [0, Clipmax]. Clipmax is the controlling parameter for
controlling the maximum contrast enhancement.

• Calculate the Histogram equalization Lookup Table (ELT) for the calculated Cclipped(k)
by rounding the value to the nearest integer as in Equation (4)

ELT(k) = Round
(

Cclipped(k)× 255
)

(4)

• Apply ELT to each individual pixel to find the enhanced pixel value.

CLAHE is a potent technique that effectively enhances the contrast of an image while
preserving its original local characteristics. One may control the degree of enlargement and
the size of the specific regions being analyzed by modifying parameters such as the tile size
and clipping limit.

2.2.2. Feature Extraction: 2D-WPT

The current work employs the 2D wavelet packet transformation (2D-WPT)-motivated
Wavelet Multi-sub-bands Co-occurrence Matrix (WMCM) to extract the texture-based
features from the images [21,31]. 2DWPT is used to decompose images into multiple
sub-bands, allowing for capturing both spatial and frequency information. This method
is selected because it effectively captures texture variations at different scales, which is
important for histopathological images. WMCM is employed to extract texture features
from the decomposed sub-bands. This approach is chosen because it captures the spatial
relationships of pixel intensities, providing rich texture information that aids in accurate
classification. The feature extraction procedure using the WMCM has many successive
processes. The input picture is first wavelet-transformed into many sub-bands. The several
sub-bands, each corresponding to a distinct frequency component, represent details in
the picture. After that, the Co-occurrence Matrix (CM) is calculated for every sub-band,
which records the spatial correlations between pixel intensities across different dimensions
and orientations. Within each sub-band, the CM measures the frequency of various pixel
value combinations. The WMCM unifies texture information across several frequency
domains by combining the CMs from all sub-bands. It is possible to extract a collection
of texture characteristics from the WMCM. Some of these properties may be statistical
measurements that tell us much about the image’s texture, such as energy, correlation,
contrast, and entropy. Feature extraction is a strong tool for image analysis and pattern
recognition tasks. It uses the multi-scale and multi-directional information stored in the
WMCM to capture texture features. The working of the WMCM model is shown below.

Step-1: Creating the WMCM

Initially, the 2D WPT model is executed to divide the input image into multiple
256 × 256 pixels sub-bands. The sub-bands are High–High (HH), High–Low (HL), Low–
High (LH), and Low–Low (LL) bands. HH illustrates the sub-band with high frequency in
both horizontal and vertical directions, HL shows the high-frequency information in the
horizontal direction and low-frequency information in the vertical direction, LH shows the
noise, HL represents the horizontal detailed sub-images, and LH represents the low- and
high-frequency information in the horizontal and vertical directions, respectively. Similarly,
LL represents the low-frequency information in both directions. These four bands can be
found using Equations (5)–(8).

HH =
(

P ∗ φd(x, y)
)

(5)

HL = (P ∗ φv(x, y)) (6)

LH =
(

P ∗ φh(x, y)
)

(7)

LL = (P ∗∅(x, y)) (8)
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where ∗ is the convolution operation, ∅ is the scaling function, φ is the wavelet function,
x is the scaling parameter, and y is the translation parameter. φv, φh, and φd are wavelet
functions in the vertical (v), horizontal (h), and diagonal (d) directions, respectively.

• Calculate the Gray-Level Co-Occurrence Matrix (GLCM) for each pixel (i,j) sub-bands
(SBs) for HH, HL, LH, LL using Equation (9) with H(a, b) as the intensity value at any
position (a, b). M and N are the dimensions of the image.

GLCMSB(i, j) = ∑M
m=1 ∑N

n=1

{
1, i f H(a, b) = i , H(a′, b′) = j

0, Otherwise
(9)

a′ = a−∇ (10)

b′ = b−∇ (11)

where the ∇ is the distance from the initial position (a, b), and SB is the sub-band,
which can be represented as SB ∈ {LL, LH, HL, HH}.

• Combine the GLCM values to form the WMCM using Equation (12) with K as the total
number of sub-bands available for the corresponding image.

WMCM(i, j) = ∑K
k=1 GLCMSBk (i, j) (12)

Step-2: WMCM-based Texture Feature Extraction Process

WMCM-based texture features can be calculated using eleven different parameters
including Small Gray Level with Small and Big Detail advantage denoted as SGSDA and
SGBDA, respectively, Gray-Level Average (GLA), Detail-Level Average (DLA), Gray-Level
and Detail-level Mean Square Error denoted as GLMSE and DLMSE, respectively, Corre-
lation (C), Energy (E), Entropy (En), Contrast (Co), and Homogeneity. These parameters
can be calculated using Equations (13)–(25) with (i,j) as the intensity level, H(i,j) as the
value at intensity (i,j), ϑ(i) and ϑ(j) as the marginal distribution along rows and columns,
respectively, and L as the total number of intensity levels, which can be 8, 16, or 32. In the
current study, the total intensity level is 16.

SGSDA = ∑L
i=1 ∑L

j=1 H(i, j),
(

i2.j2
)

(13)

SGBDA = ∑L
i=1 ∑L

j=1 H(i, j).(
j2

i2
) (14)

GLA = ∑L
i=1 i.ϑ(i) (15)

DLA = ∑L
j=1 i.ϑ(j) (16)

ϑ(i) =
∑L

j=1 GLCM(i, j)

∑L
i=1 ∑L

j=1 GLCM(i, j)
(17)

ϑ(j) =
∑L

i=1 GLCM(i, j)

∑L
i=1 ∑L

j=1 GLCM(i, j)
(18)

GLMSE =

√√√√∑L
j=1 (i− GLA)2.ϑ(i)

∑L
i=1 ϑ(i)

(19)

DLMSE =

√√√√∑L
j=1 (i− DLA)2.ϑ(j)

∑L
i=1 ϑ(j)

(20)

C =
∑L

i,j=1 i.j.WMCM(i, j)− µaµb

σa.σb
(21)
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Co = ∑L
i,j=1 (i− j)2.WMCM(i, j) (22)

E = ∑L
i,j=1(WMCM(i, j))2 (23)

En = −∑L
i,j=1 WMCM(i, j)log(WMCM(i, j)) (24)

H = ∑L
i,j=1

1
1 + (i− j)

WMCM(i, j) (25)

After calculating the parameters above, the corresponding intensity level’s texture
feature (TF) can be calculated by normalizing the parameters. The TF for each intensity can
be calculated using Equation (26).

TFi,j = ω1.SGSDA + ω2.SGBDA + ω3.GLA + ω4.DLA + ω5.GLMSE+
ω6.DLMSE + ω7.C + ω8.Co + ω9.E + ω10.En + ω11.H

(26)

ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 + ω8 + ω9 + ω10 + ω11 = 1 (27)

Based on the TF for each intensity (i,j), the final texture feature for the entire image
sized M × N can be quantified as in Equation (28):

TF =

 TFi,j · · · TFi,M
...

. . .
...

TFi,N · · · TFN,M

 (28)

2.2.3. Employed ML Approaches

Supervised learning methods such as SVM frequently identify the optimal hyperplane
to separate classes in high-dimensional space in classification challenges. A logistic function
is a binary dependent variable in LR, a statistical model used to estimate the probability
of a particular event occurring. DTs are representations of the chronological and logical
progression of healthcare issues. RF constructs and amalgamates several DTs to enhance
classification accuracy and mitigate overfitting. XGBoost is a scalable and efficient imple-
mentation of a gradient-boosting framework designed to optimize computation time and
enhance predictive accuracy. AdaBoost focuses on misclassified samples to combine the
outputs of weak classifiers, generating a strong classifier.

Six ML classifiers are chosen for their diverse strengths in handling different types
of data and their proven effectiveness in medical image analysis: SVM, effective in high-
dimensional spaces and robust against overfitting, particularly with clear margins of separa-
tion; LR, a simple yet powerful classifier for binary outcomes, known for its interpretability
and effectiveness when the relationship between features and the target variable is approxi-
mately linear; RF, an ensemble method that builds multiple DTs to achieve more accurate
and stable predictions, chosen for its robustness and high accuracy; DT, a non-parametric
model that is easy to interpret and understand, selected for its simplicity and effectiveness
in capturing non-linear relationships; AdaBoost, which combines weak classifiers to create
a strong classifier, improving model accuracy by focusing on difficult-to-classify samples;
and XGBoost, a powerful gradient-boosting algorithm that is efficient, scalable, and capable
of capturing complex patterns. Combining these techniques ensures a robust methodology
that enhances image quality, extracts meaningful features, and employs diverse classifiers
to handle various aspects of the data.

2.2.4. Employed EL Approaches

EL integrates the outputs of several separate models to forge a more robust forecast.
The ensemble strategies are used to improve the overall predictive performance by com-
bining the strengths of individual classifiers, thereby reducing the risk of overfitting and
improving generalization to new data. Three ensemble strategies are employed to enhance
predictive performance: weighted averaging, soft voting, and hard voting. Weighted
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averaging combines the predictions of multiple classifiers by assigning different weights
to each classifier based on their performance, leveraging their strengths to produce more
accurate predictions. Soft voting averages the predicted probabilities of each classifier to
make the final prediction, effectively combining probabilistic outputs for better perfor-
mance. Hard voting aggregates the majority class predicted by each classifier to make the
final decision, chosen for its simplicity and effectiveness in scenarios where the majority
rule is reliable [32,33]. The goal of weighted averaging is to integrate the predictions of
several models into a single score, with the weights assigned to each model based on their
performance or other criteria. The ensemble prediction p̂ is mathematically calculated as
shown in Equation (29).

p̂ = ∑n
k=0 Wtk p̂k (29)

Here, n is the number of models, p̂k is the prediction of the kth model, and Wtk is the
weight assigned to the kth model.

In soft voting, the predictions of several models are combined by averaging their
anticipated class probabilities, with the confidence level of each model being used to weight
the probability estimations. When all of the models’ class probabilities are averaged, the
ensemble prediction results. Predictions using hard voting are based on majority voting,
with the class with the most votes from the individual models being the final forecast.
The mathematical mean (or most frequent class) of all the individual model predictions is
the ensemble prediction. Conventional ML techniques like DTs, LR, SVMs, etc., may all
benefit from these ensemble methods. Improved predictive performance and resilience are
common outcomes of EL, combining many models’ predictions by weighted averaging,
soft voting, or hard voting.

3. Proposed Model

The suggested model for accurate cancer detection is built using a set of well-planned
stages that use ML methods to boost precision. As the first step in data preparation, we
remove photos with a blank ratio higher than 30%. Images with a lot of empty space are not
going to be considered for categorization until this requirement is met. This phase greatly
improves the accuracy of the following predictions by keeping just the most pertinent and
instructive pictures. Next, the photos’ contrast is improved using the CLAHE method,
which stands for Contrast-Limited Adaptive Histogram Equalization. By adjusting the
intensity levels, CLAHE makes key characteristics more visible, which is essential for
correct categorization and extensive texture analysis.

The feature extraction process involves capturing complex texture patterns from the
improved pictures using the Wavelet Multi-Channel Method (WMCM). In order to extract
texture-based elements that are crucial for differentiating between non-cancerous and
malignant pictures, WMCM, a variation of the 2D Wavelet Packet Transform (2DWPT),
decomposes the image into several frequency sub-bands. SVM, LR, DT, RF, AdaBoost, and
XGBoost are six classifiers that are used throughout the model training phase. Based on
the retrieved textural information, each classifier acts as a base learner, first predicting
cancer status. Improving prediction accuracy and resolving any discrepancies among
these fundamental classifiers are achieved through the use of ensemble machine learning
techniques. One of these methods is weighted averaging, which takes into account the
relative performance of each base classifier and uses that information to combine their
predictions. Another is hard voting, which uses the aggregated class labels to choose the
most frequently predicted class, and the third is soft voting, which uses the average of the
probability estimates to obtain the final prediction.

The balanced dataset is split into two halves, the training set and the test set, according
to an 80:20 ratio. About 102 samples do not experience relapse, whereas 101 samples do
(using synthetic samples produced by SMOTE), for a total of 203 samples in the training
set. The test set includes 51 samples, out of which 26 were from relapses (including
manufactured samples) and 25 were from non-relapses. A complete assessment of the
model’s efficacy may be achieved thanks to its balanced distribution, guaranteeing that
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both sets have a representative mix of classes. Accuracy, precision, recall, and F-Value are
some of the measures used to evaluate the model’s performance in properly classifying
relapse and non-relapse instances. A comprehensive evaluation follows the suggested
model’s robust training using various classifiers and ensemble approaches, which begins
with a comprehensive preprocessing phase. The model next undergoes sophisticated
feature extraction. Figure 1 shows the proposed model’s workflow, and Algorithm A1 (in
Appendix A) provides the pseudocode for the operations’ sequence.
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Figure 1. Block diagram of the proposed model.

4. Empirical Analysis

Several assumptions are incorporated into the evaluation of this proposed ensemble
ML method. A new ensemble ML method was developed to improve the evaluation metrics
by applying six traditional ML techniques to the data generated via wavelet decomposition.
The proposed idea was developed using two different computer systems. The main
computer, System-1(S1), is a desktop PC with various specs, including an Intel Core i7 CPU,
32 GB of RAM, 1 TB of solid-state drive storage, and Ubuntu 20.04. The secondary system,
System-2 (S2), has an Intel Core i5 CPU, 8 GB of RAM, 256 GB of primary SSD, 512 GB of
secondary SSD, and runs Windows 10. A thorough empirical analysis of the collected data
should be conducted as part of any endeavor. Using a systematic experimental approach,
these metrics aim to construct a class confusion matrix that compares the actual results
to predicted ones. The confusion matrix uses the letters TA and TB to represent true
positives and negatives and FA and FB to represent false positives and false negatives. The
study’s performance indicators for categorization include MCC, F-Value, Accuracy, Precision,
Sensitivity, and Specificity. Equations (30)–(35) detail these metrics’ definitions [34,35].

Accuracy =
TA + TB

TA + TB + FA + FB
(30)
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Precision =
TA

TA + FA
(31)

Sensitivity =
TA

TA + FB
(32)

Speci f icity =
TB

TB + FA
(33)

F-Value =
2× TA

2× TA + FB + FB
(34)

MCC =
(TA + TB)− (FA + FB)√

(TA + FA)(TA + FB)(TB + FA)(TB + FB)
(35)

This research used a two-stage experimental design. Stage-1 uses the following six ML
methods: SVM, LR, DT, RF, AdaBoost, and XGBoost. In stage-2, these six ML methods are
combined with weighted averaging, soft voting, and hard voting to create a more effective
breast cancer relapse dataset model. Figures 2–7 and Table 3 display the outcomes. The
XGBoost method achieves an accuracy of 84.62% at its peak, as seen in Figure 2. In Figure 3,
we can see the precision values that different ML methods achieved; XGBoost achieved
the greatest, at 86.84%. Figure 4 shows the sensitivity values of several ML methods, with
XGBoost achieving the highest value of 91.67%. The specificity values produced by different
ML techniques are shown in Figure 5, with RF achieving the best value of 70.59%. Figure 6
shows the F-Values produced by several ML methods, with XGBoost achieving the best at
89.19%. Several ML methods are shown in Figure 7, with XGBoost producing the highest
MCC value of 62.87%.
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Table 3. Results obtained by employing various ML approaches.

ML
Approaches

Results Obtained (in %)

Accuracy Precision Sensitivity Specificity F-Value MCC

SVM 78.85 83.33 85.71 64.71 84.51 51.25

LR 76.92 80.56 85.29 61.11 82.86 47.83

DT 80.77 86.11 86.11 68.75 86.11 54.86

RF 82.69 86.11 88.57 70.59 87.32 60.13

AdaBoost 82.69 86.49 88.89 68.75 87.67 58.72

XGBoost 84.62 86.84 91.67 68.75 89.19 62.87

Then, in stage-2, we used weighted averaging, soft voting, and hard voting—three
EL techniques—to improve the predictive outcomes. Table 4 and Figure 8 show the
percentage of findings that were achieved. Compared to other ensemble ML techniques,
ML approaches ensembled using weighted averaging achieve superior results (88.46%
accuracy, 89.74% precision, 94.59% sensitivity, 73.33% specificity, a 92.11% F-Value, and 71.7%
MCC). A phrase was coined to describe these improved results: the suggested ensemble
ML strategy is based on the weighted average of several ML methods.

Table 4. Results obtained in % by employing various EL approaches.

EL
Approaches

Results Obtained (in %)

Accuracy Precision Sensitivity Specificity F-Value MCC

Weighted
Averaging 88.46 89.74 94.59 73.33 92.11 71.07

Soft Voting 84.62 86.11 91.18 72.22 88.57 65.35

Hard Voting 86.54 86.49 94.12 72.22 90.14 69.66

Additionally, using a receiver operating characteristics (ROC) curve plot, we have
verified that the basic classifiers using weighted averaging as the EL method are part of the
ensemble ML strategy we suggested. A ROC curve shows how well a classification model
does on every level [23]. Two measures, TPR and FPR, are shown on the graph. There is
a ROC curve that shows the level of categorical uncertainty. As a result of lowering the
classification criteria, the number of false and true positives rises. The AUC or area under
the ROC curve indicates general efficacy. A model’s AUC indicates its propensity to assign
a higher score to positive examples than negative ones. The ROC curve remains within the
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(0, 0) to (1, 1) range. The ROC curve and AUC value for this proposed hybrid method are
shown in Figure 9. Figure 9 shows that the suggested ensemble ML method uses the ROC
curve to achieve the best AUC of 0.903 out of the three EL techniques.
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4.1. Critical Analysis

The proposed ensemble approaches are compared in contrast to the state-of-the-art ML
classifiers to show the efficacy of the proposed work. From Tables 3 and 4, the improvement
of the proposed work can be clearly observed:

• While comparing the proposed weighted averaging of ML approaches in contrast to the
ML classifiers, it outperforms the SVM, LR, DT, RF, AdaBoost, and XGBoost in terms
of accuracies by ~12.19%, ~15%, ~9.52%, ~6.98%, ~6.98%, and ~4.54%, respectively.

• In the case of soft voting, it outperforms the considered ML classifiers, including
SVM, LR, DT, RF, AdaBoost, and XGBoost, in terms of accuracies by ~7.32%, ~10.01%,
~4.77%, ~2.33%, ~2.33%, and ~0%, respectively.
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• Comparing the hard voting ensemble technique with the ML classifiers, it outperforms
SVM, LR, DT, RF, AdaBoost, and XGBoost in terms of accuracies by ~9.75 ~12.51%,
~7.14%, ~4.66%, ~4.66%, and ~2.27%, respectively.

• From the above-stated comparison, it can be clearly observed that all ensemble tech-
niques outperform the ML classifies more or less. However, three ensemble techniques
were compared to find the best-fit ensemble technique for the current work. From the
results obtained, it can be concluded that the weighted averaging outperforms soft
voting and hard voting techniques by ~4.54% and ~2.22%, respectively, which states
that the reported weighted averaging is the best-fitting ensemble technique for the
current work.

• Figure 10 presents a percentage-based comparison of results, illustrating the perfor-
mance differences between the best EL approach and the best ML approach across
various evaluation metrics:

◦ Weighted averaging achieves an accuracy of 88.46%, outperforming XGBoost,
which obtained 84.62%. This highlights a notable improvement of ~3.84%.

◦ The precision for weighted averaging is 89.74%, compared to 86.84% for XG-
Boost, indicating an increase of ~2.9% in precision.

◦ In terms of sensitivity, weighted averaging reaches 94.59%, surpassing XG-
Boost’s sensitivity of 91.67% by ~2.92%. This suggests that weighted averaging
is better at correctly identifying positive cases.

◦ Weighted averaging achieves 73.33% specificity, which is significantly higher
than XGBoost’s 68.75%, resulting in an improvement of ~4.58% in identifying
negative cases.

◦ The F-Value for weighted averaging is 92.11%, compared to 89.19% for XGBoost,
showing an enhancement of ~2.92%.

◦ For MCC, weighted averaging scores 71.07%, significantly better than XG-
Boost’s 62.87%, demonstrating an improvement of ~8.2%, which reflects the
overall quality of binary classifications.
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Figure 10. Percentage comparison of findings: best EL approach vs. best ML approach.

4.2. Comparative Analysis

In addition to the above comparison among the ensemble techniques and ML classifier,
we have also compared the results of using the proposed model with the weighted averag-
ing technique with some of the existing literature, regardless of the dataset used for the
work, as shown in Table 5, to support the novelty of the proposed work. When comparing
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the proposed work to existing literature, it becomes evident that in most situations, the pro-
posed work outperforms the latter using all of the evaluated factors. As shown in Table 5,
when comparing the proposed method with the works from the references, our proposed
model outperforms most of them, particularly when using the TCGA dataset, as demon-
strated in references [18–20]. This consistent improvement across multiple performance
parameters, including AUC, clearly shows the effectiveness and novelty of our approach.

Table 5. Comparison of the proposed work with some state-of-the-art works.

Ref. Dataset(s)
Comparison Parameters

Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Specificity
(%) F-Value (%) MCC (%) AUC

[9] WPBC 81.3 88.3 93.4 - 87.7 - 0.820

[10] BreakHis and BCD 100 - 100 100 - - 1.0

[11]
GSE40049 - - - - - - 0.89

GSE19783 - - - - - - 0.90

[12] BCC at HMUCH - - - - - - 0.820

[13] MHME-ICRC 81.9 - 86.9 77.7 81.6 - 0.774

[14]
I-SPY1 TRIAL,
BREAST-MRI-
NACT-Pilot

85.2 - 84.6 - - - 0.83

[15] Manually and
NLP-curated - - 89.0 84.0 - - 0.94

[16] HEROHE - 79 100 - 79 - 0.88

[17]
Real-World

Retrospective
Dataset

- - 93 57 56 - 0.75

[18]
Clinical dataset 80 40 75 - 50 - 0.75

TCGA 73 33 60 - 42 - 0.72

[19]
CAMS - - - - - - 0.76

TCGA - - - - - - 0.72

[20]
TCGA - - - - - - 0.75

HER2C and
Nott-HER2 - - - - - - 0.80

[21] H&E and Ki67 80 - - - 79.2 - 0.811

[22] AEHWU - - - - - - -

[23] Medical data on
MBC 83 83 100 - 85 - 0.87

[24] I-SPY-1 TRIAL 81 - 68 97 76 - 0.83

[Proposed] TCGA 88.46 89.74 94.59 73.33 92.11 71.07 0.903

It could be noted that not all referenced studies provided comparable data for all
metrics, such as MCC or specificity. However, we included these studies in the compar-
ison table to provide a comprehensive view of how our model compares with various
approaches used in breast cancer diagnosis research. This allows for a broader understand-
ing of the performance of our method across different contexts and datasets. While direct
comparisons were made for studies using the same dataset (TCGA), we also sought to
provide context by including studies that used different datasets but evaluated similar
performance parameters. This further reinforces the robustness and adaptability of our
proposed method.
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5. Conclusions

It is essential to accurately forecast the likelihood of relapse and metastasis in each
patient to choose the most effective adjuvant treatment and initiate early intervention
strategies since the relapse of breast cancer is directly associated with death. Patients
who have had surgery for breast cancer are attracting more and more attention from re-
searchers interested in computer-assisted diagnosis and prognosis prediction using H&E
pathology images. To assess the possibility of breast cancer metastasis and relapse using
histopathological images, we developed an innovative structure in this study that uses
EL, ML, and image features. It is essential to employ fundamental numerical features
that properly characterize histological images without altering their visual appearance to
avoid misleading pathologists into making erroneous diagnoses to cut computer expenses.
We overcame these obstacles by extracting texture information from low-order color mo-
ments and utilizing a Wavelet Multi-sub-band Co-occurrence Matrix to detect the color
characteristics of histological images. We selected the most effective prediction models
and extracted the most valuable characteristics using cross-validation. This research used
a two-stage experimental design. SVM, LR, DT, RF, AdaBoost, and XGBoost are the six
ML techniques used in stage-1. In stage-2, these techniques are combined with weighted
averaging, soft voting, and hard voting to produce better results. Using the TCGA data
warehouse, we were able to compile information on 123 breast cancer patients who had
HER2-positive results. All of these patients’ relapse and metastasis statuses were known,
and they had easy access to their H&E images. After two rounds of testing, the improved
outcomes of an AUC of 0.903, an F-Value of 92.11%, an MCC of 71.07%, a sensitivity of
94.59%, a specificity of 73.33%, and an accuracy of 88.46% are all achieved by the suggested
ensembled ML technique.

The advantages and disadvantages of each study are inevitable. The following are
the limitations of the study. The findings may not be generalizable to larger groups
because of the study’s restricted sample size (123 HER2-positive breast cancer patients).
Previous research has examined the impact of sample size on the dependability of machine
learning models. Although SMOTE addressed the class imbalance between relapse and
non-relapse samples, it is crucial to acknowledge that synthetic data may introduce noise or
inadequately capture the complexities of real-world data, thus affecting model performance.
The histopathological images utilized in the investigation were derived solely from a
single dataset (TCGA), perhaps failing to encompass the full spectrum of breast cancer
manifestations across diverse populations or contexts. Research has shown that external
validation across several datasets is crucial for validating prediction models. Although
ensemble learning models yield superior predictions, they often lack the interpretability of
simpler models, complicating their application in clinical decision-making.

Furthermore, with the use of H&E images, clinical data, and sophisticated DL algo-
rithms, patients with HER2-positive breast cancer may have their chances of relapse and
metastasis assessed. For example, our multimodal technique might be expanded in future
work to include data from histopathological imaging and gene expression analysis. We aim
to employ larger cohorts from more locations to improve our training data and achieve
greater generalization. This will help us validate our models on a larger scale. Future work
will also validate the model’s performance on external datasets and real-world clinical
samples to ensure its robustness and applicability in diverse settings.
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Appendix A

Algorithm A1: Pseudocode of the Proposed Model Working Principle.

Input: Input image set (D), total pixel (TP), Gray Level intensity (8/16/24), number of images (I)
Output: Cancer Relapse, Cancer Non-Relapse
Procedure:
Initiate the image preprocessing phase-1 to calculate the blank ratio of an image from the dataset.
For t 1←I
Find the number of Blank Pixels (B)

Find the TP
Find the Blank Ratio (BR) as B

TP × 100%
If (BR > 30%)

Discard the image
Else

Keep the image
EndIf
Return D’ with a set of images having BR < 30%

EndFor
Initiate the preprocessing phase-2 (CLAHE) to D’ for enhancing the intensity level contrast
Divide the original image into small, non-overlapping tiles (ST)
For t 1←ST

Calculate the Cumulative distribution function (C) using Equation (1).
Clip the C to limit (Clipmax) the contrast level for the current intensity
Return image i

EndFor
Form update the dataset D’ with enhanced Contrast level
Apply WMCM to D’.
For t← 1 to I
Divide the image into sub-bands SB ∈ {LL, LH, HL, HH}
For k← 1 to |SB|

Find GLCM for each intensity (i,j) of the image

GLCMSB(i, j) =
M
∑

m=1

N
∑

n=1

{
1, i f H(a, b) = i , H(a′, b′) = j

0, Otherwise
EndFor

WMCM(i, j) =
K
∑

k=1
GLCMSBk (i, j)

EndFor
Initiate Texture feature extraction from WMCM
For t← 1 to I

Calculate SGSDA, SGBDA, GLA, DLA, GLMSE, DLMSE, C, Co, E, En, H
Calculate Texture Feature (TFi,j) for intensity (i,j)

EndFor
Find TF by combining calculated TFi,j
Split the TF with test size 0.2
Apply Base Learners SVM, LR, DT, RF, AdaBoost, and XGBoost to form an initial prediction.
Apply Weighted Averaging, Hard Voting, and Soft Voting to form ensemble models.
Evaluate the trained ensemble model over Test Data
Cancer Classification.

https://portal.gdc.cancer.gov/
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