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Abstract: Tuberculosis remains a common and dangerous chronic bacterial infection worldwide. It is
long-established that pathogenesis of many autoimmune diseases is mainly promoted by inadequate
immune responses to bacterial agents, among them Mycobacterium tuberculosis. Tuberculosis is
a multifaceted process having many different outcomes and complications. Autoimmunity is one
of the processes characteristic of tuberculosis; the presence of autoantibodies was documented by
a large amount of evidence. The role of autoantibodies in pathogenesis of tuberculosis is not quite
clear and widely disputed. They are regarded as: (1) a result of imbalanced immune response being
reactive in nature, (2) a critical part of TB pathogenicity, (3) a beginning of autoimmune disease, (4) a
protective mechanism helping to eliminate microbes and infected cells, and (5) playing dual role,
pathogenic and protective. There is no single autoimmunity-mechanism development in tuberculosis;
different pathways may be suggested. It may be excessive cell death and insufficient clearance of dead
cells, impaired autophagy, enhanced activation of macrophages and dendritic cells, environmental
influences such as vitamin D insufficiency, and genetic polymorphism, both of Mycobacterium
tuberculosis and host.

Keywords: tuberculosis; autoimmunity; cell death; adjuvant; vitamin D; cytokines; genetic polymor-
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1. Introduction

Tuberculosis (TB), a dangerous chronic infectious disease caused by Mycobacterium
tuberculosis (Mtb), is still a threat to public health worldwide. A global total of around
10 million people became ill with TB in 2020 [1]. Drug resistance of Mtb [2], HIV infection,
malnutrition, especially vitamin D deficiency, aging, autoimmune diseases, and abundant
usage of immune suppressants contribute to increased incidence of TB [3].

Epidemiological studies associate microbial infections and autoimmunity (AI), hy-
pothesizing infections to be able to trigger autoimmune diseases (AID) [4–6]. A number of
studies have shown sera from patients with active TB to contain autoantibodies (AAB). TB
has many different outcomes and complications. Autoimmunity (AI) is one of the processes
characteristic of TB; at least, the presence of AABs was documented by a large amount
of evidence. AABs, being typical for autoimmune disorders, are also present in different
infectious diseases [5–8]. The role of AABs in the pathogenesis of TB development is widely
disputed. They are considered (1) as a result of imbalanced immune response being reactive
in nature [9–11]; (2) as a critical part of TB pathogenicity, leading to cavitation and transmis-
sion [12]; (3) as a beginning of AI disease [12,13]; (4) as a protective mechanism helping to
dispose of microbes and infected cells [14]; and (5) as playing a dual role, pathogenic and
protective [14]. Such diverse opinions lead to the conclusion that mechanisms involved
may vary in each case. Mtb can trigger different pathways of the immune responses.

Several possible mechanisms of AI development in TB may be suggested. It may be
excessive cell death and insufficient clearance of dead cells, impaired autophagy, enhanced
activation of macrophages (Mphs) and dendritic cells (DCs), environmental influences
such as vitamin D insufficiency, and genetic polymorphism, both of Mtb and host. Chronic
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presence of infection can be regarded as an endogenous adjuvant [15]. With the exis-
tence of different pathways of immune responses, the one receiving the support from
additional factors dominates. Multiple surface Mtb molecules can differently orchestrate
immune responses.

Little is known about mechanisms of autoimmunity development in TB; the knowl-
edge is mainly “Lessons Learned from Autoimmune Diseases” [16].

The unique mechanism of AAB generation involving the autoreactive B-cells express-
ing T-bet transcription factor has been identified for classic AIDs and microbial infec-
tions [17–19]. The recognition of a nucleic acid by toll-like receptor 7 (TLR7) and synergistic
stimulation by IFNγ of B cells lead to the induction of T-bet+ B-cells and production of
IgG2a [20]. T-box transcription factor T-bet being protective against intracellular pathogens
is prone to producing AABs [18].

Antiphospholipid antibodies (aPL) were detected in different AIDs and infections such
as TB (reviewed in [21,22]). Lipid molecules stimulate innate-like B-1 B cells to antibody
production [23]. They react with self-determinants, such as carbohydrates and glycolipids,
and often cross-react with bacterial antigens. Phospholipids are major antigens stimulating
B-1 B cells [23]. The IgM production by B-1 B cells requires long-term stimulation by lipid
antigens of replicating mycobacteria [24].

Mycobacterial lipids have been shown to act as adjuvants. Complete Freund’s adjuvant
(CFA), which includes components of Mtb and has a high adjuvant activity, is used in
mice for the induction of AIDs such as experimental autoimmune encephalomyelitis (EAE)
and uveitis [25]. Lipid components have been found to be essential for CFA’s adjuvant
activity [26].

Mtb is recognized by multiple phagocytic receptors, among them pattern-recognition
receptors, especially the TLR on Mphs and DCs. Polymorphisms in TLRs affect human
susceptibility to TB [27,28] and may be associated with AI.

The genome of Mtb has been shown to encode a protein family PE/PPE/PGRS, present
exclusively in the genus Mycobacterium [29]. The PE/PPE/PGRS proteins influence cell-
envelope remodeling, host cell-death pathways and virulence [30], mycobacterial antigenic
variation, immune evasion [31], innate immunity, and bacillary survival in Mphs [32,33].
Polymorphisms in the PE/PPE/PGRS protein family may influence different manifestations
of TB, among them AI.

Cell death is an essential physiological and pathological process influencing the
coordination of immune responses and AI [34]. Apoptosis of infected cells results in
self-reactive T-cell promotion of AI in infections [35], and excessive Mph apoptosis in TB
may potentially cause a most important mechanism. Mer tyrosine kinase (MerTK) has been
reported to be a major Mph apoptotic-cell receptor, its functional defect causing inadequate
AC clearance promoting AI and atherosclerosis [36].

Phagocytosis of infected apoptotic cells has recently been shown to result in simulta-
neous presence of both cellular and microbial antigens inside the same phagosome. This
makes possible the presentation of self-antigens by MHC II molecules, causing generation
of autoreactive Th17 cells, associated with AAB production [35].

Pyroptosis, manifesting by osmotic lysis and releasing distracted remnants and in-
flammatory cytokines [37], is characteristic of TB [38]. Pyroptotic cells release an important
inflammatory protein high-mobility group box 1 (HMGB1) [39]. Complex HMGB1- DNA
in vitro contributes to autoreactive B-cell formation [40]. Cytokines caspase 1-dependent IL-
1b and IL-18 released by pyroptotic cells are thought to play a role in promoting AIDs [41].

Mycobacteria are known to modulate the host cell’s death. Apoptosis, pyroptosis,
autophagy, and necrosis were documented in TB [42]. Many of the PE/PPE/PGRS family
proteins of Mtb affect these types of cell death in TB [29,43–45].

Infections can be connected with the onset of SLE(systemic lupus erythematosus) [4,5,37].
Clearance deficiency may link infections with AIDs [4], SLE [46], and ANCA (Antineu-
trophil cytoplasmic antibody)-associated vasculitis [47].
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High titers of various AABs are present in pulmonary TB patients with vitamin D
deficiency [48–51]. Vitamin D deficiency was registered in multiple sclerosis (MS) [52,53],
rheumatoid arthritis (RA) [54–57], and inflammatory bowel disease [53,57–59]. The role
of vitamin D in autoimmune diseases was demonstrated in [57,60]. Vitamin D status and
polymorphisms of vitamin D receptor were shown to influence the AID development
trend [61].

Several cytokines are associated with AIDs. TGFβ and IL-6 promote the early stage of
Th17 cell differentiation in mice [62], while IL-23 is necessary for the functional maturation
and maintenance of highly pathogenic Th17 cells [63–65] essential for the development of
AI [66–68]. Subset Th17.1, which is characterized by high pathogenicity in the pathogenesis
of AIDs, was also detected in TB patients [3].

Genetic as well as nongenetic factors of both the bacterium and the host may have
influence on the host response to Mycobacterium tuberculosis [69].

2. Occurrence of AABs in Active TB Patient Sera

Early reports have established links between Mtb and AI [7,8,70,71]. A number of stud-
ies connecting TB with AI investigated the AAB characteristics of AIDs. The list of AABs
includes rheumatoid factor (RF), antinuclear antibodies (ANA), anti-dsDNA AAB, anticar-
diolipin antibody (ACA; IgM isotype predominant), antineutrophil cytoplasmic antibodies
(ANCA), and anticyclic citrullinated peptide (anti-CCP) [8,9,11,48,50,72–78] (Table 1).

Table 1. The autoantibodies in tuberculosis.

AAB Type AAB in AIDs AAB in TB
(References)

rheumatoid factor (RF) rheumatoid arthritis, Sjögren’s syndrome [7,73,76]

antinuclear antibodies (ANA) SLE, Sjögren’s syndrome,
scleroderma, dermatomyositis [7,8,50,70,72,73]

anti-dsDNA antibodies SLE [10,48,50,77]

antineutrophilic cytoplasmatic antibodies (ANCA) ANCA-associated systemic vasculitis [11,74,75]

anticyclic citrullinated peptide (anti-CCP) rheumatoid arthritis [76]

anti-Scl-70, antihistone antibodies systemic sclerosis, SLE [10]

antiphospholipid antibodies (aPL): the lupus
anticoagulant (LA), anticardiolipin antibody (ACA),

anti-beta 2 glycoprotein 1 (anti-ß2 GPI),
anti-prothrombin

antiphospholipid syndrome, SLE [21,22,24]

anticardiolipin antibody (ACA; IgM) SLE, antiphospholipid syndrome [8,10,11,50]

antibodies against β2 glycoprotein IgG antiphospholipid syndrome, SLE [11]

antibodies against proteinase 3, myeloperoxidase,
bactericidal/permeability-increasing protein, lactoferrin systemic vasculitis [75]

AAB—autoantibodies, AID—autoimmune disease, TB—tuberculosis, SLE—systemic lupus erythematosus.

Several reports demonstrated the presence in the active TB patients’ antinuclear
antibodies [7,8,50,70,72,73], AAB to double-stranded DNA (dsDNA) [10,48,50,77], which
are characteristic of SLE. ANCAs, also typical for autoimmune diseases, were revealed in TB
patients by different methods and results did not depend on the stage of disease, category
of tuberculosis, concomitant diseases, or drug therapy [74]. Another study established an
increase in ANCAs and bactericidal/permeability increasing protein in sera of patients
with pulmonary TB after treatment [75]. Anticyclic citrullinated proteins and rheumatoid
factor were found in patients with active TB [76]. In our investigations [48] the increased
level of AABs in TB patients most often occurred with respect to the dsDNA. The TB
patients also demonstrated enhanced levels of AABs to different antigens, but AABs to
TSH-receptor, to kidney antigens, and to insulin were prevailing. Sera of TB patients were
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examined [10] for autoantibodies to Ro antigen, La antigen, centromere protein, double-
stranded DNA (dsDNA), topoisomerase I (Scl-70), Smith protein, ribonucleoprotein particle
(RNP), histone protein, and histidyl-transfer RNA synthetase (Jo1). Anti-Scl-70, antihistone,
and anticardiolipin IgG were the predominate autoantibodies in TB patients.

Some authors concluded that AABs present in TB do not lead to clinical manifestations
of AIDs, even if AABs were characteristic of certain diseases [10,48,75]. However, the pres-
ence of anti-CCP and RF correlated with long fever [75]. Despite high prevalence of AABs
to the thyroid gland and the TSH receptor in TB patients, no changes in concentrations of
thyroid hormones and TSH were discovered, but a wider range of AABs was found in more
severe fibrous cavernous TB than in infiltrative TB [48]. The authors, who demonstrated the
presence of AABs to different antigens in the TB patients, suggested that AABs are reactive
to TB instead of being pathognomonic, and do not need immunosuppressant therapy [10].

There is also a conflicting report. No valid relationship has been found between
AAB prevalence and pulmonary tuberculosis in the case of active pulmonary tuberculosis
from Uganda, South Africa, Peru, and Bangladesh [78]. However, AI in TB has been
opined to be an essential process driving pathology in tuberculosis, causing cavitation and
transmission [12].

TB patients may develop noninfectious reactive polyarthritis (Poncet’s disease) or
TB rheumatism [9]. The rheumatologic manifestations of TB and the occurrence of TB
associated with rheumatologic diseases are summarized in [9].

The opposite relationships were also observed, namely that AIDs enhanced risks
of TB. TB has been demonstrated to have autoimmune manifestations such as nodular
vasculitis [13], Sjögren’s syndrome, SLE, RA, dermatomyositis, and polymyositis [79].
TB risk in RA patients was found to be about four times higher compared with general
populations [80].

3. The Unique Pathway of B-Cell Activation Causing IgG2a AAB Production

Recently, a similar mechanism of AAB generation for classic AIDs and microbial
infections connected with the autoreactive B-cell population expressing the transcription
factor T-bet has been identified [17–20]. T-bet+ B-cells were found to be major producers
of AABs [18]. B cells expressing the transcription factor T-bet may take part in a number
of protective and pathogenic immune responses [20]. Both in infectious and classical AI,
the mechanism of activation of T-bet+ B-cells involves the recognition of a nucleic acid by
toll-like receptor 7 (TLR7) and synergistic stimulation of IFNγ receptors on B cells [17,18].
These signals induce T-box transcription factor T-bet and IgG2a switching in B cells [19].

T-bet has been demonstrated to have an important role in the protective immunity
against intracellular pathogens and is prone to producing AABs [20]. T-bet+ B cell induction
and expansion were revealed in mouse AI models and in patients with autoimmune
diseases such as SLE, MS, RA, Crohn’s disease, and Sjögren’s syndrome [18].

4. Antiphospholipid Antibodies

Antiphospholipid antibodies (aPL) were revealed in various clinical conditions (AID)
and infections such as TB (reviewed in [21,22,24]). The increased levels of ACA in TB
patients were found in several studies [8,10,11,50]. Many viral, bacterial, and parasitic
infections can induce aPL, mainly ACA, which do not correlate with thrombosis risk and
antiphospholipid syndrome [21].

The elevated concentration of antibodies against β2 glycoprotein IgG and ACA IgG
normalized after TB treatment was shown in active TB patients [11]. A significant number
of patients had high levels of AABs against proteinase 3 (PR3), myeloperoxidase (MPO),
bactericidal/permeability-increasing protein (BPI), and lactoferrin. Most antilactoferrin and
anti-MPO levels decreased after treatment, while anti-PR3 increased in most patients [75].
Antiphospholipid antibody levels were suggested to use as biomarker TB treatment in
noncavitary TB patients due to their high TB-treatment sensitivity [24].
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Phospholipids in the Mtb cell envelope are phosphatidylglycerol, phosphatidylinositol,
cardiolipin, and its mannoside derivatives, as well as phosphatidylethanolamine [81].
Because some of them can only be found in mycobacteria, they can be potential biomarkers
for diagnosis and treatment response [24,82].

5. B-1 B Cells Produce IgM Antiphospholipid Antibodies, Which Have Auto- and
Polyreactive Properties

Lipid molecules cause antibody response by B-1 B cells, representing about 5% of
B cell population. B-1 B cells express high levels of IgM and do not need T cells for
proliferation [23]. B and T cells with self-reactive antigen receptors are usually deleted
during their development in order to avoid AIDs. On the contrary, innate-like B-1 cells
in mice are positively selected for self-reactivity as long-lived, self-renewing B cells that
generate most of the circulating natural IgM [83]. They respond to self-determinants, such
as carbohydrates and glycolipids, and often cross-react with bacterial antigens. Major
stimulating B-1 B cells antigens are phospholipids [23]. IgM aPL antibodies have self- and
polyreactive properties [83].

The IgM antibody production by B-1 B cells needs long-term stimulation by lipid anti-
gens generated by replicating mycobacteria during TB. Dead host cells and Mtb cells release
enough antigens to activate the B-1 B cells and induce IgM aPL antibody production [24].

6. Mycobacterial Lipids Act as Adjuvants

Mycobacterial lipids have been shown to act as adjuvants. Adjuvants are a component
in the vaccine stimulating innate immunity and memory-type immunity [25,84]; they are
used to establish preferable types of immune responses [84].

Jules Freund created a powerful adjuvant composed of water-in-mineral oil emulsion
and heat-killed mycobacteria. CFA, being highly effective, often causes granulomas, sterile
abscesses, and ulcerative necrosis at the injection site and cannot be used for humans.
CFA is used in experiments for modeling of AIDs such as uveitis and EAE [25]. The lipid
components of CFA such as trehalose dimycolate (TDM, also known as cord factor) and
mycolic-acid-containing glycolipids with strong adjuvant activity [85,86] have been shown
to be a substantial factor of adjuvant activity [26]. TDM is a glycolipid in the mycobacterial
cell envelope that was discovered in the 1950s as a most potent immune-stimulatory
molecule [87].

Mycolic acids, important lipid components of the bacterial cell wall of Mycobacterium,
have been demonstrated to be efficient adjuvant, and compared with CFA did not cause
severe inflammatory responses induced by Th17. Instead of this, MA induced Th1-mediated
moderate inflammation at the site of injection, activating dendritic cells by means of
costimulatory molecules CD80/86 and CD40 and induction of promoting cytokines [88].

7. Mycobacterium Tuberculosis–Host Cell Interaction

Central to immune response is an interaction between host professional phagocytes
and Mtb, which will determine development and outcome of TB. Alveolar Mphs are
the host phagocytic cells that eliminate pathogens directly or indirectly, activating the
host innate and adaptive immune responses without excessive inflammation and lung
destruction [89].

Multiple receptors take part in endocytosis of Mtb: they are the complement recep-
tor [90]; the monocyte-inducible C-type lectin (Mincle), identified as the receptor for TDM
(trehalose-6,6′-dimycolate) [91]; surfactant protein A (Sp-A) and its receptors [92–94]; scav-
enger receptor [95]; mannose receptors [95,96]; and the DC-specific intercellular adhesion
molecule-3-grabbing nonintegrin (DC-SIGN, CD209) [97,98]. DC-SIGN interactions with
Mtb may be of benefit for either the pathogen or for the host due to restriction of tissue in-
flammation and immunopathology [99–101]. DC-SIGN is expressed on both wound-healing
(IL-4-dependent) and regulatory (M-CSF-dependent) alternative (M2) macrophages [101].
Pattern-recognition receptors also respond to Mtb, among them the TLR-1, TLR-2, TLR-4,
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TLR-6, TLR7, and TLR-9 on Mphs and DCs, thereby driving phagocytosis, antigen presen-
tation to T cells, and cytokine secretion [102–104].

Polymorphisms in TLRs affect human susceptibility to tuberculosis [27,28] and possi-
bly to AI.

It was shown that the Mtb chaperone-like protein GroEL2 present on the Mtb cell
envelope modulated Mph proinflammatory responses [105]. GroEL2 has been reported to
be a major stimulator of immune response to Mtb-purified protein derivative (PPD) [106].
Cleavage of multimeric GroEL2 by the serine protease Hip1 resulted in the appearance of a
cleaved form of GroEL2, which retarded innate immune responses to Mtb infection [107].
The full-length GroEL2 protein caused powerful proinflammatory responses activating
DC maturation, antigen presentation to T cells, and inducing the Th1 subset development.
The cleaved form of GroEL2 was unable to promote an efficient T-cell response [105]. The
authors suggested that cleavage of GroEL2 averts optimal host response and that the
prevalence of one of the two forms of GroEL2 during TB will determine the type of host
immune response generated [105].

The microbial products can break self-tolerance and induce autoimmune manifesta-
tions, activating antigen-presenting cells. The development of EAE, even in genetically
EAE-resistant mice, was observed after activation of APCs via TLR9 or TLR4 [108].

8. Unique Protein Family PE/PPE/PGRS Present on the Mtb Surface

Some molecules present on the Mtb surface are unique. The genome of Mtb encodes a
protein family PE/PPE/PGRS, present exclusively in the genus Mycobacterium [109]. The
complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis,
H37Rv, has been determined in 1998 by Cole et al. and a family of genes, the Proline–
Glutamic acid/Proline–Proline–Glutamic acid (PE/PPE), has been identified [110]. These
genes are principally characteristic of the pathogenic strains. The data on this important
family of proteins are summarized in the review [29].

PE proteins are divided in three subfamilies: PE; PE/PPE; and PE_PGRS containing
the polymorphic glycine-rich domain of variable sequence and size [29].

PE/PPE proteins have been reported to use the host inflammatory signaling and
cell-death pathways to facilitate disease development [33]. It is widely recognized that
PE_PGRS [polymorphic GC-rich-sequence (PGRS)] proteins are essential in TB pathogene-
sis [29,111,112].

The PE/PPE/PGRS are involved in cell-wall remodeling; they interfere with the
host cell-death pathways and virulence [30], mycobacterial antigenic variation, immune
evasion [31], and influence innate immunity and bacillary survival in macrophages [32,33].
Polymorphisms in the PE/PPE/PGRS protein family may influence different manifestations
of TB, among them AI [112].

9. Mycobacterium tuberculosis Manipulates the Host Immune Response

The data showing that multiple molecules on the Mtb surface promote phagocy-
tosis suggest that Mtb finds the intracellular environment of macrophages especially
advantageous for surviving [113,114]. Mycobacteria manipulate host phagocytes to sur-
vive and replicate in these cells. PE_PGRS30 protein of Mtb blocks phagosome matu-
ration [115]. Autophagy, a potent host defense mechanism, is impaired by several Mtb
mechanisms [115–119]. PE_PGRS11 can induce maturation and activation of human DCs,
which promotes the secretion of proinflammatory cytokines [120]. PE_PGRS17 binding to
TLR2 activates the NF-κB signaling pathway, inducing TNF-α secretion [120].

Hyperactive immune response leads to robust inflammation, which induces dissemi-
nation and transmission of bacteria and possibly AI development.

10. PE_PGRS Proteins in TB Pathogenesis

Studies of pe_pgrs genes demonstrated that expression levels of different pe_pgrs
genes could differ essentially [29], leading to a diverse picture and different outcome of
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TB. Each protein of the PE_PGRS family can fulfill its unique function without a specific
protein partner. The identification of PE_PGRS proteins in Mtb and understanding their
functions leads to the acknowledgement of their potent role in the TB pathogenesis [29]. It
is possible to suggest the involvement of PE_PGRS proteins in AI promotion.

11. Excessive Cell Death as a Possible Mechanism of Autoimmunity

Cell death is a substantial physiological and pathological process involved in co-
ordination of immune responses and AI [34]. Normally after cells die they are quickly
and smoothly removed by phagocytes without inflammation [121,122]. However, during
chronic infection, a large number of cells die, releasing massive amounts of cellular contents
into the extracellular space. Released molecules are known as danger-associated molecular
patterns (DAMPs) acting as damage signals, which attract additional immune cells to clear
the threat and promote tissue repair [34]. The latest discoveries in the pathways of cell
death and their effects were summarized in [34,42].

Apoptosis is immunologically silent cell elimination without inducing inflammation
due to containing the distracted contents of dying cells within membrane-bound vesicles
called apoptotic bodies [45,121]. Many cellular signals can lead to cell death in a controlled
manner [123]. The morphological changes during apoptosis are cytoskeletal disruption,
cell shrinkage, DNA fragmentation, and plasma membrane blebbing [124]. Many nuclear
autoantigens have been shown to accumulate within apoptotic blebs [125,126]. It was
shown that apoptotic vesicles from Mtb-infected macrophages had potent adjuvant effects,
stimulating CD8 T cells in vivo [127].

Apoptotic bodies are engulfed later by another phagocyte in a process termed effero-
cytosis [128,129]. ACs release “find me” signals such as soluble lysophosphatidylcholine,
CXC3CL1, sphingosine-1-phosphate, ATP, and UTP that attract phagocytes for the clear-
ance of apoptotic bodies [130]. It was shown that in TB, such a role plays CX3CL1 and its
receptor CX3CR1 [131]. The best-studied signal “eat me” is an oxidized phosphatidylserine
and oxidized low-density lipoprotein on the surface of the phagocyte [130,132]. Phos-
phatidylserine, a membrane component of ACs, plays an important role in the clearance of
apoptotic bodies by the efferocytosis process [128,133].

Apoptosis of infected cells has been shown to stimulate self-reactive T cells promot-
ing AI in infections [35], and TB is an example of an infection characterized by massive
macrophage apoptosis serving as a potential principal mechanism.

Phagocytosis of infected apoptotic cells results in the presence within the same phago-
some of both cellular and microbial antigens. This makes possible the presentation of
self-antigens by major histocompatibility complex class II (MHC II) molecules, leading to
the generation of autoreactive Th17 cells, associated with autoantibody production [35].

Bacterial infections also cause pyroptosis [38], programmed cell death, accompanied
by osmotic lysis, followed by release of inflammatory cytokines and cell contents [37].
Both nuclear and mitochondrial DNA are released by pyroptotic cells [134]. Pyroptotic
cells release an important inflammatory protein high-mobility group box 1 (HMGB1), a
nuclear DNA-binding protein [39]. Complex HMGB1-DNA in vitro can stimulate TLR9
and type I IFN production by dendritic cells and activate B cells through the receptor for
advanced glycation end-products (RAGE), facilitating autoreactive B-cell formation [40].
Cytokines caspase 1-dependent IL-1b and IL-18 released by pyroptosis are thought to
promote AIDs [41].

12. Defective Dead Cell Clearance in Etiopathogenesis of Autoimmune Diseases

Infections have been shown to be linked with the onset of SLE [4,5]. The potential
connection between infections and AI could be clearance deficiency [4]. Apoptotic cells
are frequently not cleared adequately in SLE [46,135–138]; as a result, autoantigens are
presented to B cells by follicular DCs in secondary lymphoid tissues [135,136,139]. Nucleic
acids and the proteins binding to nucleic acids are the main autoantigens in the AID
SLE [37]. Nuclear and membrane autoantigens accumulate in lymphoid organs and is
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thought to activate the autoreactive B and T cells, causing the production of antinuclear
and antiphospholipoprotein AABs [139]. The production of antinuclear AABs and binding
them to apoptotic nuclear remnants leads to chronic tissue damage, and development of
systemic AIDs [136]. It was hypothesized that impaired phagocytosis in ANCA-associated
vasculitis leads to accumulation of apoptotic neutrophils, which further are exposed to
secondary necrosis, leading to AAB formation [47].

13. Modulation of Cell-Death Pathways by Mycobacterium tuberculosis

Among the various cell-death types in TB were documented apoptosis, pyroptosis,
autophagy, and necrosis [42]. Impairment of apoptosis and autophagy provides a survival
niche to Mtb [114,140]. Mycobacteria can modulate the death of the host cells. The popular
opinion is that virulent Mtb inhibits apoptosis, while avirulent mycobacteria stimulate it.
Virulent strains H37Rv and GC1237 are the most effective inhibitors of experimentally in-
duced cell death. However opposite data from different experimental systems evidence that
cell death results from complex interrelations of pro- and anticytotoxic mechanisms [141].
RipA, a secretory peptidoglycan hydrolase, damages both autophagy and apoptosis in
Mph for intracellular survival and virulence [119].

Some of the PE/PPE/PGRS family proteins were reported to promote apoptosis of
infected Mphs [44,45,109]; PE25–PPE41 complex and PE_PGRS33 induce necrosis and
inflammation [142], tissue damage, and persistence in the lung tissue [112], resulting in
dissemination of the disease [43,44]. On the other hand, M. tuberculosis genes nuoG and
secA2 have been discovered to inhibit apoptosis [42].

Apoptosis is usually considered to be a protecting mechanism of the host against Mtb at
the early stage of TB. During later stages, it may promote the disease dissemination in lung
granulomas [109]. The PE_PGRS5 protein of Mtb presented exclusively in the pathogenic
Mycobacterium genus has been demonstrated to induce the apoptosis of Mphs [109].

14. MerTK Is a Major Macrophage Apoptotic-Cell Receptor

There is a strict correlation between SLE disease severity and the activation of an
M2-like macrophage expressing CD163 and MerTK during the monocyte-to-macrophage
differentiation [36]. Mer tyrosine kinase (MerTK) has been reported to be a number one
Mph apoptotic cell (AC) receptor. Its functional defect causes defective AC clearance
promoting AI and atherosclerosis [143]. Mer tyrosine kinase (MerTK), a member of the
TAM (Tyro3, Axl, Mer) subfamily of receptors, is specifically involved in removal of early
ACs, recognizing unmodified phosphatidylserine. Deficiencies in TAM receptors may
contribute to human autoimmune diseases [144].

MerTK is expressed in primary and secondary lymphoid organs and is responsi-
ble for both central and peripheral tolerance through multiple mechanisms: clearance of
AC-derived potential autoantigens [145]; reduction of proinflammatory cytokines produc-
tion [146]; prevention of autoreactive B- and T-cell expansion [147,148]. In SLE patients,
diminished AC removal is believed to promote the production of AABs against apoptotic
material [129,138]. These patients had reduced plasma levels of the MerTK ligand Protein
S [149], which may explain functionally defective AC clearance [36].

Populations of phagocytes M2c (CD163+) Mphs remove ACs, including apoptotic
immune cells in healthy individuals, and release anti-inflammatory cytokines [150]. M-
CSF was found to differentiate Mphs in the presence of IL-10, which express high levels
of MerTK; such Mphs have M2c phenotypes. Gene polymorphisms of MerTK and its
ligand growth arrest-specific 6 (Gas6) are connected with clinical manifestations in SLE
patients [151,152].

15. Macrophage Polarization Programs

Mature Mphs can undergo functional polarization in response to environmental
signals. Two well-appreciated Mph polarization programs are (M1) induced by LPS+IFNγ,
secreting IL-12 and promoting Th1 differentiation; (M2) Mphs that are induced by IL-4:
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(M2a), secreting IL-4 and inducing Th2 polarization; (M2b) and (M2c), both secreting IL-10
and linked with regulatory T-cell (Treg) propagation [153]. These cells can switch from one
phenotype to another. They can either facilitate a proinflammatory or an anti-inflammatory
effect, which makes them a potential participant in the development of AIDs [154].

M1 macrophages are known to have proinflammatory effects, and their cytokines
mediate autoimmune and chronic inflammatory diseases. M2-like macrophages mainly
have anti-inflammatory properties. However, recent studies also demonstrated pro-
inflammatory functions of these cells. Both macrophage types take part in the pathogenesis
of SLE (reviewed by [155]).

Mtb can activate infected Mphs and thus change the cytokines and chemokine produc-
tion. The ESAT-6 (early Secreted Antigenic Target 6 kDa) is thought to be one of the Mtb
factors inducing the proinflammatory M1 phenotype at the start of the infection, which
facilitates granuloma formation and then switches M polarization from M1 to M2 at a later
stage of the infection [156].

16. Immune Tolerance

Control of the T-cell tolerance to self-antigens carried out at several levels.
DCs present self-antigens to developing T cells in thymus and delete lymphocytes with

autoreactivity [157]. Central tolerance control occurring in thymus through mechanism of
selection leads to release into the circulation of high-affinity T cells specific for non-self-
antigens, low-affinity T cells specific for self-antigens, and natural Treg (nTreg) with an
intermediate affinity to both self- and non-self-antigens [158].

Two types of peripheral tolerance mechanism exist in a steady state after antigen cap-
ture by DCs [159]. One is the T-cell deletion involving activation of the programmed death
1 (PD-1) and the cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) on T cells [160].
Immune checkpoints CTLA-4 and PD-1 are negative regulators of T-cell immune func-
tion. A second is the induction of foxp3+ regulatory T cells (Tregs) [161–163]. Fms-like
tyrosine kinase 3 ligand (flt-3L) is a hematopoietin necessary for expanding DC subsets
and Tregs in vivo [164]. The use of flt-3L has been shown to be effective in treating AI in
mice [164–166].

Dendritic cells—“specialized and regulated antigen processing machines” [167].
DCs in culture exist in two functionally and phenotypically distinct states: immature

and mature. Immature DCs function as phagocytes and express relatively low levels of
surface MHC class I and II and costimulatory molecules, and can not present antigen
properly to T cells. Being activated by microbial products or proinflammatory cytokines,
immature DCs transform into mature DCs, which are characterized by low phagocytic
capacity but extreme capacity for T-cell stimulation [168].

17. Dendritic Cell Subsets

Several DC subsets have been identified by their ontogeny, phenotype, and transcrip-
tional profile [169]. In humans, blood DCs are defined as CD303+, CD304+, CD123+,
plasmacytoid DCs, and conventional DCs (cDCs), the latter divided into two subsets, the
CD1c+ DCs and the CD141+ DCs [170]. More recently, a third subset of DCs, named
monocyte-derived DCs (Mo-DCs), has been described in patients with RA and in other
inflammatory states [171–173]. These cells differentiate from monocytes in inflamed tissues
and induce Th1, Th17, or Th2 responses depending on the signal received [174].

All these subsets of DCs have been identified with altered phenotypes and functions
in several chronic inflammatory/autoimmune disorders. Different changes of DC subsets
were found in autoimmune disorders [175].

DCs are central regulators of the balance between immunity and tolerance, and
alteration of the specialized DCs system is a common feature of both systemic and tissue-
specific AIDs [170]. Plasmacytoid DCs in SLE patients produce high levels of INF-alpha,
the specific cytokine of this disease, responsible for high activation of innate and adaptive
immunity [176]. Pathogen signal molecules induce immunogenic DCs to promote effector
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functions of adaptive immune cells [177–179]. DC subsets and mechanisms involved in
regulatory T-cell induction have been reviewed by [178].

The plasticity of DCs, dependent on different extents of maturity, may be used in
cell-based therapy to restore immune tolerance in AIDs. The beneficial effect of tolerogenic
DC (tolDC) has been demonstrated in autoimmune models in mice. They caused immune
tolerance, resolution of immune responses and prevention of AI by inhibition of effector
and autoreactive T cells and by promotion of Treg cells [179–181]. TolDCs have become
promising cell-based therapies for treatment of AIDs [182–186].

18. Vitamin D, Autoimmunity, Tuberculosis

Vitamin D has been discovered to have an important immune-modulatory function,
enhancing the innate and inhibiting the adaptive immune response and acting as an
environmental factor facilitating AID development [52–57,60,187–189]. The optimal vitamin
D concentration beneficial for health and preventing the risk of AIDs was declared to be
30–40 ng/mL 25(OH)D [190].

The vitamin D3 receptor (VDR) and the vitamin D3 activating enzyme 1-α-hydroxylase
(CYP27B1) are expressed in many cell types, including immune cells, and thus they can
produce active 1,25(OH)2D from circulating inactive 25(OH)D [191,192]. The 1,25(OH)2D
then activates the VDR, which binds to nuclear receptors of the retinoic X receptor (RXR)
family and induces antimicrobial peptides cathelicidin and defensins [193,194]. VDR gene
polymorphisms influence susceptibility to pulmonary tuberculosis [195].

Vitamin D inhibits the maturation and antigen presentation of DCs [57,196] and
changes the profile of T-helper cells (Th1, Th2, Th9, Th17) and Treg cells [197]. It was
reported that vitamin D lowers Th1 cell function, leading to decreased production of
TNF-alpha, IL-2, granulocyte macrophage colony-stimulating factor (GMCSF) and IFN-
gamma [198,199]. However, vitamin D increases the differentiation and proliferation of Th2
and Treg cells, which in turn stimulates the production of their anti-inflammatory cytokines
IL-4, IL-5, and IL-10, which further suppress the development of Th1, Th17, and Th9 cells,
producing immune tolerance [200].

19. Influence of Vitamin D and Vitamin A on Dendritic Cells

It has long been known that metabolism of vitamin D and of vitamin A is an important
regulator DC function [201]. VitD3 can cause DC tolerogenicity and suppress AIDs in
murine models [202,203]. VitD3-induced CD141+ DCs had a stable CD83low immature
phenotype even after exposure to an effective DC maturation cocktail consisting of TNF,
IL-1β, IL-6, and PGE2 [204] and was characterized by poor T-cell stimulatory capacity [205].
The profitable effects of vitamin D3 treatment were received in EAE, an experimental model
of MS [206].

The internal mechanism of the vitD3-induced immune-regulatory functions on DCs
is the biological activity of IDO (Indoleamine 2,3-dioxygenase is a rate-limiting enzyme
for the tryptophan catabolism). Both the injection of vitamin D3 and the adoptive transfer
of vitamin D3-induced IDO + immature DCs result in a significant increase of amount
of CD4+CD25+Foxp3+ regulatory T cells in the lymph nodes in a rat EAE [206]. Control
of tryptophan metabolism by IDO in DCs is a regulator of innate and adaptive immune
responses. In acute inflammatory reactions, cytokine IFN-γ induces IDO’s enzymatic
function preventing harmful, exaggerated responses through the effects on tryptophan
metabolism. IDO also can maintain the stable tolerance to self in a steady state, restraining
AI [207,208].

Essential for the VitD3 reprogramming function is glucose oxidation and glycoly-
sis activation [209,210], which is induced by recently identified as a critical checkpoint
and direct transcriptional target of VitD3 glycolytic enzyme PFKFB4 (6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 4) [209].

The use of vitamin D3 for the generation of tolDC was found as a most effective
method among different others [209,210].
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The important role played by retinoic acid has been evidenced in the in vitro genera-
tion and stabilization of Treg (Foxp3+RORγt+ T cell phenotype) as well as the immunosup-
pressive ability of such cells [211]. The cytokine transforming growth factor-beta (TGF-beta)
converts naïve T cells into Treg cells that prevent AI, but in the presence of interleukin-6
(IL-6) TGF-beta stimulates the differentiation of naïve T lymphocytes into proinflammatory
IL-17-producing Th17 cells, which induce AI and inflammation [212].

The vitamin A metabolite retinoic acid has been identified as a key regulator of TGF-
beta-dependent immune responses, inhibiting the IL-6 induction of proinflammatory Th17
cells and stimulating anti-inflammatory Treg cell differentiation [211,212].

Immunosuppressive and anti-inflammatory agents are also known to promote tolero-
genic DCs, which sometimes results in the expansion of regulatory T cells with suppressive
activity. Low-molecular-weight drugs causing generation of tolDC could be used to better
control different chronic inflammatory states such as AIDs or allograft rejection [213–215].

20. Effects of Vitamin D Analogs Supplementation in Autoimmune Diseases

The calcemic effect of calcitriol and VDR limits their clinical application; therefore, the
invention of noncalcemic VDR ligands is needed to actualize the potential of VDR-targeting
therapy [215]. Synthetic vitamin D analogs demonstrated protolerogenic potential, causing
a significant reduction in IL-12p70 and IL23p19 as well as IL-6 and IL-17 production by
the dendritic cells [216]. These data lead to the new approaches for treating inflammatory
and AIDs.

Nonsteroidal small-molecule compounds were discovered that activate the VDR, but
are devoid of hypercalcemia [217].

21. Low Concentration of Vitamin D and Autoimmune Diseases

Vitamin D insufficiency is associated with AID development such as MS [52,53,57,60,187,188],
RA [54–57,60,187,188], insulin-dependent diabetes mellitus [60,187], and IBD [53,57–60,187,218]
(Table 2). The role of vitamin D in autoimmune diseases was reviewed by [57,60,187,188].

Table 2. Vitamin D deficiency and autoimmunity.

Association of Vitamin D deficiency with AIDs References

MS [52,53,57,60,187,188]
RA [54–57,60,187,188]

Type 1 DM [60,187]
IBDs [53,57–60,187,218]
SLE [60]

Thyrotoxicosis [60]
Tuberculosis, vitamin D deficiency,

and autoimmunity [48–51]

MS—multiple sclerosis, RA—rheumatoid arthritis, DM—diabetes mellitus, IBD—inflammatory bowel disease,
SLE—systemic lupus erythematosus.

22. Tuberculosis, Vitamin D Deficiency, and Autoimmunity

High titers of various AABs present in pulmonary TB patients with vitamin D defi-
ciency [48–51]. We revealed calcitriol deficiency and lack of proper cathelicidin response to
infection in various forms of TB [48]. At the same time, these TB patients were character-
istic of increased production of Th1 and Th17-derived cytokines and had blood prolactin
level increased, which is well-known stimulator of AI [219]. These features taken together
could be responsible for a greater inclination of TB patients to AI, and patients actually
demonstrated increased levels of AABs towards several antigens, especially in more severe
fibrous-cavernous forms of TB [48].

23. IL-17 and Related Cytokines in Inflammatory Autoimmune Diseases

Dysregulation of protective immune responses may cause AIDs. Excessive generation
of Th17 cells resulting in high production of IL-17 may lead to AIDs [62,66,67]. IL-17
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was found in many human AIDs, including MS, RA, SLE, IBD, and psoriasis [62,66,68].
Today, six homologous molecules are known (IL-17A–IL-17F). Activation of IL-17A and/or
IL-17F induces the expression of IL-1, IL-6, IL-8, and TNF, and promotes the production
of granulocyte colony-stimulating factor (G-CSF) and chemokines, that maintain chronic
inflammation [63]. The IL-17 realizes the proinflammatory functions through the activation
of NF-κB, MAPK, and C/EBP cascades [62].

24. Cytokine Promotion of Th-Cell Differentiation

Human Th-cell differentiation is largely regulated by IL-12, IL-23, and TGF-β. The
CD4(+) T-cell subsets, Th1, Th2, Th9,Th17, Th22, and Treg cells are differentiated from
naïve CD4(+) T cells depending on the cytokines they receive, and are characterized by
the production of distinct cytokines [62]. Th1 cells, which are induced by IL-12 and IFN-γ,
mediate host defense against intracellular pathogens by expressing IFN-γ. IL-6 plus TGF-β
induces Th17 cells which express IL-17 and contribute to the eradication of extracellular
bacteria [62,64,65].

Many data evidence that TGFβ and IL-6 are essential factors for the early stage of
Th17 cell differentiation in mice [62,64], while IL-23 plays a central role in the functional
maturation and maintenance of autopathologic Th17 cells [64,220]. IL-23 stimulates the
differentiation and expansion of activated CD4+ cells that produce IL-17, IL-6, and TNFα
upon antigen-specific stimulation. IL-23 is necessary for the generation of autoantigen-
specific, highly pathogenic Th17 cells associated with AI [66–68]. IL-23 is also required for
B cell follicle formation in the infected lungs and for long-term control of Mtb [220].

Other proinflammatory cytokines such as TNF-α and IL-1β together with Th17
cells/IL17 play significant roles in the pathogenesis of several autoimmune and chronic
inflammatory diseases [62].

25. Th Cells and Cytokines in Tuberculosis

Th1 and Th17 are the main effector cells mediating protection and pathology dur-
ing TB. Th1 cells have been established to facilitate protective action by secreting IFN-γ
and activating Mphs. IFNγ has long been known as a regulator of T-cell responses in
mycobacterial disease contributing to the elimination of mycobacteria-infected cells [65].

The function of Th17 cells during TB infection is complex because the pathogenesis
of TB largely depends on the gravity of inflammation. Multiple data on Th17 actions in
TB received both on mouse models and clinical TB show different results. Th17 induces
chemokine and cytokine production, leading to neutrophil recruitment, tissue damage, and
inflammation [65]. It was suggested that IL-17 may be protective during acute infection
and detrimental during chronic ones [221] and in multidrug-resistant TB [63].

Heterogeneous cell populations Th1 and Th17 include subpopulations with diverse
cytokine profiles playing different roles in immune pathology and protection. Th17.1
produces IFN-γ/TNF-α and IL-17 differentiating from Th17 in the presence of IL-12 and
inflammatory cytokines, primarily IL-1β [65]. Th17.1 cells were found to be extremely
pathogenic in the course of AIDs, but the role for these cells in active TB remains unclear.
Th17.1 cells were detected in the broncho-alveolar fluid and lungs TB patients [65].

More recently, additional immune pathways were revealed, especially important is
the role of type I interferons both in TB and in AIDs [16].

26. Conclusions

Multifactorial immune response against Mycobacterium tuberculosis includes immuno-
logic, genetic, and environmental factors. Pathogenesis of TB and AI has many common
immunological pathways that increase the chance to develop AI. More studies are needed
to investigate these common pathways, and many questions remain unanswered. Com-
prehension of these mechanisms is necessary for the improvement of both TB and AID
prognosis and treatment.
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