New Insight for Axillary De-Escalation in Breast Cancer Surgery: “SoFT Study” Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients’ Characteristics
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veronesi, U.; Viale, G.; Paganelli, G.; Zurrida, S.; Luini, A.; Galimberti, V.; Veronesi, P.; Intra, M.; Maisonneuve, P.; Zucca, F.; et al. Sentinel Lymph Node Biopsy in Breast Cancer: Ten-Year Results: Of a Randomized Controlled Study. Ann. Surg. 2010, 251, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Krag, D.N.; Anderson, S.J.; Julian, T.B.; Brown, A.M.; Harlow, S.P.; Ashikaga, T.; Weaver, D.L.; Miller, B.J.; Jalovec, L.M.; Frazier, T.G.; et al. Technical Outcomes of Sentinel-Lymph-Node Resection and Conventional Axillary-Lymph-Node Dissection in Patients with Clinically Node-Negative Breast Cancer: Results from the NSABP B-32 Randomised Phase III Trial. Lancet Oncol. 2007, 8, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, A.E.; Ballman, K.V.; McCall, L.; Beitsch, P.D.; Brennan, M.B.; Kelemen, P.R.; Ollila, D.W.; Hansen, N.M.; Whitworth, P.W.; Blumencranz, P.W.; et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival among Women with Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial. JAMA—J. Am. Med. Assoc. 2017, 318, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Tinterri, C.; Gentile, D.; Gatzemeier, W.; Sagona, A.; Barbieri, E.; Testori, A.; Errico, V.; Bottini, A.; Marrazzo, E.; Dani, C.; et al. Preservation of Axillary Lymph Nodes Compared with Complete Dissection in T1-2 Breast Cancer Patients Presenting One or Two Metastatic Sentinel Lymph Nodes: The SINODAR-ONE Multicenter Randomized Clinical Trial. Ann. Surg. Oncol. 2022, 29, 5732–5744. [Google Scholar] [CrossRef]
- Galimberti, V.; Cole, B.F.; Viale, G.; Veronesi, P.; Vicini, E.; Intra, M.; Mazzarol, G.; Massarut, S.; Zgajnar, J.; Taffurelli, M.; et al. Axillary Dissection versus No Axillary Dissection in Patients with Breast Cancer and Sentinel-Node Micrometastases (IBCSG 23-01): 10-Year Follow-up of a Randomised, Controlled Phase 3 Trial. Lancet Oncol. 2018, 19, 1385–1393. [Google Scholar] [CrossRef]
- Brackstone, M.; Baldassarre, F.G.; Perera, F.E.; Cil, T.; Chavez Mac Gregor, M.; Dayes, I.S.; Engel, J.; Horton, J.K.; King, T.A.; Kornecki, A.; et al. Management of the Axilla in Early-Stage Breast Cancer: Ontario Health (Cancer Care Ontario) and ASCO Guideline. J. Clin. Oncol. 2021, 39, 3056–3082. [Google Scholar] [CrossRef] [PubMed]
- Rashmi Kumar, N.; Schonfeld, R.; Gradishar, W.J.; Lurie, R.H.; Moran, M.S.; Abraham, J.; Abramson, V.; Aft, R.; Agnese, D.; Allison, K.H.; et al. NCCN Guidelines Version 1.2024 Breast Cancer; NCCN: Plymouth Meeting, PA, USA, 2024. [Google Scholar]
- Gentilini, O.; Veronesi, U. Abandoning Sentinel Lymph Node Biopsy in Early Breast Cancer? A New Trial in Progress at the European Institute of Oncology of Milan (SOUND: Sentinel Node vs Observation after Axillary UltraSouND). Breast 2012, 21, 678–681. [Google Scholar] [CrossRef]
- Gentilini, O.D.; Botteri, E.; Sangalli, C.; Galimberti, V.; Porpiglia, M.; Agresti, R.; Luini, A.; Viale, G.; Cassano, E.; Peradze, N.; et al. Sentinel Lymph Node Biopsy vs No Axillary Surgery in Patients With Small Breast Cancer and Negative Results on Ultrasonography of Axillary Lymph Nodes: The SOUND Randomized Clinical Trial. JAMA Oncol. 2023, 9, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Hersh, E.H.; King, T.A. De-Escalating Axillary Surgery in Early-Stage Breast Cancer. Breast 2022, 62, S43–S49. [Google Scholar] [CrossRef]
- Schwartz, T. At the Speed of SOUND: The Pace of Change for Axillary Management in Breast Cancer. Ann. Surg. Oncol. 2024, 31, 2801–2803. [Google Scholar] [CrossRef]
- Amin, M.B. AJCC Cancer Staging System, 8th ed.; American Joint Committee on Cancer: Chicago, IL, USA, 2017. [Google Scholar]
- Wolff, A.C.; McShane, L.M.; Hammond, M.E.H.; Allison, K.H.; Fitzgibbons, P.; Press, M.F.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382. [Google Scholar] [CrossRef] [PubMed]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.; Albain, K.S.; André, F.; Bergh, J.; et al. Personalizing the Treatment of Women with Early Breast Cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef] [PubMed]
- Buonomo, O.C.; Caredda, E.; Portarena, I.; Vanni, G.; Orlandi, A.; Bagni, C.; Petrella, G.; Palombi, L.; Orsaria, P. New Insights into the Metastatic Behavior after Breast Cancer Surgery, According to Well-Established Clinicopathological Variables and Molecular Subtypes. PLoS ONE 2017, 12, e0184680. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, U.; Paganelli, G.; Viale, G.; Galimberti, V.; Luini, A.; Zurrida, S.; Robertson, C.; Sacchini, V.; Veronesi, P.; Orvieto, E.; et al. Sentinel Lymph Node Biopsy and Axillary Dissection in Breast Cancer: Results in a Large Series. J. Natl. Cancer Inst. 1999, 91, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Donker, M.; van Tienhoven, G.; Straver, M.E.; Meijnen, P.; van de Velde, C.J.H.; Mansel, R.E.; Cataliotti, L.; Westenberg, A.H.; Klinkenbijl, J.H.G.; Orzalesi, L.; et al. Radiotherapy or Surgery of the Axilla after a Positive Sentinel Node in Breast Cancer (EORTC 10981-22023 AMAROS): A Randomised, Multicentre, Open-Label, Phase 3 Non-Inferiority Trial. Lancet Oncol. 2014, 15, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Paik, S. Development of the 21-Gene Assay and Its Application in Clinical Practice and Clinical Trials. J. Clin. Oncol. 2008, 26, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Goetz, M.P.; Olson, J.A.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Montagna, G.; Pilewskie, M.L.; Sevilimedu, V.; Morrow, M. Axillary Staging Is Not Justified in Postmenopausal Clinically Node-Negative Women Based on Nodal Disease Burden. Ann. Surg. Oncol. 2023, 30, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Kalinsky, K.; Barlow, W.E.; Gralow, J.R.; Meric-Bernstam, F.; Albain, K.S.; Hayes, D.F.; Lin, N.U.; Perez, E.A.; Goldstein, L.J.; Chia, S.K.L.; et al. 21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer. N. Engl. J. Med. 2021, 385, 2336–2347. [Google Scholar] [CrossRef]
- Chopra, S.; Khosla, M.; Vidya, R. Innovations and Challenges in Breast Cancer Care: A Review. Medicina 2023, 59, 957. [Google Scholar] [CrossRef]
- Vanni, G.; Materazzo, M.; Di Lorenzo, N.; Tacconi, F.; Pellicciaro, M.; Berretta, M.; Di Mauro, G.; Pistolese, C.A.; Noce, A.; Longo, B.; et al. Contrast-Enhanced Ultrasound Using Intradermal Microbubble Sulfur Hexafluoride in Non-Invasive Axillary Staging in Breast Cancer: Are We Missing a Chance? Anticancer Res. 2024, 44, 2021–2030. [Google Scholar] [CrossRef] [PubMed]
- Vanni, G.; Tazzioli, G.; Pellicciaro, M.; Materazzo, M.; Paolo, O.; Cattadori, F.; Combi, F.; Papi, S.; Pistolese, C.A.; Cotesta, M.; et al. Delay in Breast Cancer Treatments During the First COVID-19 Lockdown. A Multicentric Analysis of 432 Patients. Anticancer Res. 2020, 40, 7119–7125. [Google Scholar] [CrossRef] [PubMed]
- Buonomo, O.C.; Materazzo, M.; Pellicciaro, M.; Iafrate, G.; Ielpo, B.; Rizza, S.; Pistolese, C.A.; Perretta, T.; Meucci, R.; Longo, B.; et al. Contrast-Enhanced Ultrasound Using Intradermal Microbubble Sulfur Hexafluoride for Identification of Sentinel Lymph Nodes During Breast Cancer Surgery: A Clinical Trial. Anticancer Res. 2023, 43, 557–567. [Google Scholar] [CrossRef]
- Tinterri, C.; Canavese, G.; Gentile, D. To Dissect or Not to Dissect? The Surgeon’s Perspective on the Prediction of Greater Than or Equal to 4 Axillary Lymph Node Metastasis in Early-Stage Breast Cancer: A Comparative Analysis of the Per-Protocol Population of the SINODAR-ONE Clinical Trial. Ann. Surg. Open 2024, 5, e405. [Google Scholar] [CrossRef]
- Johnston, S.R.D.; Harbeck, N.; Hegg, R.; Toi, M.; Martin, M.; Shao, Z.M.; Zhang, Q.Y.; Martinez Rodriguez, J.L.; Campone, M.; Hamilton, E.; et al. Abemaciclib Combined With Endocrine Therapy for the Adjuvant Treatment of HR+, HER2-, Node-Positive, High-Risk, Early Breast Cancer (MonarchE). J. Clin. Oncol. 2020, 38, 3987–3998. [Google Scholar] [CrossRef]
- Akbari, M.E.; Akbari, A.; Ebrahimian, S. Pathological Characteristics Predicting Sentinel Lymph Node Metastasis in Early Breast Cancer Patients. Casp. J. Intern. Med. 2024, 15, 472–477. [Google Scholar] [CrossRef]
- Lee, S.Y.; Yoo, T.K.; Kim, J.; Chung, I.Y.; Ko, B.S.; Kim, H.J.; Lee, J.W.; Son, B.H.; Lee, S.B. Characteristics and Risk Factors of Axillary Lymph Node Metastasis of Microinvasive Breast Cancer. Breast Cancer Res. Treat. 2024, 206, 495–507. [Google Scholar] [CrossRef]
- Liu, R.; Chen, J.; Cao, W.; Li, T.; Liao, Y.; Li, Y. Risk Factors and Prognosis of Sentinel Lymph Node Metastasis in Breast-Conserving Breast Cancer: A Retrospective Study Based on the SEER Database. Medicine 2024, 103, E37263. [Google Scholar] [CrossRef]
- Pang, W.; Wang, Y.; Zhu, Y.; Jia, Y.; Nie, F. Predictive Value for Axillary Lymph Node Metastases in Early Breast Cancer: Based on Contrast-Enhanced Ultrasound Characteristics of the Primary Lesion and Sentinel Lymph Node. Clin. Hemorheol. Microcirc. 2024, 86, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jiang, Q.; Wang, J.; Yang, X. A Nomogram Model for Predicting the Risk of Axillary Lymph Node Metastasis in Patients with Early Breast Cancer and CN0 Status. Oncol. Lett. 2024, 28, 345. [Google Scholar] [CrossRef]
- Abdulla, H.A.; Salman, A.Z.; Alaraibi, S.J.; Nazzal, K.; Ahmed, S.A.; Almahari, S.A.; Dhaif, A. Risk Factors Associated With Sentinel Lymph Node Metastasis in Clinically Node-Negative Breast Cancer. Eur. J. Breast Health 2023, 19, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Liu, P.F.; Ye, J.D.; Wu, Y.Y. Analysis of Risk Factors of Axillary Lymph-Node Metastasis in Triple-Negative Breast Cancer. Asian J. Surg. 2023, 46, 2265–2267. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Zhang, Y.; Sun, J.; Zhang, C.; Zhang, D.; Xie, L.; Chu, F.; Yu, X.; Xie, Y. Predictors of Sentinel Lymph Node Metastasis in Chinese Women with Clinical T1-T2 N0 Breast Cancer and a Normal Axillary Ultrasound. Acta Radiol. 2022, 63, 1463–1468. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Luo, W.; He, L.; Yang, L. Nomogram Models for Stratified Prediction of Axillary Lymph Node Metastasis in Breast Cancer Patients (CN0). Front. Endocrinol. 2022, 13, 967062. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.L.; Da Gai, J.; Yu, X.M.; Mao, X.; Jin, F. A Novel Nomogram and Risk Classification System for Predicting Lymph Node Metastasis of Breast Mucinous Carcinoma: A SEER-Based Study. Cancer Med. 2022, 11, 4767–4783. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zuo, W.; Wu, Y.; Wang, X.; Li, W.; Wang, Q.; Zhou, H.; Xie, M.; Qin, X. Ultrasonography and Clinicopathological Features of Breast Cancer in Predicting Axillary Lymph Node Metastases. BMC Cancer 2022, 22, 1155. [Google Scholar] [CrossRef] [PubMed]
- Yiming, A.; Wubulikasimu, M.; Yusuying, N. Analysis on Factors behind Sentinel Lymph Node Metastasis in Breast Cancer by Color Ultrasonography, Molybdenum Target, and Pathological Detection. World J. Surg. Oncol. 2022, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lv, W.; Wu, H.; Yang, D.; Nie, F. A Preoperative Nomogram for Predicting the Risk of Sentinel Lymph Node Metastasis in Patients with T1-2N0 Breast Cancer. Jpn. J. Radiol. 2022, 40, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xue, J.; Peng, S.; Yang, P.; Yang, Z.; Yang, L.; Dong, Y.; Yuan, L.; Wang, T.; Bao, G. Preoperative Nomogram for Predicting Sentinel Lymph Node Metastasis Risk in Breast Cancer: A Potential Application on Omitting Sentinel Lymph Node Biopsy. Front. Oncol. 2021, 11, 665240. [Google Scholar] [CrossRef]
- Minami, S.; Sakimura, C.; Irie, J.; Tokai, Y.; Okubo, H.; Ohno, T. Predictive Factors Among Clinicopathological Characteristics for Sentinel Lymph Node Metastasis in T1-T2 Breast Cancer. Cancer Manag. Res. 2021, 13, 215–223. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Qiao, J.; Guo, X.; Bian, X.; Guo, L.; Liu, Z.; Lu, Z. Establishment of a Model for Predicting Sentinel Lymph Node Metastasis in Early Breast Cancer Based on Contrast-Enhanced Ultrasound and Clinicopathological Features. Gland Surg. 2021, 10, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, H.; Ma, J.; Hao, J.; Zhang, C.; Ma, Q.; Wang, B. Association between the Platelet to Lymphocyte Ratio, Neutrophil to Lymphocyte Ratio and Axillary Lymph Node Metastasis in CT1N0 Breast Cancer Patients. Am. J. Transl. Res. 2021, 13, 1854–1861. [Google Scholar]
- Catteau, X.; Koopmansch, C.; Maris, C.; Colart, P.; Noël, J.C. Predictive Factors of Lymph Node Metastasis and Effectiveness of Intraoperative Examination of Sentinel Lymph Node in Breast Carcinoma: A Retrospective Belgian Study. Ann. Diagn. Pathol. 2020, 49, 151607. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, X.; Li, H. Clinical Value of Serum Biomarkers CA153, CEA, and White Blood Cells in Predicting Sentinel Lymph Node Metastasis of Breast Cancer. Int. J. Clin. Exp. Pathol. 2020, 13, 2889–2894. [Google Scholar]
- Fan, B.; Pardo, J.A.; Serres, S.; Alapati, A.C.; Szewczyk, J.; Mele, A.; James, T.A. Role of Sentinel Lymph Node Biopsy in Microinvasive Breast Cancer. Ann. Surg. Oncol. 2020, 27, 4468–4473. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Lan, X.; Tan, Y.; Lin, X.; Wen, G.; Wang, X.; Huang, X.; Yang, F. Identification of Risk Factors Associated with Axillary Lymph Node Metastasis for Sentinel Lymph Node-Positive Breast Cancer Patients. J. Oncol. 2020, 2020, 8884337. [Google Scholar] [CrossRef]
- Takada, K.; Kashiwagi, S.; Asano, Y.; Goto, W.; Kouhashi, R.; Yabumoto, A.; Morisaki, T.; Shibutani, M.; Takashima, T.; Fujita, H.; et al. Prediction of Lymph Node Metastasis by Tumor-Infiltrating Lymphocytes in T1 Breast Cancer. BMC Cancer 2020, 20, 598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Fan, Y.; Li, X.; Qiu, J.; Zhu, M.; Li, H. Risk Factors for Axillary Lymph Node Metastases in Clinical Stage T1-2N0M0 Breast Cancer Patients. Medicine 2019, 98, e17481. [Google Scholar] [CrossRef]
- Rivadeneira, D.E.; Simmons, R.M.; Christos, P.J.; Hanna, K.; Daly, J.M.; Osborne, M.P. Predictive Factors Associated with Axillary Lymph Node Metastases in T1a and T1b Breast Carcinomas: Analysis in More than 900 Patients. J. Am. Coll. Surg. 2000, 191, 1–6. [Google Scholar] [CrossRef]
- Aitken, E.; Osman, M. Factors Affecting Nodal Status in Invasive Breast Cancer: A Retrospective Analysis of 623 Patients. Breast J. 2010, 16, 271–278. [Google Scholar] [CrossRef]
- Vanni, G.; Materazzo, M.; Pellicciaro, M.; Morando, L.; Portarena, I.; Anemona, L.; D’Angelillo, R.M.; Barbarino, R.; Chiaravalloti, A.; Meucci, R.; et al. Does Age Matter? Estimating Risks of Locoregional Recurrence After Breast-Conservative Surgery. In Vivo 2020, 34, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.; Surujballi, J.; Awan, A.A.; Hutton, B.; Arnaout, A.; Shorr, R.; Vandermeer, L.; Alzahrani, M.J.; Clemons, M. A Scoping Review Characterizing “Choosing Wisely®” Recommendations for Breast Cancer Management. Breast Cancer Res. Treat. 2021, 185, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, G.; Atanasova, M.; Popova, Y.; Vasileva, K.; Milusheva, Y.; Troianova, P. Molecular and Genetic Subtyping of Breast Cancer: The Era of Precision Oncology. World Cancer Res. J. 2022, 9, e2367. [Google Scholar] [CrossRef]
- Dressing, G.E.; Lange, C.A. Integrated Actions of Progesterone Receptor and Cell Cycle Machinery Regulate Breast Cancer Cell Proliferation. Steroids 2009, 74, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, H.; Li, S.; Wu, P.; Mao, X. The Role of Progesterone Receptors in Breast Cancer. Drug Des. Dev. Ther. 2022, 16, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Reinius, M.A.V.; Smyth, E. Anti-Cancer Therapy with Cyclin-Dependent Kinase Inhibitors: Impact and Challenges. Expert Rev. Mol. Med. 2021, 23, e6. [Google Scholar] [CrossRef]
- Kędzierawski, P.; Bocian, A.; Radowicz-Chil, A.; Huruk-Kuchinka, A.; Mężyk, R. Subtype of Breast Cancer Influences Sentinel Lymph Node Positivity. Arch. Med. Sci. 2023, 19, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Gangi, A.; Mirocha, J.; Leong, T.; Giuliano, A.E. Triple-Negative Breast Cancer Is Not Associated with Increased Likelihood of Nodal Metastases. Ann. Surg. Oncol. 2014, 21, 4098–4103. [Google Scholar] [CrossRef] [PubMed]
- Pilewskie, M.; Morrow, M. Axillary Nodal Management Following Neoadjuvant Chemotherapy. JAMA Oncol. 2017, 3, 549–555. [Google Scholar] [CrossRef]
- Vici, P.; Pizzuti, L.; Natoli, C.; Gamucci, T.; Di Lauro, L.; Barba, M.; Sergi, D.; Botti, C.; Michelotti, A.; Moscetti, L.; et al. Triple Positive Breast Cancer: A Distinct Subtype? Cancer Treat. Rev. 2015, 41, 69–76. [Google Scholar] [CrossRef]
- Baker, J.L.; Muhsen, S.; Zabor, E.C.; Stempel, M.; Gemignani, M.L. Does Lymph Node Status Prior to Neoadjuvant Chemotherapy Influence the Number of Sentinel Nodes Removed? Ann. Surg. Oncol. 2019, 26, 336–342. [Google Scholar] [CrossRef]
- Gentilini, O.; Botteri, E.; Dadda, P.; Sangalli, C.; Boccardo, C.; Peradze, N.; Ghisini, R.; Galimberti, V.; Veronesi, P.; Luini, A.; et al. Physical Function of the Upper Limb after Breast Cancer Surgery. Results from the SOUND (Sentinel Node vs. Observation after Axillary Ultra-SouND) Trial. Eur. J. Surg. Oncol. 2016, 42, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Shubeck, S.P.; Morrow, M.; Dossett, L.A. De-Escalation in Breast Cancer Surgery. NPJ Breast Cancer 2022, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Vanni, G.; Materazzo, M.; Pellicciaro, M.; Tacconi, F.; Faccini, B.; Longo, B.; Cervelli, V.; Buonomo, O. Breast Cancer Treatment De-Escalation: Breaking the SOUND Barrier. World Cancer Res. J. 2023, 10, e2682. [Google Scholar] [CrossRef]
- Materazzo, M.; Facchini, A.; Garozzo, D.; Buonomo, C.; Pellicciaro, M.; Vanni, G. Maintaining Good Practice in Breast Cancer Management and Reducing the Carbon Footprint of Care: Study Protocol and Preliminary Results. World Cancer Res. J. 2022, 9, e2438. [Google Scholar] [CrossRef]
- Vanni, G.; Materazzo, M.; Portarena, I.; Pellicciaro, M.; Meacci, A.; Pizzimenti, A.R.; Buonomo, O.C. Socioeconomic Impact of OncotypeDX on Breast Cancer Treatment: Preliminary Results. In Vivo 2023, 37, 2510–2516. [Google Scholar] [CrossRef]
LN− Group (n = 134) | LN+ Group (n = 26) | p-Value | |
---|---|---|---|
Age (IQR) years | 60 (50; 71) | 67 (50; 74) | 0.880 |
Age > 70 years yes, n (%) | 36 (26.87%) | 8 (30.77%) | 0.768 |
BMI (IQR) kg/m2 | 24.22 (22.06; 27.31) | 26,04 (23.38; 28.52) | 0.427 |
Localization (quadrant), n (%) | |||
Upper-outer (UOQ) | 57 (42.55%) | 11 (42.31%) | 0.771 |
Upper-inner (UIQ) | 15 (11.19%) | 4 (15.38%) | |
Lower-outer (LOQ) | 18 (13.43%) | 4 (15.38%) | |
Lower-inner (LIQ) | 21 (15.67%) | 5 (19.23%) | |
Other localization | 23 (17.16%) | 2 (7.69%) | |
Laterality (right vs. left), n (%) | |||
Right | 69 (51.49%) | 11 (42.31%) | 0.433 |
Left | 65 (48.51%) | 15 (57.69%) | |
Focality (unifocal vs. multifocal), n (%) | |||
Unifocal | 106 (79.10%) | 15 (57.69%) | 0.103 |
Multifocal | 14 (10.45%) | 6 (23.08%) | |
Multicentric | 14 (10.45%) | 5 (19.23%) | |
Unifocal | 106 (79.10%) | 15 (57.69%) | 0.020 * |
Multifocal/multicentric | 28 (20.90%) | 11 (42.31%) | |
Clinical Stage, n (%) | |||
cT1a | 9 (6.72%) | 1 (3.85%) | 0.014 * |
cT1b | 44 (32.84%) | 5 (19.23%) | |
cT1c | 58 (43.28%) | 8 (30.77%) | |
cT2 | 23 (17.16%) | 12 (46.15%) | |
Breast Density, n (%) | |||
A | 6 (4.48%) | 7 (26.92%) | 0.237 |
B | 99 (73.88%) | 14 (53.85%) | |
C | 23 (17.16%) | 4 (15.38%) | |
D | 6 (4.48%) | 1 (3.85%) | |
Tumor Diameter, mm (IQR) | 12 (9.0; 18.5) | 19 (13.0; 23.5) | 0.016 * |
Tumor size > 20 mm yes, n (%) | 23 (17.16%) | 12 (46.15%) | 0.001 * |
Microcalcification yes, n (%) | 31 (23.13%) | 9 (34.62%) | 0.184 |
Tumor Histology, n (%) | |||
Invasive ductal | 110 (82.09%) | 19 (73.08%) | 0.103 |
Invasive lobular | 17 (12.69%) | 4 (15.38%) | |
Other | 7 (5.22%) | 3 (11.54%) | |
Tumor Grade, n (%) | |||
1 | 17 (12.69%) | 4 (15.38%) | 0.296 |
2 | 85 (63.43%) | 17 (65.39%) | |
3 | 30 (22.39%) | 2 (7.69%) | |
N/A | 2 (1.49%) | 3 (11.54%) | |
Immunohistochemistry | |||
ER % (IQR) | 74 (72.5; 95) | 90 (80; 95) | <0.001 * |
PR % (IQR) | 70 (1.25; 90) | 90 (40; 95) | 0.001 * |
Ki67 % (IQR) | 18 (10; 30) | 25 (16.75; 30) | 0.756 |
Ki67 > 7.5% yes, n (%) | 110 (82.09%) | 19 (73.08%) | 0.287 |
Ki67 > 14% yes, n (%) | 82 (61.19%) | 17 (65.38%) | 0.687 |
HER2 Score, n (%) | |||
0 | 31 (23.14%) | 4 (15.38%) | 0.865 |
1 | 83 (61.94%) | 15 (57.69%) | |
2 | 7 (5.22%) | 3 (11.55%) | |
3 | 13 (9.70%) | 4 (15.38%) | |
Molecular Subtype, n (%) | |||
Luminal A | 74 (55.22%) | 8 (30.77%) | 0.011 * |
Luminal B | 42 (31.34%) | 17 (65.38%) | |
HER2 type | 4 (2.99%) | 1 (3.85%) | |
Triple negative | 14 (10.45%) | 0 (0%) |
SLNB Definitive Staining Macrometastasis | ||||
---|---|---|---|---|
Yes | No | Total | ||
SLNB Frozen Section Macrometastasis | Yes | 3 (11.54%) | 0 (%) | 3 (11.54%) |
No | 1 (3.84%) | 22 (84.62%) | 23 (88.46%) | |
Total | 4 (15.38%) | 22 (84.62%) | 26 (100%) |
Author (Year) | Country | Design | Clinical Stage | n= | ALN+ n= | Variables Examined | Univariate Preoperative Prognostic Factor | Multivariate Preoperative Prognostic Factor |
---|---|---|---|---|---|---|---|---|
Akbari et al. [28] (2024) | Iran | Retrospective | cT1-3 cN0 | 73 | 33 | Clinical Pathological | LVI Histology Ki67 | N.A. |
Lee et al. [29] (2024) | South Korea | Retrospective | pT1(mi) cN0 | 1688 | 70 | Clinical Pathological | Age Breast surgery Axillary surgery SLNs number Tumor size Grade LVI Foci of microinvasion number ER PR Molecular subtype Radiotherapy Endocrine therapy | Age Axillary surgery SLNs number LVI Foci of microinvasion number ER PR |
Liu et al. [30] (2024) | China | SEER database | BCS cT1-3 cN0 | 16983 | 2338 | Clinical Pathological | Age Race Tumor site Tumor size grade ER PR SLN number Radiation Chemotherapy | Age Race Grade Radiation ER PR |
Pang et al. [31] (2024) | China | Retrospective | cT1-2 cN0 | 118 | N.A. | US CEUS Clinical Pathological | Age HER2 Nutrient vessel BC CEUS enhancement pattern SLN CEUS patterns | CEUS pattern of enhancement lesion CEUS patterns of SLN |
Zhang et al. [32] (2024) | China | Retrospective | cT1-2 cN0 | 998 | 228 | US Clinical Pathological | LVI Tumor location ALN US Tumor size Histological grade | Lymphovascular invasion ALN US Maximum diameter |
Abdulla et al. [33] (2023) | Bahrain | Retrospective | cT1-3 cN0 | 160 | 35 | Clinical Pathological | Age Grade ER LVI Tumor size | Tumor grade ER LVI Tumor size |
Jin et al. [34] (2023) | China | SEER research plus data | TNBC cT1-3 cN0 | 17554 | N.A. | Clinical Pathological | Age Race Histology Grade Tumor size Marital status Sex | Age Race Tumor size Grade |
Fu et al. [35] (2022) | China | Retrospective | cT1-2 cN0 | 141 | 26 | Clinical Pathological | Tumor location ER PR LVI | Tumor location PR LVI |
Gao et al. [36] (2022) | China | SEER database | cT1-3 cN0 ALN− vs. ALN+(1–2) vs. ALN+ (>2) | 4753 | ALN+(1-2) = 1961) ALN + (>2) = 371 | Clinical Pathological | ALN− vs. ALN+(1–2) vs. ALN+ (>2): Age Race Tumor size Tumor location Molecular subtype ER PR HER2 Grade Histology | ALN− vs. ALN+: Tumor size Tumor location Molecular subtype Grade Histology |
Wu et al. [37] (2022) | China | SEER database | MBC cT1-3 cN0 | 665 | 51 | Clinical Pathological | Age Tumor size Grade HER2 | Age ≥ 70 Tumor size Grade II/IV |
Xiong et al. [38] (2022) | China | Retrospective | cT1-2 cN0 | 1076 | 437 | US Clinical Pathological | Age Grade Multifocality Molecular subtype Tumor location Tumor size US margin Skin distance | Age Grade Molecular subtype Tumor location Tumor size US margin Skin distance |
Yiming et al. [39] (2022) | China | Retrospective | cT1-3 cN0 | 99 | 49 | US Clinical Pathological | Age Tumor size CK5/6 HER2 TP53 mutation BRCA1 mutation BRCA2 mutation | N.A. |
Zhu et al. [40] (2022) | China | prospective | cT1-2 cN0 | 114 | 59 | US CEUS Clinical Pathological | Multifocal HER2 Tumor size Resistance index CEUS extended range | Tumor diameter HER2 Tumor size Resistance index |
Hu et al. [41] (2021) | China | Retrospective | c T1-3 cN0. | 624 | 147 | US Clinical Pathological | Age BMI Her2 type vs. LumA Ki67 Tumor size Inner echo Calcification Color Doppler flow Aspect ratio | Age BMI Ki67 Tumor size Tumor margin Calcification Aspect ratio |
Minami et al. [42] (2021) | Japan | Retrospective | c T1-2 cN0. | 313 | 54 | Clinical Serum Pathological | IGT Tumor size Nipple distance Tumor location Tumor stage | IGT Tumor size Nipple distance |
Wang et al. [43] (2021) | China | Retrospective | c T1-3 cN0. | 297 | 74 | US CEUS MAM Clinical Pathological | BMI Tumor resection biopsy Tumor size LVI ER PR CK5/6 HER2 ALN US aspect ratio US lymphatic structure Cortical medulla US SLN CEUS patterns SLN CEUS aspect ratio ALN MAM aspect ratio | BMI SLN US aspect ratio SLN CEUS patterns SLN CEUS aspect ratio ALN MAM aspect ratio CK5/6 |
Yang et al. [44] (2021) | China | Retrospective | cT1 cN0 | 154 | 32 | Clinical Serum Pathological | Tumor size LVI PLR NLR | N.A. |
Catteau et al. [45] (2020) | Belgium | Retrospective | Tis-T4 | 212 | Clinical Pathological | Age Tumor size T stage T grade LVI Molecular classification Ki67 20% | N.A. | |
Fan et al. [46] (2020) | China | Retrospective | cT1-2 cN0 | 121 | 56 | Clinical Serum Pathological | CA153 CEA WBC Tumor size ER PR | CA153 CEA WBC |
Fan et al. [47] (2020) | USA | National cancer database | cT1mi cN0 | 2609 | 76 | Clinical Serum Pathological | N.A. | Grade Age Molecular subtype |
He et al. [48] (2020) | China | Retrospective | cT1-2 cN0 | 556 | 235 | Clinical Pathological | SLN positive absolute number SLN metastasis rate LVI | SLN positive absolute number SLN metastasis rate LVI |
Takada et al. [49] (2020) | Japan | Retrospective | cT1 cN0 | 332 | 16 | Clinical Pathological | Tumor size LVI TILS yes/no | Tumor Size LVI TILS yes/no |
Zhang et al. [50] (2019) | China | Retrospective | cT1-2 cN0 | 1671 | 541 | US Clinical Pathological | Tumor size Palpable Nipple distance Tumor location Grade ISAT IIAT | Tumor size Nipple distance ISAT IIAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanni, G.; Materazzo, M.; Paduano, F.; Pellicciaro, M.; Di Mauro, G.; Toscano, E.; Tacconi, F.; Longo, B.; Cervelli, V.; Berretta, M.; et al. New Insight for Axillary De-Escalation in Breast Cancer Surgery: “SoFT Study” Retrospective Analysis. Curr. Oncol. 2024, 31, 4141-4157. https://doi.org/10.3390/curroncol31080309
Vanni G, Materazzo M, Paduano F, Pellicciaro M, Di Mauro G, Toscano E, Tacconi F, Longo B, Cervelli V, Berretta M, et al. New Insight for Axillary De-Escalation in Breast Cancer Surgery: “SoFT Study” Retrospective Analysis. Current Oncology. 2024; 31(8):4141-4157. https://doi.org/10.3390/curroncol31080309
Chicago/Turabian StyleVanni, Gianluca, Marco Materazzo, Floriana Paduano, Marco Pellicciaro, Giordana Di Mauro, Enrica Toscano, Federico Tacconi, Benedetto Longo, Valerio Cervelli, Massimiliano Berretta, and et al. 2024. "New Insight for Axillary De-Escalation in Breast Cancer Surgery: “SoFT Study” Retrospective Analysis" Current Oncology 31, no. 8: 4141-4157. https://doi.org/10.3390/curroncol31080309
APA StyleVanni, G., Materazzo, M., Paduano, F., Pellicciaro, M., Di Mauro, G., Toscano, E., Tacconi, F., Longo, B., Cervelli, V., Berretta, M., & Buonomo, O. C. (2024). New Insight for Axillary De-Escalation in Breast Cancer Surgery: “SoFT Study” Retrospective Analysis. Current Oncology, 31(8), 4141-4157. https://doi.org/10.3390/curroncol31080309