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Abstract: (1) Background: Hepatoblastoma and medulloblastoma are two types of pediatric
tumors with embryonic origins. Both tumor types can exhibit genetic alterations that
affect the β-catenin and Wnt pathways; (2) Materials and Methods: This study used bioin-
formatics and integrative analysis of multi-omics data at both the tumor and single-cell
levels to investigate two distinct pediatric tumors: medulloblastoma and hepatoblastoma;
(3) Results: The cross-transcriptome analysis revealed a commonly regulated expression
signature between hepatoblastoma and medulloblastoma tumors. Among the commonly
upregulated genes, the transcription factor LEF1 was significantly expressed in both tu-
mor types. In medulloblastoma, LEF1 upregulation is associated with the WNT-subtype.
The analysis of LEF1 genome binding occupancy in H1 embryonic stem cells identified
141 LEF1 proximal targets activated in WNT medulloblastoma, 13 of which are involved
in Wnt pathway regulation: RNF43, LEF1, NKD1, AXIN2, DKK4, DKK1, LGR6, FGFR2,
NXN, TCF7L1, STK3, YAP1, and NFATC4. The ROC curve analysis of the combined ex-
pression of these 13 WNT-related LEF1 targets yielded an area under the curve (AUC) of
1.00, indicating 100% specificity and sensitivity for predicting the WNT subtype in the
PBTA medulloblastoma cohort. An expression score based on these 13 WNT-LEF1 targets
accurately predicted the WNT subtype in two independent medulloblastoma transcriptome
cohorts. At the single-cell level, the WNT-LEF1 expression score was exclusively positive
in WNT-medulloblastoma tumor cells. This WNT-LEF1-dependent signature was also
confirmed as activated in the hepatoblastoma tumor transcriptome. At the single-cell level,
the WNT-LEF1 expression score was higher in tumor cells from both human hepatoblas-
toma samples and a hepatoblastoma patient-derived xenotransplant model; (4) Discussion:
This study uncovered a shared transcriptional activation of a LEF1-dependent embryonic
program, which orchestrates the regulation of the Wnt signaling pathway in tumor cells
from both hepatoblastoma and medulloblastoma.

Keywords: LEF1; WNT; pluripotency; pediatric cancer; hepatoblastoma; medulloblastoma;
genome binding occupancy; scRNA sequencing; omics
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1. Introduction
Hepatoblastoma and medulloblastoma are two rare, aggressive pediatric cancers of

embryonic origin that present unique challenges for treatment due to their underlying
genetic complexity and shared developmental pathways [1,2]. These tumors frequently
involve dysregulation in the Wnt/β-catenin signaling pathway, which is essential for em-
bryonic development and the maintenance of stem cell populations [3–5]. According to
the World Health Organization (WHO) classification, hepatoblastomas are categorized into
distinct subtypes based on their histological composition, including purely epithelial forms
(fetal, embryonal, and small-cell undifferentiated) and mixed epithelial and mesenchymal
types, with certain subtypes linked to worse prognoses [6]. Mutations in CTNNB1, which
encodes β-catenin, are commonly observed in both hepatoblastoma and certain medul-
loblastoma subtypes, particularly those classified as WNT subtypes, highlighting a shared
oncogenic mechanism that implicates Wnt signaling in the progression and characteristics
of these cancers [7,8].

Central to Wnt pathway activity is the transcription factor LEF1, part of the
TCF/LEF family, which serves as a key mediator of β-catenin signaling (Supplemen-
tal Figure S1) [9,10]. LEF1 drives the expression of target genes associated with cellular
proliferation, differentiation, and survival, functions that are often hijacked in cancer to
promote tumor growth [11,12]. Recent findings suggest that LEF1’s influence extends
beyond traditional Wnt pathway signaling, impacting metabolic and epigenetic landscapes
within tumors [13]. These roles, however, remain incompletely understood, particularly in
the context of a shared LEF1-mediated transcriptional program across hepatoblastoma and
medulloblastoma.

This study aims to bridge this gap by investigating the common transcriptional and
molecular features driven by LEF1 in both hepatoblastoma and WNT-subtype medulloblas-
toma. Through integrative bioinformatics and multi-omics analyses at both the tumor and
single-cell levels, we identify a robust WNT-LEF1 gene expression signature enriched in tu-
mor cells from both cancers. This signature, comprising critical regulatory genes, highlights
a conserved embryonic transcriptional program likely contributing to tumor progression
and therapeutic resistance. By elucidating the LEF1-dependent mechanisms within the
Wnt pathway, our findings provide new insights into the molecular underpinnings of these
two pediatric tumors and reveal potential targets for therapeutic intervention that leverage
this shared oncogenic axis.

2. Materials and Methods
2.1. Public Transcriptome Datasets
2.1.1. MB-PBTA (MB, Open PBTA)

The Open Pediatric Brain Tumor Atlas [14]: RNA-sequencing data for medul-
loblastoma from the PBTA were downloaded from the Pediatric cBioPortal website,
part of the “Open Pediatric Cancer Project” consortium [15], at the following address:
https://pedcbioportal.kidsfirstdrc.org/ (accessed on 6 November 2024). After filtration
and clinical annotation, this transcriptomic medulloblastoma cohort consisted of 254 tumor
samples, with most samples from male patients (61%) and primary tumors (61%). These
tumors were distributed among distinct molecular subtypes: WNT (n = 21), SHH (n = 74),
G3 (n = 60), and G4 (n = 99) (Table 1). RNA-sequencing counts were transformed into
pseudocounts using a (log2 + 1) data transformation for downstream analyses.

https://pedcbioportal.kidsfirstdrc.org/
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Table 1. WNT-LEF1 score stratification for PBTA medulloblastoma cohort. Low and high group
stratifications were performed on threshold of WNT-LEF1 expression score (high: patient with high
wnt expression score values; low: patients with low wnt expression score values). p-values were
computed by chi square tests.

Variable Level High (n = 21) Low (n = 233) Total (n = 254) p-Value

SEX Male 13 (61.9) 142 (60.9) 155 (61.0)
Female 8 (38.1) 91 (39.1) 99 (39.0) 1

TUMOR TYPE Primary 20 (95.2) 135 (57.9) 155 (61.0)
Progression 0 (0.0) 3 (1.3) 3 (1.2)
Metastatic 1 (4.8) 83 (35.6) 84 (33.1)
Recurrence 0 (0.0) 11 (4.7) 11 (4.3)
Deceased 0 (0.0) 1 (0.4) 1 (0.4) 0.02348

group WNT 21 (100.0) 0 (0.0) 21 (8.3)
G3 0 (0.0) 60 (25.8) 60 (23.6)
G4 0 (0.0) 99 (42.5) 99 (39.0)

SHH 0 (0.0) 74 (31.8) 74 (29.1) <1 × 10−4

CNS_REGION Ventricles * 5 (23.8) 12 (5.2) 17 (6.7)
Mixed 3 (14.3) 63 (27.2) 66 (26.1)

Posterior fossa 13 (61.9) 152 (65.5) 165 (65.2)
Spine 0 (0.0) 1 (0.4) 1 (0.4)

Hemispheric 0 (0.0) 3 (1.3) 3 (1.2)
Other 0 (0.0) 1 (0.4) 1 (0.4) 0.03963

Missing 0 1 1
EFS_STATUS 1: Recurrence 1 (4.8) 36 (15.5) 37 (14.6)

0: No event 19 (90.5) 121 (51.9) 140 (55.1)
1: Progressive—metastatic 1 (4.8) 33 (14.2) 34 (13.4)

1: Deceased—due to disease 0 (0.0) 7 (3.0) 7 (2.8)
1: Recurrence—metastatic 0 (0.0) 23 (9.9) 23 (9.1)

1: Second malignancy 0 (0.0) 6 (2.6) 6 (2.4)
1: Progressive 0 (0.0) 7 (3.0) 7 (2.8) 0.06538

* It is possible to have a medulloblastoma located in the central nervous system region, and this potentially
includes the cerebral ventricles. Medulloblastoma is a brain tumor that usually originates in the cerebellum, but it
can also spread to other parts of the brain, including the ventricles [16].

2.1.2. GSE37418 (MB)

Normalized data matrices and annotations (GPL570-[HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array) from dataset GSE37418 [17] were downloaded from
the Gene Expression Omnibus (GEO) website [18] using the GEOquery R package version
2.70.0 [19] in the R software environment version 4.3.3. This transcriptomic cohort of
medulloblastoma tumors included 74 tumor samples, with the majority from male patients
(71%) and a mean age of 99 months. Most patients were of white ethnicity (57%), followed
by Hispanic ethnicity (18%). Regarding molecular subtypes, this cohort consisted of 39 G4
samples, 8 WNT samples, 11 SHH samples, and 16 G3 samples (Table 2).

Table 2. WNT-LEF1 score stratification for GSE37418 medulloblastoma validation cohort. p-values
were computed by chi square tests between samples with low and high values of WNT-LEF1 expres-
sion scores and by t-test for quantitative variables.

Variable Level Low
(n = 66) High (n = 8) Total

(n = 74) p-Value

gender Male 51 (77.3) 2 (25.0) 53 (71.6)
Female 15 (22.7) 6 (75.0) 21 (28.4) 0.00732

age_months Mean (sd) 98.4 (38.7) 104.5 (17) 99.1 (37) 0.66172
anapath CL 43 (65.2) 8 (100.0) 51 (68.9)

DN 6 (9.1) 0 (0.0) 6 (8.1)
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Table 2. Cont.

Variable Level Low
(n = 66) High (n = 8) Total

(n = 74) p-Value

AN 17 (25.8) 0 (0.0) 17 (23.0) 0.13231
ethnicity White 38 (57.6) 4 (50.0) 42 (56.8)

Black 5 (7.6) 0 (0.0) 5 (6.8)
Asian 5 (7.6) 1 (12.5) 6 (8.1)
Other 2 (3.0) 1 (12.5) 3 (4.1)

Hispanic 12 (18.2) 1 (12.5) 13 (17.6)
Asian Indian 4 (6.1) 0 (0.0) 4 (5.4)

Pacific
Islander 0 (0.0) 1 (12.5) 1 (1.4) 0.07854

group G4 39 (59.1) 0 (0.0) 39 (52.7)
WNT 0 (0.0) 8 (100.0) 8 (10.8)
SHH 11 (16.7) 0 (0.0) 11 (14.9)
G3 16 (24.2) 0 (0.0) 16 (21.6) <1 × 10−4

2.1.3. GSE44971 (Normal Cerebellum)

Normalized data matrices and annotations (GPL570-[HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array) from dataset GSE44971 [20] were downloaded from
the GEO website [18] using the GEOquery R package version 2.70.0 [19] in the R software
environment version 4.3.3. This cohort comprised samples of normal cerebellar tissue.

2.1.4. GSE104766 (HB and Normal Liver)

RNA-sequencing normalized counts (Illumina HiSeq 2500, Homo sapiens) were down-
loaded from the GEO NCBI website at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE104766 (accessed on 6 November 2024). This cohort included 30 hepatoblastoma
tumor samples and 30 normal liver samples. No associated clinical data were provided for
this cohort [21].

2.1.5. GSE131329 (HB)

This RNA-seq transcriptomic cohort comprised 14 samples of noncancerous liver
tissue and 53 samples of hepatoblastoma tumors [22]. Of the pathological samples, 30
were histologically well differentiated, and 20 were poorly differentiated. The mean age
of the patients at the time of sampling was 27 months. Each PRETEXT stage (1–4) was
well balanced among the study samples, and the majority of samples exhibited β-catenin
genomic alterations (Table 3).

Table 3. Cohort description for hepatoblastoma validation cohort GSE131329. p-values were com-
puted by chi square tests between sample categories and by t test for quantitative variables.

Variable Level Tumor Tissue
(n = 53)

Noncancerous
Liver Tissue

(n = 14)
Total (n = 67) p-Value

gender Female 25 (47.2) 8 (57.1) 33 (49.3)
Male 28 (52.8) 6 (42.9) 34 (50.7) 0.716363

Histological type Well_differentiated 30 (56.6) 14 (100.0) 44 (65.7)
Other 2 (3.8) 0 (0.0) 2 (3.0)

Poorly_differentiated 21 (39.6) 0 (0.0) 21 (31.3) 0.009797
age_months Mean (sd) 27.2 (24.1) 27.6 (26.4) 27.3 (24.4) 0.964822

pretext_stage P3 18 (34.0) 0 (0.0) 18 (34.0)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104766
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104766
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Table 3. Cont.

Variable Level Tumor Tissue
(n = 53)

Noncancerous
Liver Tissue

(n = 14)
Total (n = 67) p-Value

P2 15 (28.3) 0 (0.0) 15 (28.3)
P4 11 (20.8) 0 (0.0) 11 (20.8)
P1 9 (17.0) 0 (0.0) 9 (17.0) NA

chic_risk
stratification Standard 31 (58.5) 0 (0.0) 31 (58.5)

High 14 (26.4) 0 (0.0) 14 (26.4)
Intermediate 8 (15.1) 0 (0.0) 8 (15.1) NA

ctnnbi_gene
alteration Deletion 23 (43.4) 0 (0.0) 23 (43.4)

Wild_Type 14 (26.4) 0 (0.0) 14 (26.4)
Mutation (exon3) 16 (30.2) 0 (0.0) 16 (30.2) NA

clinical_course Alive 38 (71.7) 0 (0.0) 38 (71.7)
Dead 15 (28.3) 0 (0.0) 15 (28.3) NA

2.2. Public Single-Cell Transcriptome Datasets
2.2.1. scRNA-Seq Medulloblastoma

The GSE155446 dataset comprised single-cell RNA-sequencing data from 28 pediatric
medulloblastoma samples, stratified into the four medulloblastoma subtypes: SHH, WNT,
G3, and G4. For these experiments, libraries were prepared using Chromium Single Cell
V2 and V3 Chemistry Library Kits (10× Genomics). Barcoded cDNA was sequenced on an
Illumina NovaSeq 6000, achieving 50,000 reads per cell. Data were demultiplexed using
CellRanger (10× Genomics) [23]. Batch-corrected original raw counts were integrated into
a single-cell object using Seurat version 5.1.0. The standard Seurat pipeline, including
NormalizeData, FindVariableFeatures, ScaleData, and RunPCA, was applied to the single-
cell object [24]. A single-cell expression score was computed using a 13-gene signature with
the AddModuleScore function in Seurat.

2.2.2. scRNA-Seq Hepatoblastoma

Single-cell RNA-sequencing data from the GEO dataset GSE180665 [25] were down-
loaded from the following web address: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE180665 (accessed on 1 August 2024). This dataset included seven scRNA-seq
experiments performed on three hepatoblastoma tumors, two patient-derived xenotrans-
plantation (PDX) models, and two adjacent liver tissue samples. Raw counts in H5AD
format were converted into a single-cell experiment object using the zellkonverter R-
Bioconductor package [26]. The original cell annotation was added to the metadata of
the scRNA-seq object after its conversion into a Seurat object to perform harmony batch
correction during sample integration [24].

2.3. ChIP-Sequencing in Human Pluripotent H1 Cell Line

To characterize LEF1 chromatin binding occupancy in humans at the embryonic
stage within the context of the bivalent promoter program [27], different ChIP-sequencing
datasets performed on H1 human pluripotent stem cells were accessed from the Gene
Expression Omnibus (GEO) database [18]:

GSM1579343: LEF1 untreated; Homo sapiens with SRA alias SRR1745491;
GSM1579344: LEF1 Wnt3a; Homo sapiens with SRA alias SRR1745492;
GSM1693959: Input H1; Homo sapiens with SRA alias SRR2037029;
GSM1579348: H3K27ac Wnt3a; Homo sapiens with SRA alias SRR1745496;

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180665
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180665
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GSM1579350: H3K27me3 Wnt3a; Homo sapiens with SRA alias SRR1745498.

These experiments were conducted by the Jones Lab in San Diego, California [28]. For
ChIP-seq, DNA was extracted using the QIAquick PCR extraction kit (cat 28106, Qiagen,
Venlo, The Netherlands). Single-end reads were sequenced on an Illumina HiSeq 2500. The
ChIP-sequencing data were downloaded in FASTQ format from the NCBI database using
the fastq-dump command from the SRA Toolkit (version 3.1.1) [29].

2.4. Transcriptome Cross Normalization for Common Signature Between Hepatoblastoma and
Medulloblastoma Tumors

Transcriptome analyses were conducted in the R software environment (version 4.3.3).
To investigate common regulatory mechanisms in hepatoblastoma and medulloblastoma,
a cross-normalized matrix was constructed by merging distinct transcriptome datasets:
GSE37418, comprising medulloblastoma tumor samples; GSE44971, comprising normal
cerebellum controls; and GSE104766, comprising hepatoblastoma tumors and normal
liver samples.

To account for experimental batch effects, cross-normalization was performed using
the Combat function from the SVA R package (version 3.50.0) [30]. Following the Combat
processing step, quantile normalization was applied to reduce noise between samples using
the PreprocessCore R package (version 1.64.0) [31].

For downstream analyses, the LIMMA (Linear Models for Microarray Data) R package
(version 3.58.1) was employed to identify differentially expressed genes between tumor
samples (hepatoblastoma and medulloblastoma) and their respective controls (normal liver
and normal cerebellum) [32]. Functional enrichment analyses of significant genes were
conducted using the clusterProfiler R package (version 4.10.1) [33,34] with Gene Ontology
Molecular Function and Biological Process databases [35].

2.5. ChIP-Sequencing Analyses

Chromatin immunoprecipitation sequencing (ChIP-seq) experiments were analyzed
following the recommended guidelines of the ENCODE consortium [36]. Downloaded
FASTQ files were assessed for quality using FastQC (version 0.74). FASTQ files were
trimmed with Trimmomatic (version 0.39) [37], and the quality of the trimmed reads was
subsequently evaluated with FastQC.

Reads were aligned to the hg38 human genome using Bowtie2 (version 2.5.3) in very
sensitive end-to-end mode [38]. BAM files were sorted using SAMtools (version 1.19.2) [39]
and filtered for mapping quality scores greater than 30 with BamTools (version 2.5.2) [40].
Narrow peaks representing LEF1 genome binding in H1 cells stimulated with WNT3A
were called using the MACS2 peak caller (version 2.2.9.1) [41,42], with H1 input chromatin
serving as the background control [43].

MACS2-generated narrow peaks were annotated with HOMER (version 4.11) [44] on
the hg38 genome, using the GencodeV46 annotation file [45]. Promoter-annotated regions
from the resulting BED file were filtered for downstream analysis. BigWig files were
generated using the bamCoverage command from deeptools (version 3.5.4) [46]. Genomic
heatmaps of promoter regions were created using the double commands computeMatrix
and plotHeatmap from deepTools.

Functional enrichment analyses of significant genes were conducted using the clus-
terProfiler R package (version 4.10.1) [33,34] with Gene Ontology Molecular Function and
Biological Process databases [35].

2.6. WNT-LEF1 Expression Score

Using the expression of 13 WNT-LEF1 target genes in the medulloblastoma PBTA
cohort, univariate logistic regression analyses were conducted using the logitloop R pack-
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age (version 1.0.0), available at https://github.com/cdesterke/logitloop (accessed on 13
November 2024). The binomial status of the WNT subtype was used as the outcome
variable for the regression analyses.

A WNT-LEF1 expression score was subsequently calculated by summing the expres-
sion levels of the target genes weighted by the binomial β-coefficients obtained from the
univariate analyses. The optimal cutpoint for the expression score was determined using
the cutpointr R package (version 1.1.2) [47].

2.7. ElasticNet Modeling on WNT-LEF1 Expression Signature

The expression levels of the 13 WNT-LEF1 target genes were extracted from medul-
loblastoma tumors and combined with the corresponding WNT subtype status as metadata.
After splitting the data into training and validation sets in a 0.6/0.4 ratio, an ElasticNet
model (with tumor cell status as the binary outcome) was tuned for alpha and lambda
parameters using the caret R package (version 6.0-94) [48]. The final ElasticNet model was
fitted with the optimal alpha parameter (alpha = 0.1) using the glmnet R package (version
4.1-8) [49].

3. Results
3.1. LEF1 Upregulation as a Shared Molecular Feature in Hepatoblastoma and Medulloblastoma

The WNT subgroup of medulloblastoma is characterized by its distinct molecular
profile, driven primarily by aberrations in the WNT signaling pathway, such as muta-
tions in CTNNB1. Previous studies suggest that the WNT subgroup likely originates
from progenitor cells in the lower rhombic lip or dorsal brainstem, regions involved in
embryonic development [50]. This aligns with the unique transcriptional and epigenetic
landscape observed in WNT tumors, further distinguishing them from other medulloblas-
toma subgroups. However, the precise cell of origin remains a topic of active investigation,
underscoring the need for deeper developmental insights.

Hepatoblastoma and medulloblastoma are two types of pediatric tumors with embry-
onic origins. Tumor cells in these two types frequently exhibit genetic alterations in WNT
pathway genes, particularly involving mutations in CTNNB1. Based on these shared charac-
teristics, we constructed a combined transcriptome dataset that includes medulloblastoma
and hepatoblastoma tumor samples, along with control samples from the respective tissues
of origin (cerebellum for medulloblastoma and adjacent healthy liver for hepatoblastoma).

To conduct this analysis, we assembled data from the GSE37418 (medulloblastoma),
GSE44971 (cerebellum control), and GSE104766 (normal liver and hepatoblastoma) datasets,
normalizing them in a common matrix using the Combat algorithm to adjust for batch ef-
fects (Supplemental Figure S2a). The heterogeneity in Combat density plots across samples
(Supplemental Figure S2b) was reduced by applying quantile post-Combat normalization
(Supplemental Figure S2c). Unsupervised principal component analysis (PCA) of the
fully normalized transcriptome data confirmed that samples from different batches were
well integrated (Supplemental Figures S3A and 1A). Additionally, this analysis clearly
distinguished tumor samples (medulloblastoma and hepatoblastoma) from normal controls
(cerebellum and liver) (Supplemental Figure S3B), suggesting a shared transcriptional
expression signature between these tumors.

To identify this common transcriptional signature, we performed a supervised differ-
ential expression analysis between tumor and control samples using the LIMMA algorithm.
With a significance threshold of |log2 fold change| ≥ 1 and an FDR-adjusted p-value < 0.05,
we identified 1259 differentially expressed genes (DEGs) significantly regulated in both
hepatoblastoma and medulloblastoma compared to their respective controls (volcano plot
in Supplemental Figure S3C; list of DEGs in Supplemental Table S1). Unsupervised cluster-

https://github.com/cdesterke/logitloop
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ing of these 1259 DEGs successfully stratified tumor samples from controls using Euclidean
distances and the Ward.D2 method (Figure 1B).
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Figure 1. Common transcriptional regulation between hepatoblastoma and medulloblastoma tumors:
cross-combat normalization between GSE37418, GSE44971, and GSE104766 datasets. (A) Principal
component analysis (PCA) performed on whole transcriptome before and after combat batch cor-
rection (HB: hepatoblastoma and MB: medulloblastoma) and control samples (normal cerebellum
and normal liver). (B) Unsupervised clustering (Euclidean distances) based on the common HB-MB
signature (1259 DEGs). (C) Volcano plot highlighting the significant transcription factors (light blue
and annotated) regulated between tumors (HB and MB) and normal tissues (cerebellum and liver).

Functional enrichment analysis using the Gene Ontology Molecular Function (GO-MF)
database revealed that the 513 upregulated genes in tumors were predominantly associated
with extracellular matrix interactions, including structural components (e.g., collagens),
integrin binding, collagen binding, and growth factor binding (Supplemental Figure S4a,b).
Conversely, the analysis of the 746 downregulated genes in tumors highlighted a significant
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enrichment in vitamin-interacting molecules and enzymes with aromatase activity, such as
cytochrome P450 family members (Supplemental Figure S5a,b).

Using Toronto’s database of human transcription factors [51], we projected transcrip-
tion factor identifiers onto the volcano plot (Figure 1C) to examine their regulation in
tumors. Notable upregulated transcription factors included HMGA2, TBX2, CREB3L2,
and LEF1 (Figure 1C and Supplemental Table S2). Among these, ChIP-sequencing data
on LEF1 binding in human embryonic H1 stem cells have been previously conducted [28].
This epigenetic information allows us to investigate the LEF1-dependent transcriptional
program that operates during human embryonic development.

3.2. WNT3A Stimulation Activates LEF1 Chromatin Binding Program with H3K27ac
Co-Occupancy in H1 Embryonic Cells

LEF1 ChIP-sequencing experiment conducted on H1 pluripotent human stem cells
after WNT3A stimulation was aligned to the hg38 human genome using the Bowtie2
algorithm. Similar ChIP-sequencing experiments were also performed for H1 input chro-
matin and LEF1 in H1 cells without WNT3A stimulation. Additionally, the bivalency of
pluripotent promoter regions was examined using ChIP-sequencing for histone marks
H3K27me3 (a repressive mark) and H3K27ac (an active mark) following the same pipeline.
Narrow peak calling for regions with high-quality mapped reads (Q > 30) was carried
out using the MACS2 algorithm, with H1 input chromatin as a control for peak calling in
LEF1-H1-WNT3A ChIP-seq. This analysis identified 11,436 enriched genomic regions.

After annotating peaks with Homer, 2039 were found to be in proximal promoter
regions (Supplemental Table S3). For these 2039 promoter regions, a genomic matrix was
generated using deeptools, centered around Transcription Start Sites (TSSs) on the hg38
genome, extending 3 kb upstream and 1.5 kb downstream. This analysis included five
ChIP-sequencing experiments: H1 input, H1-LEF1, H1 H3K27me3, H1 H3K27ac, and H1-
LEF1-WNT3A. The resulting genomic heatmap (Figure 2) confirmed the presence of these
promoter regions in the H1-LEF1-WNT3A ChIP-seq experiment, with no corresponding
peaks in the H1 input chromatin ChIP-seq. These enrichments were also observed in the
H1-LEF1 ChIP-seq experiment, though with reduced intensity compared to the WNT3A
stimulation condition. Notably, these promoter regions largely coincided with active
histone marks, specifically H3K27ac (Figure 2). Through this analysis, an active LEF1
embryonic chromatin binding program was identified in H1 stem cells upon stimulation
with the WNT pathway ligand WNT3A.

3.3. LEF1 Embryonic Transcriptional Network Is a Hallmark of WNT-Subtype Medulloblastoma

In embryonic medulloblastoma, heterogeneity in WNT pathway activation has been
characterized through transcriptome analysis [15,17]. The Pediatric Brain Tumor Atlas
(PBTA) cohort [14] was filtered to include RNA-sequencing data from medulloblastoma
samples classified by molecular subtypes: WNT, SHH, Group 3 (G3), and Group 4 (G4)
(n = 254; Table 1). LEF1 expression was analyzed according to the molecular subtype
classification within the PBTA cohort (Figure 3A). LEF1 was found to be significantly
increased in the transcriptomes of WNT subtype medulloblastomas compared to other
subtypes (ANOVA p ≤ 2 × 10−16), predominantly in samples categorized as primary
tumors (Figure 3A).

LEF1 target genes, identified through ChIP-sequencing as 2039 promoter regions (Supple-
mental Table S3), were mapped onto the transcriptome data of medulloblastoma samples in
the PBTA cohort. A supervised differential expression analysis was performed between WNT
subtype tumors and other molecular subtypes to assess the regulation of LEF1 target genes.
Using a significance threshold of |log2 fold change| ≥ 1 and FDR-adjusted p-value < 0.05,
207 DEGs were identified, with the majority (n = 141) being overexpressed in WNT subtype
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tumors compared to other medulloblastoma subtypes (Figure 3B; Supplemental Table S4).
Principal component analysis (PCA) based on the expression of these 141 LEF1 target genes
effectively stratified WNT subtype tumors from other medulloblastoma subtypes (Figure 3C).
This stratification was further validated using unsupervised hierarchical clustering with
Euclidean distances and the Ward.D2 method (Figure 3D).
Figure 2 

 

  Figure 2. Embryonic program of LEF1 genome binding occupancy after WNT3A stimulation: genomic
heatmap illustrating the enrichment of genomic intervals (hg38) for LEF1 binding in H1 human
embryonic stem cell chromatin after WNT3A stimulation. From left to right, respective enrichment
was shown for ChIP-seq of H1 input chromatin, LEF1 in unstimulated H1 cells, H3 histone lysine
27 trimethylation (repressive mark), H3 histone lysine 27 acetylation (active mark), and LEF1 in
WNT3A-stimulated H1 cells. (TSS: transcription start site and TTS: transcription termination site).

Functional enrichment analysis (Gene Ontology Biological Process [GO-BP] database)
of the 141 LEF1 target genes highlighted their roles in mesenchymal development, embry-
onic organ development, and WNT pathway regulation (Supplemental Figures S6a and 4A
and Supplemental Table S5). Notably, bivalent histone marks (positive for both H3K27ac
and H3K27me3) were detected at the genomic loci of LEF1/LEF1-AS1 (Figure 4B) and
RNF43 (a WNT pathway component and LEF1 target; Figure 4D). Active histone marks
(H3K27ac) were also found at the promoters of DKK4 (WNT pathway regulator and LEF1
target; Figure 4C) and MYCN (a LEF1 target; Figure 4E).
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Figure 3. LEF1 embryonic binding program predicts the WNT subtype in the medulloblastoma
transcriptome: integration of the LEF1 binding program in the MB-PBTA transcriptome cohort.
(A) Expression of LEF1 in the medulloblastoma transcriptome of the PBTA cohort stratified by
medulloblastoma subtypes: WNT, SHH, G3, and G4. (B) Volcano plot of differentially expressed genes
(with embryonic LEF1 binding) between the WNT-MB subtype and other MB samples. (C) Principal
component analysis (PCA) performed on the 141 LEF1 embryonic targets overexpressed in the
WNT-MB subtype. (D) Unsupervised clustering (Euclidean distances) based on the expression of the
141 LEF1 embryonic targets overexpressed in the WNT-MB subtype.
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Figure 4. Heterogeneity of LEF1-dependent embryonic promoters for targets activated during
WNT medulloblastoma: integration into the MB-PBTA cohort. (A) Scatterplot of the integrative
analysis representing ChIP-seq peak distances from TSS versus log2 fold changes in the WNT-MB
transcriptome. Dot sizes represent peak scores from the MACS2 algorithm for LEF1-H1-WNT3A
ChIP-seq data. (B) Promoter visualization for the LEF1 and LEF1-AS loci. (C) Promoter visualization
for the DKK4 locus. (D) Promoter visualization for the RNF43 locus. (E) Promoter visualization for
the MYCN locus.
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Among the LEF1 targets upregulated in WNT medulloblastoma, 13 genes were iden-
tified as regulators of the WNT pathway (Figure 5A). These included RNF43 (ring finger
protein 43), LEF1 (lymphoid enhancer binding factor 1), NKD1 (NKD inhibitor of WNT
signaling pathway 1), AXIN2 (axin 2), DKK4 (dickkopf WNT signaling pathway inhibitor 4),
DKK1 (dickkopf WNT signaling pathway inhibitor 1), LGR6 (leucine-rich repeat-containing
G protein-coupled receptor 6), FGFR2 (fibroblast growth factor receptor 2), NXN (nucleo-
redoxin), TCF7L1 (transcription factor 7 like 1), STK3 (serine/threonine kinase 3), YAP1
(Yes1 associated transcriptional regulator), and NFATC4 (nuclear factor of activated T
cells 4). Using the expression profiles of these 13 WNT-related LEF1 target genes, unsu-
pervised clustering (Euclidean distances and the Ward.D2 method) effectively stratified
WNT-medulloblastoma samples from some samples in other medulloblastoma subtypes in
the PBTA cohort (Figure 5B). This stratification was corroborated by PCA (Figure 5C), and
univariate binomial analysis with WNT-medulloblastoma status as the outcome confirmed
significant associations for 11 of the 13 genes (Figure 5D).

The ROC curve analysis of the combined expression of these 13 WNT-related LEF1
targets yielded an area under the curve (AUC) of 1.00, indicating 100% specificity and sensi-
tivity for predicting the WNT subtype in the PBTA medulloblastoma cohort (Supplemental
Figure S6b). Based on the expression and binomial β-coefficients of the 13 WNT-LEF1 genes
(Figure 5D), a WNT-LEF1 expression score was computed for medulloblastoma samples
in the PBTA cohort. This analysis identified 21 samples with high WNT-LEF1 expression
scores, compared to 233 remaining samples with lower scores (Table 1). Between the high-
and low-score groups, no significant gender bias was observed (p = 1.00). However, high-
score samples were primarily categorized as primary tumors (p = 0.023), predominantly
belonging to the WNT subtype (p = 1 × 10−4) and showing an increased proportion of
tumors sampled from the ventricle area (p = 0.039) (Table 1).

3.4. WNT-LEF1 Gene Signature Accurately Predicts WNT Subtype in
Medulloblastoma Transcriptomes

For the validation of the 13-gene signature, an independent medulloblastoma tran-
scriptome cohort (GSE37418; Table 2) was analyzed. This cohort included 74 tumor samples,
with most patients being male (72%) and a mean age at a sampling of 99 months. Unsuper-
vised clustering based on the expression of the 13 WNT-LEF1 genes effectively stratified
WNT samples from other medulloblastoma subtypes (Euclidean distances and the Ward.D2
method; Figure 6A). This stratification was further confirmed using unsupervised principal
component analysis (Figure 6B).

Supervised machine learning tuned using ElasticNet regression (alpha = 0.1; Figure 6C
and Supplemental Figure S7a,b) allowed us to predict WNT-subtype status with a perfect
area under the curve (AUC) of 1.00 (Figure 6C). ElasticNet coefficients (Figure 6D) high-
lighted the predictive importance of genes such as AXIN1, RNF43, STK3, LEF1, and DKK1
for identifying the WNT subtype status in this medulloblastoma validation cohort.

A WNT-LEF1 expression score was computed for this validation cohort, identifying
8 samples with high WNT-LEF1 expression scores and 66 samples with low scores (Table 2).
In this cohort, patients with high WNT-LEF1 expression scores were significantly more
likely to be female (p = 0.007) and perfectly matched the WNT subtype (Table 2 and
Supplemental Figure S7c). The ROC curve analysis of the combined expression of these
13 WNT-related LEF1 target genes confirmed their ability to predict the WNT subtype in
medulloblastoma, achieving an AUC of 1.00 with 100% specificity and 100% sensitivity in
the PBTA medulloblastoma cohort (Supplemental Figure S7d).

Finally, to investigate the single-cell heterogeneity of the signature in medulloblastoma
cells, scRNA-seq experiments from 28 medulloblastoma tumors representing the four dis-
tinct subtypes (GSE155446; Figure 6E) were analyzed for the expression of the 13 WNT-LEF1
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genes. The single-cell WNT-LEF1 expression score was found to be positive exclusively in
the cluster of WNT tumor cells (Figure 6F). At the single-cell level in medulloblastoma, the
WNT-LEF1 13-gene signature was expressed only in tumor cells from the WNT subtype.
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Figure 5. WNT signaling LEF1-dependent signature in medulloblastoma: MB-PBTA cohort. (A) Func-
tional enrichment network based on LEF1 targets activated during the WNT-medulloblastoma
subtype using the Gene Ontology Biological Process (GO-BP) database. (B) Unsupervised cluster-
ing (Euclidean distances) of the WNT-program LEF1-dependent genes in medulloblastoma tumors.
(C) Principal component analysis (PCA) of the WNT-program LEF1-dependent genes in medulloblas-
toma tumors. (D) Univariate binomial regression analysis of the 13 WNT signaling target genes of
LEF1 during medulloblastoma (outcome: WNT subtype).
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Figure 6. Validation of the WNT-LEF1 signature in independent medulloblastoma cohorts: GSE37418
and scRNA-seq GSE155446 datasets. (A) Unsupervised clustering (Euclidean distances) based on
the expression of the WNT-LEF1-dependent program (GSE37418). (B) Principal component analysis
(PCA) of the WNT-LEF1-dependent program (GSE37418). (C) ElasticNet tuning of lambda and alpha
parameters to predict the WNT subgroup using the WNT-LEF1-dependent program. (D) Barplot of
ElasticNet coefficients predicting the WNT subtype in the GSE37418 cohort. (E) WNT-MB subtypes in
the single-cell transcriptome dataset GSE155446 (28 MB tumor samples). (F) WNT-LEF1-dependent
score in the single-cell RNA-seq dataset GSE155446.
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3.5. Single-Cell Analysis Validates WNT-LEF1 Signature Activation in Hepatoblastoma
Tumor Cells

Like medulloblastoma, hepatoblastoma is also of embryonic origin, and tumor cells
are frequently affected by genomic alterations in the CTNNB1 gene [52]. The expression
of the 13 genes from the WNT-LEF1 signature was analyzed in the hepatoblastoma tran-
scriptome cohort GSE131329 (Table 3), which includes 14 noncancerous liver samples and
53 hepatoblastoma tumors. Unsupervised clustering based on the expression of the 13-gene
signature effectively stratified hepatoblastoma tumor samples from noncancerous liver
tissue (Euclidean distances and the Ward.D2 method; Figure 7A). This stratification was
further validated by unsupervised principal component analysis (Figure 7B).
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Figure 7. Validation of the WNT-LEF1 signature in an independent hepatoblastoma cohort:
GSE131329 and scRNA-seq GSE180655 datasets. (A) Unsupervised clustering (Euclidean distances)
based on the expression of the WNT-LEF1 program (GSE131329). (B) Principal component analysis
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(PCA) of the WNT-LEF1 program (GSE131329). (C) UMAP dimensionality reduction showing sample
identities in the scRNA-seq dataset GSE180655. (D) UMAP dimensionality reduction showing cell-
type identities in the scRNA-seq dataset GSE180655. (E) WNT-LEF1-dependent score in the single-cell
RNA-seq dataset GSE180655, stratified by sample types (background: adjacent normal liver; pdx:
patient-derived xenotransplantation model; tumor: HB tumor samples). (F) WNT-LEF1-dependent
score in the single-cell RNA-seq dataset GSE180655, stratified by cell types.

Notably, more than 70% of tumors in this cohort exhibited genetic alterations in the
CTNNB1 gene (Table 3). To identify the specific cell types in which the WNT-LEF1 signa-
ture was activated, single-cell transcriptome data from human and PDX hepatoblastoma
samples, compared to normal adjacent liver tissue, were analyzed (GSE180655; Figure 7C).
Thirteen distinct cell types were characterized in these samples (Figure 7D).

The WNT-LEF1 single-cell expression score was computed for cells in these experi-
ments. The score was negative in normal adjacent liver tissue but positive in PDX and tumor
samples (Figure 7E). This score was confirmed to be significantly higher in tumor cells
(Figure 7F and Table 4). At the single-cell level, the expression of the WNT-LEF1 13-gene
signature was confirmed to be activated in tumor cells from human hepatoblastoma.

Table 4. Cell type comparison for WNT-LEF1 score in single-cell transcriptome of hepatoblastoma.
p-values between cell types were obtained by 2-sided t test.

Comparison Mean Groupe1 Mean Groupe2 p_Value

Hepatocyte vs. Tumor cell −1.088 0.45 0
Hepatic stellate cell vs. Tumor cell 0.168 0.45 2.93 × 10−7

Endothelial cell vs. Tumor cell −0.264 0.45 0
Kupffer cell vs. Tumor cell −0.686 0.45 0

B cell vs. Tumor cell −0.628 0.45 1.24 × 105

Proliferative hepatocyte vs. Tumor cell −1.27 0.45 2.40 × 10−24

T cell–NK cell vs. Tumor cell −0.652 0.45 9.86 × 10−91

Cholangiocyte vs. Tumor cell −0.208 0.45 2.26 × 10−7

Lymphatic vs. Tumor cell −0.416 0.45 7.62 × 107

T–NK cell vs. Tumor cell −0.267 0.45 1.25 × 10−5

Neuronal cell vs. Tumor cell 0.375 0.45 4.13 × 10−1

Erythrocyte vs. Tumor cells −0.619 0.45 4.20 × 10−50

4. Discussion
The WNT signaling pathway plays a crucial role in the tumorigenesis of both medul-

loblastoma and hepatoblastoma, with organ-specific genetic alterations contributing to their
development. In medulloblastoma, particularly the WNT subgroup, mutations in CTNNB1
(β-catenin) are prevalent, leading to aberrant pathway activation [8]. Conversely, in hep-
atoblastoma, WNT pathway dysregulation often arises from mutations in CTNNB1 [7]
as well as deletions or the epigenetic silencing of AXIN1 and AXIN2 [53], which act as
negative regulators of the pathway. These organ-specific genetic changes underscore the
importance of WNT signaling in the pathogenesis of these pediatric tumors, providing
a foundation for targeted therapeutic approaches. During this study, the transcription
factor LEF1 was found to be commonly upregulated in hepatoblastoma and medulloblas-
toma tumors. While LEF1 deregulation in hepatoblastoma remains poorly understood,
in the PBTA medulloblastoma cohort, high LEF1 expression was specifically associated
with the WNT subtype. Patients with WNT-subtype medulloblastoma generally exhibit
better prognoses than those with other subtypes [54]. LEF1 immunohistochemistry has
been recognized as a more reliable diagnostic biomarker than β-catenin for identifying
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WNT-activated medulloblastoma subtypes [55,56]. Additionally, LEF1, together with TCF3,
has been implicated in maintaining the self-renewal of mouse embryonic stem cells [57].

An integrative analysis of WNT-LEF1 targets in the PBTA medulloblastoma cohort
identified 141 LEF1-activated genes specific to the WNT subtype. Functional enrichment re-
vealed that 13 of these genes were involved in WNT pathway regulation, while others were
mainly associated with mesenchymal development and extracellular matrix organization.
LEF1 is known to facilitate epithelial–mesenchymal transition (EMT), a hallmark of cancer
progression characterized by increased migration and invasion of tumor cells [58,59].

Among LEF1 targets, MYCN was identified as a direct target through promoter bind-
ing. During embryonic development, the MYCN promoter exhibits the H3K27-acetylation
histone mark, indicating active chromatin at this stage. MYCN is a proto-oncogene en-
coding a basic helix–loop–helix transcription factor that is upregulated in hepatoblastoma
and other pediatric liver tumors. It plays a critical role in promoting hepatoblastoma
cell proliferation [60]. In addition, recent studies in medulloblastoma have shown that,
although not the most commonly used marker, the genomic amplification of MYCN can be
used during diagnosis [61].

Wnt signaling is a key developmental pathway crucial for embryonic development
and adult stem cell maintenance, and its dysregulation is implicated in numerous diseases.
Through multi-omics analyses, we identified a WNT-LEF1 integrative signature that accu-
rately predicts the WNT subtype of both medulloblastoma and hepatoblastoma tumors.
This signature includes RNF43 (ring finger protein 43), LEF1 (lymphoid enhancer binding
factor 1), NKD1 (NKD inhibitor of WNT signaling pathway 1), AXIN2 (axin 2), DKK4
(dickkopf WNT signaling pathway inhibitor 4), DKK1 (dickkopf WNT signaling pathway
inhibitor 1), LGR6 (leucine-rich repeat-containing G protein-coupled receptor 6), FGFR2
(fibroblast growth factor receptor 2), NXN (nucleoredoxin), TCF7L1 (transcription factor 7
like 1), STK3 (serine/threonine kinase 3), YAP1 (Yes1 associated transcriptional regulator),
and NFATC4 (nuclear factor of activated T cells 4).

RNF43 is a transmembrane E3 ligase that removes Wnt receptors from the stem cell
surface and acts as a negative feedback regulator of the WNT pathway [62]. AXIN2 and
NKD1 are also negative feedback regulators in Wnt signaling, with AXIN2 destabilizing cy-
toplasmic β-catenin and NKD1 inhibiting its nuclear localization [63]. Among the five Wnt
antagonists identified, DKK4 binds to lipoprotein-receptor-related protein 5/6 (LRP5/6)
and Kremen, inducing LRP endocytosis to block β-catenin signal transduction [64]. Sim-
ilarly, DKK1 promotes LRP6 internalization and degradation when forming a ternary
complex with Kremen and LRP6, effectively inhibiting Wnt signaling [65].

LGR6, considered a stem cell marker in various normal tissues, is associated with tissue
development, regeneration, and repair. It has also been linked to the initiation and progres-
sion of certain cancers [66]. Germline mutations in FGFR2 have been described in medul-
loblastoma [67]. NXN (nucleoredoxin), a redox regulator of disheveled proteins, modulates
WNT signaling, and its knockout in neuroblastoma cells affects self-renewal [68]. Canonical
Wnt signaling safeguards naïve pluripotency during embryogenesis, with TCF7L1 playing
a repressive role during primitive endoderm induction [69]. STK3 (alias MST-2) functions
within the Hippo pathway during embryogenesis [70] and interacts with WNT and Notch
pathways in liver carcinogenesis [71].

YAP and TAZ, transcriptional co-activators, are essential regulators of organ size
and tissue homeostasis. Their dysregulation contributes to cancer, with alternative Wnt
signaling pathways (Wnt5a/b and Wnt3a) activating YAP/TAZ independently of canon-
ical β-catenin signaling. YAP/TAZ mediate alternative Wnt signaling effects, including
the antagonism of β-catenin-dependent pathways [72]. Notably, the maintenance of un-
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differentiated embryonic stem cells by β-catenin is inversely correlated with YAP/TAZ
activity [73].

In addition to the genes mentioned above, we have observed other upregulated tran-
scription factors. HMGA2, a chromatin remodeling protein, is known to promote cellular
plasticity and stemness, potentially synergizing with LEF1-driven WNT activation to en-
hance tumor aggressiveness [74]. Similarly, TBX2, which regulates cell-cycle checkpoints
by suppressing senescence pathways, may complement LEF1 by supporting uncontrolled
proliferation [75]. CREB3L2, involved in the unfolded protein response, likely contributes
to tumor survival under stress, enabling cancer cells to adapt to challenging microenvi-
ronments [76]. Together, these TFs interact in oncogenic networks where LEF1 serves as
a central effector of WNT signaling, underscoring the intricate transcriptional landscape
driving tumorigenesis in hepatoblastoma and medulloblastoma.

5. Conclusions
Our findings emphasize the potential utility of the 13-gene WNT-LEF1 signature

(RNF43, LEF1, NKD1, AXIN2, DKK4, DKK1, LGR6, FGFR2, NXN, TCF7L1, STK3, YAP1,
and NFATC4) in distinguishing WNT-activated medulloblastoma subtypes. Previous stud-
ies have established the WNT-activated subtype as having a distinct molecular profile
with a favorable prognosis compared to other subtypes. Our study provides additional
granularity by highlighting LEF1-driven WNT pathway activation as a central oncogenic
program. This finding reinforces the subtype-specific molecular characterization of medul-
loblastoma, offering potential diagnostic markers to confirm WNT pathway activation and
differentiate it from non-WNT subtypes. While the prognostic significance of the WNT-
activated medulloblastoma subtype is well documented (notably, its excellent survival
rates with reduced treatment intensities), our findings extend this narrative by identifying
specific downstream effectors of the WNT pathway. For hepatoblastoma, our study sheds
light on shared oncogenic mechanisms with medulloblastoma, which may guide future
investigations into prognostic stratification based on WNT-LEF1 pathway activation. We
recognize the importance of avoiding overgeneralizations. While the 13-gene signature
holds potential for aiding in diagnosis and understanding oncogenic mechanisms, we
have framed these conclusions as hypothesis-generating and supportive of further research
rather than definitive diagnostic or prognostic tools. We have emphasized the exploratory
nature of these findings and their value as a foundation for subsequent validation studies
in independent cohorts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/curroncol32010035/s1, Supplemental Figures: Supplementary
Figure S1. Representation of the canonical WNT pathway. Supplementary Figure S2. Combat and
quantile cross-normalization of hepatoblastoma and medulloblastoma tumor transcriptomes; Supple-
mentary Figure S3. Common differentially expressed genes in hepatoblastoma and medulloblastoma
tumors; Supplementary Figure S4. Functional enrichment analysis of commonly upregulated genes
in tumors (HB and MB); Supplementary Figure S5. Functional enrichment analysis of commonly
downregulated genes in tumors (HB and MB); Supplementary Figure S6. WNT-LEF1-dependent
signature in medulloblastoma; Supplementary Figure S7. Validation of the WNT-LEF1 13-gene
signature in an independent medulloblastoma cohort: GSE37418 dataset; Supplemental Tables:
Table S1. Results of LIMMA analysis between tumor and normal control tissue for the common
hepatoblastoma-medulloblastoma signature; Table S2. Significant signature of differential expressed
genes between tumor and normal control tissue for the common hepatoblastoma-medulloblastoma
signature with identification of the transcription factors; Table S3. LEF1 binding occupancy in H1
under WNT3A stimulation for the 2039 promoter regions identified by ChIP-sequencing; Table
S4. Results of LIMMA analysis comparing WNT-MB subtype to others medulloblastoma in PBTA
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cohort and testing expression of LEF1 targets; Table S5. Table of the integrated analysis identifying
141 LEF1 targets activated in WNT-medulloblastoma subtype of PBTA cohort. ST1-5 are available at
the following address: https://github.com/cdesterke/scripts_MBHB_LEF1/tree/main/ST (accessed
on 24 December 2024).
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