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Abstract: Background/Objectives: Duchenne muscular dystrophy (DMD) is a genetic
disease characterized by a lack of dystrophin caused by mutations in the DMD gene, and
some minor cases are due to decreased levels of dystrophin, leading to muscle weakness
and motor impairment. Creatine supplementation has demonstrated several benefits for the
muscle, such as increased strength, enhanced tissue repair, and improved ATP resynthesis.
This preliminary study aimed to investigate the effects of creatine on the gastrocnemius
muscle in dystrophy muscle (MDX) and healthy C57BL/10 mice. Methods: Twenty MDX
and C57Bl/10 mice were organized into groups and supplemented or not with creatine in a
dosage of 0.3 mg for 8 weeks. Gastrocnemius tissue was analyzed using histomorphology
and histomorphometric techniques. Results: The results demonstrated potential anti-
inflammatory effects of creatine, with less observation of inflammatory infiltrates, the
preservation of intramuscular glycogen, and reduction in tissue fibrosis in supplemented
animals. Conclusions: These findings suggest that creatine may enhance tissue function
and slow the progression of DMD. However, further research, with more analysis, is needed
to elucidate molecular mechanisms underlying creatine’s effects on reducing mononuclear
leukocytes and its role in mitigating tissue fibrosis.

Keywords: Duchenne muscular dystrophy; creatine supplementation; creatine monohydrate;
skeletal striated muscle; myopathy

1. Introduction
Duchenne muscular dystrophy (DMD) is a rare disease of genetic origin, with a higher

incidence in men, with an incidence of 1 in every 5000 live births [1,2]. This progressive
condition compromises the striated skeletal muscle tissue of the lower limbs, resulting
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in pseudohypertrophy. Pseudohypertrophy is characterized by an increase in myocyte
volume without a corresponding increase in myofibrils, leading to cell weakening and
motor impairment [3,4].

DMD is characterized by a severe reduction in the expression of dystrophin, an es-
sential protein that anchors myofibrils and sarcolemma to the extracellular matrix. This
marked absence of dystrophin leads to several muscle conditions, including dilated car-
diomyopathy in cardiac tissue, pseudohypertrophy in lower limb muscles, and atrophy
in the axial skeleton and upper limb muscles [5]. These conditions manifest in muscle
tissue through several morphological changes, such as inflammation and local fibrosis.
In addition, the metabolic context is severely impaired, mainly due to the reduction in
intramuscular glycogen and the decreased availability of energy reserves [4,6,7].

Creatine monohydrate has the property of facilitating the phosphocreatine pathway,
efficiently resynthesizing adenosine diphosphate (ADP) into adenosine triphosphate (ATP),
especially in conditions of low oxygen availability, as well as in intense physical activity.
The use of this supplement has been shown to be beneficial in several situations, such as
hypoxia or the partial blockage of oxygen supply [8–10]. In addition, it can be described
that the use of creatine monohydrate is greater and more reported than other isoforms or
types of creatine mainly because this type is associated with water, penetrates muscle tissue
more slowly, and enhances the chronic effects of its administration [11,12].

Creatine is synthesized endogenously in the liver, kidneys, and pancreas from the
following amino acids: arginine, glycine, and methionine [13]. However, the exogenous
supplementation of creatine monohydrate has gained prominence, mainly due to the
difficulty in obtaining recommended amounts through endogenous production or diet
alone. This supplementation has been shown to offer several benefits, including increased
strength, improved tissue repair, and enhanced ATP resynthesis [14,15].

In addition to its positive effects on energy metabolism, creatine is also associated
with a reduction in inflammatory infiltrates, as suggested by previous studies by the
group [16]. Fernandes et al., in 2022, performed a study with nuclear morphometry, and
a stereological analysis of the gastrocnemius and pectoralis major muscle tissues was
conducted in MDX mice, supplemented or not with creatine for 16 weeks [15]. As a result,
it was demonstrated that although the inflammatory progress caused by DMD was present
in animals supplemented with creatine, this inflammation was less severe compared to
that in the non-supplemented group. Additionally, another report examining the effects of
creatine monohydrate on the diaphragm of MDX rats also revealing improvements related
to the reduction in the inflammatory processes and tissue fibrosis [17]. These findings
reinforce the hypothesis that creatine may be a beneficial supplement not only to improve
muscular energy capacity, but also to attenuate inflammatory aspects associated with
pathological muscular conditions [18].

Because creatine is a low-cost compound with varied benefits already documented
in the literature, it is believed that its use in experimental models of muscular dystrophy
could provide morphometric changes [19]. These changes may help to better understand
the prescription of this amine in clinical conditions such as Duchenne muscular dystro-
phy. In view of the above, this study aimed to verify, through a preliminary preclinical
protocol, with histomorphological and histomorphometric analysis, the effects of creatine
supplementation on the gastrocnemius skeletal striated muscle between inbred mice of the
X-linked muscular dystrophy lineage (MDX) and healthy C57BL/10 mice. Specifically, the
research sought to answer the following questions:
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• Does creatine supplementation influence the inflammatory infiltrate in dystrophic
muscle tissue?

• What effects does creatine have on tissue fibrosis and muscle integrity in MDX mice?
• Can creatine supplementation interfere with energy metabolism by preserving intra-

muscular glycogen stores in dystrophic conditions?

We hypothesized that creatine monohydrate supplementation may reduce inflam-
mation and fibrosis, along with improving the preservation of intramuscular glycogen in
MDX mice. These results may further support the therapeutic potential of creatine not
only to improve muscle energy metabolism but also to mitigate the pathological aspects of
muscular dystrophy, such as chronic inflammation and tissue degeneration.

2. Materials and Methods
2.1. Experimental Draw and Ethical Aspects

This preliminary pre-clinical research was authorized by the Animal Use Ethics Com-
mittee of the Faculty of Medicine of Jundiaí (FMJ, Jundiaí, Brazil) under approval number
19/2021. A total of 20 male mice, aged 16 weeks, were utilized, comprising 10 MDX
(dystrophic) mice and 10 C57BL/10 mice. The animals were divided into the following
four groups:

• Group I included 5 C57BL/10 mice serving as controls for the study.
• Group II included 5 C57BL/10 mice that underwent supplementation with creatine

monohydrate for a duration of eight weeks.
• Group III included 5 MDX mice supplemented with creatine monohydrate for a period

of eight weeks.
• Group IV included 5 MDX mice that did not receive creatine monohydrate supple-

mentation during the experiment.

All animals were four weeks old, and their body weights were correctly standardized
at the beginning of the experimental protocol. The animals came from the Bioterium of
the Biosciences Institute of the University of São Paulo (ICB/USP, São Paulo, Brazil) and
were maintained during the experiment under standardized conditions in the Labora-
tory Animal Experimentation Sector (SEA-anatomy-registered at the Brazilian College
of Animal Experimentation/COBEA and at the Brazilian Society of Laboratory Animal
Sciences/SBCAL) of the Department of Morphology and Basic Pathology of the Faculty
of Medicine of Jundiaí. This experimental study was performed in accordance with the
ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.

The animals were provided with a solid diet and water *ad libitum* and housed in
group cages (five mice of the same species per cage) under controlled conditions: a constant
temperature of 23 ◦C and a 12 h light/12 h dark cycle, with lights on from 6:00 a.m. to
6:00 p.m. They were fed Labina® (a standard chow diet for mice, provided by Purina,
Paulínia, Brazil). The animals’ body weights (in grams) were recorded at both the start and
end of the experimental period.

Euthanasia was performed one day after the final creatine supplementation, adhering
to the standardized guidelines set by the ethics committee that approved the study. The
procedure was conducted in a noise-free environment, away from other animals in the fa-
cility. Anesthetic agents, including Xylazine (Anasedan®, Ceva, Paulínia, Brazil), Ketamine
(Dopalen®, Ceva, Paulínia, Brazil), and Thiopental (Thiopentax®, Cristália, Itapira, Brazil),
were administered intraperitoneally in the lower left abdominal quadrant. Samples of the
gastrocnemius muscle were collected in their entirety for analysis. No complications, such
as illnesses or unexpected events, occurred that would have required the removal of any
animal from the study.
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2.2. Creatine Supplementation

Creatine monohydrate supplementation was provided exclusively to animals in
Groups II and III. The supplement (Creatina Powder Creapure®, Creatine Monohydrate,
Universal Nutrition, New Brunswick, NJ, USA) was administered at a dose of 0.3 mg per
kilogram of body weight for a period of 8 weeks. The dosage was determined based on
prior studies [20,21] that utilized similar supplementation in rodents, corresponding to
doses used in humans to achieve ergogenic effects.

The supplementation was delivered via gavage, following the methodology outlined
by Ramos Fernandes et al. (2022) [15]. An oro-esophageal probe (1 mm in diameter, 3 cm in
length) adapted to a 3 mL syringe was used, with water serving as the infusion medium.
Animals in groups II and III received supplementation on Mondays, Wednesdays, and
Fridays, during the morning hours between 6:00 a.m. and 10:00 a.m. Meanwhile, animals
in the other groups underwent the same gavage procedure but were only given water.

2.3. Histomorphological and Histomorphometric Analysis

After the experimental period and the euthanasia of the animals, the gastrocnemius
muscle tissue was extracted and fixed in Bouin’s solution (a mixture of saturated aqueous
picric acid—75 mL, formaldehyde—25 mL, and glacial acetic acid—5 mL) for 12 h to
prepare it for processing and paraffin embedding. The tissue was subsequently rinsed in
70% alcohol and dehydrated through a graded alcohol series (80% alcohol twice, absolute
alcohol three times, each for 1 to 2 h) before inclusion. The fragments were cleared in xylene
for 1 to 2 h until they became translucent, then embedded in paraffin mixed with plastic
polymers (Paraplast Plus®, Sigma-Aldrich, St. Louis, MO, USA) at 56 ◦C for approximately
1 h, followed by immersion in fresh paraffin at the same temperature. The tissues were
arranged in plastic molds to obtain transverse histological sections.

The paraffin blocks were trimmed to create flat surfaces and sectioned into slices 5 µm
thick. These sections were mounted on albumin-coated slides and placed in an oven at
60 ◦C. Once prepared, the slides were stained for various analyses: hematoxylin/eosin (HE)
for general morphology, PAS (Periodic Acid–Schiff) for intramuscular glycogen detection,
and Masson’s Trichrome for identifying collagen fibers. The prepared slides were then
examined and photographed using a Nikon® Eclipse E100 microscope (Tokyo, Japan)
equipped with a Sony DSC-W120 imaging system (Sony®, Tokyo, Japan) at the Department
of Morphology and Basic Pathology, Faculty of Medicine of Jundiaí, Brazil.

Additionally, a portion of the tissue samples was deep-frozen, allowing the researcher
to practice obtaining sections using a cryostat microtome at −20 ◦C. Measurements were
conducted with the aid of a 10× eyepiece equipped with a micrometer scale and coupled to
the Nikon® Eclipse E100 microscope. Observations were documented using the 100× ob-
jective lens. The eyepiece was pre-calibrated with a specialized slide featuring 0.01 mm
divisions, enabling the conversion of eyepiece units into micrometers. From these values,
the average volumes of the nuclei were calculated using the following formula: V = 4/3 π r3

for spherical nuclei, with “r” being the radius of the nucleus and V = 4/3 π (d/2)2 D/2 for
elliptical nuclei, with “d” being the smallest diameter and “D” being the largest nuclear
diameter (Figure 1).
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Figure 1. Schematic demonstration of the methodological process of the present study. The fig-
ure demonstrates the process of group separation, gavage administration, tissue extraction, slide
preparation, microscopy, and statistical analysis.

2.4. Statistical Analysis

We performed quantitative analysis by measuring the sarcoplasmic volume of my-
ocytes in the gastrocnemius muscle, which expresses a general trend in relation to the
variables of inflammatory infiltrate, areas of fibrosis, and local glycogen by stereological
methods. This variable was compared between dystrophic mice (MDX), treated and not
treated with creatine, by means of an unpaired Student’s t-test, p < 0.05, using the statistical
program GraphPad Prism (GraphPad® Software version 8.0, La Jolla, CA, USA).

3. Results
During the experiment, no unplanned events occurred that required reporting.

Figure 2 demonstrates the comparison of histological sections of the gastrocnemius from
the different experimental groups using a 10× and 20× magnification. The nucleus and
sarcoplasm of the tissues were highlighted with hematoxylin and eosin staining.

Figure 2 presents a comparison between samples, allowing the identification of eccen-
tric nuclei near the sarcolemma of myocytes in healthy groups, both treated and untreated
with creatine (Groups II and I, respectively) and a compatible muscle volume between the
samples of these groups. Frames C and D in the same figures demonstrate samples from
dystrophic animals. Frame C displays MDX animals that were not treated, while Frame D
shows MDX animals that were supplemented with creatine. Creatine was administered at
a dosage of 0.03 g per kilogram of body weight for eight weeks, as outlined in the study’s
experimental protocol. Both samples (Group III and Group IV) exhibited areas of inflam-
matory infiltration (indicated by white arrows), suggesting the presence of mononuclear
leukocytes, especially in the perimysium.

The quantitative analysis presented in Table 1 and Scheme 1 indicates that the mean sar-
coplasmic volume, which was affected by the inflammatory infiltrate, demonstrated lower
values in the sample of animals supplemented with creatine monohydrate (MDX + Creatine,
Group III), but without a statistically significant difference (p > 0.05). Histologically, in
Figure 2, these aspects can be identified in the extent of the infiltration.

Table 1. Quantitative analysis of the sarcoplasmic volume of myocytes in the gastrocnemius muscle.

Group Mean Standard Deviation p Value

MDX (IV) 121.6 21.9 0.0893
MDX + creatine (III) 98.0 16.3 0.0893

Comparison between the samples after applying an unpaired Student’s t-test, mean and standard deviation,
p < 0.05. There was no significant difference between the groups analyzed.
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Figure 2. Histological images of the gastrocnemius muscle with hematoxylin eosin (HE) staining.
Group I—healthy control group; Group II—healthy control group supplemented with creatine mono-
hydrate; Group IV—MDX group; Group III—MDX group supplemented with creatine monohydrate.
In GI and GII, the normal definition of the endomysium (gray arrow) can be observed, as well
as organized muscle fibers with a peripheral nucleus (pink arrow). In GIII and GIV, there were
tissue changes compatible with an inflammatory process due to the visualization of red blood cell
congestion (green arrow) and presence of inflammatory infiltrate (orange arrow), centralization of the
nucleus (black arrow), increased endomysial space (asterisk), suggesting fat infiltration (asterisk) and
the presence of a pseudohypertrophic myocyte (blue arrow). In the image on the left, 10× objective;
in the center, 20× objective, highlighting of the region marked in the grid on the right.
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Scheme 1. Quantitative analysis of the sarcoplasmic volume of myocytes in the gastrocnemius muscle.
MDX group (Group IV) and MDX group supplemented with creatine monohydrate (Group III). Equal
capital letters indicate no significant difference (A = A). p value = 0.0893.

Figure 3 demonstrates the gastrocnemius of animals from the different experimental
groups in this study, stained with Periodic Acid–Schiff (PAS), which is capable of associating
with glycogen polymeric structures (glycogen) present in the sample’s sarcoplasm.
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monohydrate. The presence of glucose polymers (black arrow) can be observed in the groups 
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groups (I, IV). In the MDX groups, changes such as the presence of inflammatory cells (blue arrow) 
and increased endomysial space (asterisk) occurred. In the image on the left, 10× objective; in the 
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Trichrome stain, in which the dye was attracted to collagen fibrils, therefore indicating 
areas of concentration of this protein (mainly indicated by the blue color). In this study, 
collagen primarily correlated with regions of tissue regeneration characterized by fibrosis. 
Figure 4 reveals that samples from dystrophic animals exhibited areas of tissue fibrosis, 
more prominently observed in the non-supplemented group. This observation aligns with 
the findings in Figure 2, which indicate the presence of inflammatory infiltrations in the 
tissue. Thus, when examining frames C and D of Figure 3, it becomes evident that samples 
displaying infiltration also exhibit regions of tissue fibrosis. 

Figure 3. Histological images of the gastrocnemius muscle, stained by Periodic Acid–Schiff (PAS).
Group I—healthy control group; Group II—healthy control group supplemented with creatine mono-
hydrate; Group IV—MDX group; Group III—MDX group supplemented with creatine monohydrate.
The presence of glucose polymers (black arrow) can be observed in the groups supplemented with
creatine (II, III) more evidently when compared to the non-supplemented groups (I, IV). In the
MDX groups, changes such as the presence of inflammatory cells (blue arrow) and increased en-
domysial space (asterisk) occurred. In the image on the left, 10× objective; in the center 20× objective,
highlighting of the region marked in the grid on the right.

Figure 4 demonstrates the gastrocnemius of the animals stained with Masson’s
Trichrome, which highlights the connective tissue and the relationship between this tissue
and skeletal striated muscle.

Regarding the histomorphometry of sarcoplasmic volume, as previously demonstrated
in Table 1 and Scheme 1, the comparative results between the diseased groups (MDX and
MDX + creatine) in the study did not demonstrate a statistical difference between the
samples evaluated, but the mean values were lower in the group with MDX animals treated
with creatine. Figure 4 presents a comparison of the samples in a Masson Trichrome stain, in
which the dye was attracted to collagen fibrils, therefore indicating areas of concentration of
this protein (mainly indicated by the blue color). In this study, collagen primarily correlated
with regions of tissue regeneration characterized by fibrosis. Figure 4 reveals that samples
from dystrophic animals exhibited areas of tissue fibrosis, more prominently observed in
the non-supplemented group. This observation aligns with the findings in Figure 2, which
indicate the presence of inflammatory infiltrations in the tissue. Thus, when examining
frames C and D of Figure 3, it becomes evident that samples displaying infiltration also
exhibit regions of tissue fibrosis.
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attached to extracellular matrix glycoproteins, characterizing a complex known as 
dystrophin-associated proteins (DAPs) or dystrophin-associated glycoproteins (DAGs). 
In this complex, the presence of alpha-dystroglycan is observed, which has been identified 
as a receptor for agrin, a protein that induces the aggregation of acetylcholine receptors at 
the neuromuscular junction, resulting in muscle contraction [1,25]. Therefore, the complex 
established between dystrophin and other muscle cell stabilization molecules together 
with the extracellular matrix enables cell stability and assists in its functional process—
contraction (Figure 5) [26]. 

Figure 4. Histological images of the gastrocnemius muscle stained by Masson’s Trichrome. Group
I—healthy control group; Group II—healthy control group supplemented with creatine monohydrate;
Group IV—MDX group; Group III—MDX group supplemented with creatine monohydrate. Thin
black arrows highlight connective tissue. In the image on the left, 10× objective; in the center,
20× objective, highlighting of the region marked in the grid on the right.

4. Discussion
This preliminary study aimed to analyze the effects of creatine supplementation on

the gastrocnemius skeletal striated muscle between inbred mice of the X-linked muscular
dystrophy lineage (MDX) and healthy C57BL/10 mice. Skeletal striated muscle tissue has a
fusiform shape in its morphology with multiple nuclei positioned close to the sarcoplasmic
membrane, in which the extracellular matrix remains anchored through proteins such as
dystrophin, which establishes the proteins of the muscle cell’s cytoskeleton together with
glycoproteins in the extracellular matrix, through the sarcoplasmic membrane [22–24].

Dystrophin’s main function is to act on muscle structure and function, comprising a
protein with four domains, including an N-terminal linked to actin (myocyte cytoskele-
ton protein), a spectrin-like domain, a cysteine-rich domain, and a C-terminal, which
remains attached to extracellular matrix glycoproteins, characterizing a complex known
as dystrophin-associated proteins (DAPs) or dystrophin-associated glycoproteins (DAGs).
In this complex, the presence of alpha-dystroglycan is observed, which has been identified
as a receptor for agrin, a protein that induces the aggregation of acetylcholine recep-
tors at the neuromuscular junction, resulting in muscle contraction [1,25]. Therefore, the
complex established between dystrophin and other muscle cell stabilization molecules
together with the extracellular matrix enables cell stability and assists in its functional
process—contraction (Figure 5) [26].
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In patients with Duchenne muscular dystrophy, a significant reduction in dystrophin
is observed, an aspect associated with mutations in the DMD gene linked to the X chro-
mosome. DMD is the largest known human gene, consisting of 79 exons and more than
seven promoters [27]. Compared to other human genes, the mutation rate in the dystrophin
gene is relatively high, with 1/3 of mutations occurring in non-inherited situations and
2/3 occurring in genetically inherited conditions [28]. The types of mutation can be gene
deletions (65%), duplications (9%), small mutations (25%), and less common atypical muta-
tions (<1%). In the present study, two contexts of gastrocnemius muscle physiology were
compared: MDX mice with Duchenne muscular dystrophy and healthy C57/BL6 mice
without any pathological processes, including in muscle tissue [29,30].

Nuclear centralization was another finding in our experimental protocol that was con-
sistent with previously published literature on the subject, being an atypical characteristic
in skeletal striated muscle tissue [21,31–35]. This condition was evidenced histologically,
which showed samples subjected to PAS staining, revealing glycidic aggregations in the
sarcoplasm of the cells. Regarding glycogen, PAS staining showed white dot markings
in the sarcoplasm, indicating the presence of intramuscular glycogen. Therefore, the PAS
staining applied in this study, among the groups, revealed a more visible presence of
glycogen in the samples treated with creatine monohydrate for eight weeks, both in healthy
animals (Group II) and in diseased animals (Group III) [36–38].

As previously explained, PAS staining applied in the analysis between groups revealed
a higher presence of glycogen in the samples treated with creatine monohydrate for eight
weeks, both in healthy animals (Group II) and in sick animals (Group IV). Glycogen increase
indicates a greater energy reserve in the analyzed muscle tissue, supporting previous
findings in the literature suggesting that creatine supplementation enhances glycogenesis
in muscle tissue [39]. This effect is primarily attributed to the resynthesis of adenosine
triphosphate via the phosphocreatine pathway and the optimization of glycolysis under
metabolic conditions associated with both health and disease [40].

Duchenne muscular dystrophy affects muscle metabolism by reducing the stabilization
of the sarcolemma, which compromises the stability of myofibrils and their association
during muscle contraction [41]. This condition hinders muscle movement, requiring
increased energy input and consumption through the aforementioned metabolic pathways
(phosphocreatine and glycolysis) [42]. Therefore, creatine supplementation represents
a promising strategy to preserve intramuscular glycogen, potentially enhancing energy
conservation for tissue function [43,44].
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Tissue fibrosis is recognized as a regenerative response characterized by the presence
of mononuclear leukocytes, such as macrophages, which contain phagocytose cellular
debris from regions affected by immune responses [45,46]. The formation of collagenous
tissue as a substitute for compromised muscle tissue diminishes the quality of muscle
contraction, resistance, and elasticity, leading to motor impairment and reduced tissue
function [22]. Figure 4 indicates that although animals treated with creatine monohy-
drate for eight weeks exhibited tissue fibrosis, the extent of collagenous tissue was less
pronounced compared to that of untreated animals. These findings suggest that creatine
supplementation may contribute to greater long-term tissue preservation and improved
motor function. Additionally, the morphometric analysis revealed significant differences in
the sarcoplasmic volume of samples of DMD mice, with the volume being much higher in
non-supplemented animals (121.6 µM) when compared to animals that received creatine
supplementation (98 µM) for eight weeks.

Duchenne muscular dystrophy is characterized by a clinical sign known as pseudohy-
pertrophy, predominantly affecting the gastrocnemius and soleus muscles in patients [47,48].
Pseudohypertrophy involves an increase in myocyte volume without the corresponding
growth of myofibrils, leading to diminished functional capacity [49]. The observation of
smaller gastrocnemius myocyte volumes in samples from MDX mice treated with creatine
monohydrate suggests that the supplementation reduced the pseudohypertrophy of the
cells. In addition to the other findings described, such as the less evident tissue fibrosis and
qualitatively less evidence of inflammatory infiltrate in the perimysium, it is reasonable to
suggest that creatine supplementation promotes beneficial effects on tissues by improving
tissue function and delaying the aggressive progression of this genetic disorder.

As possible limitations of the study, we can consider that we focused exclusively
on MDX mice, an animal model for Duchenne muscular dystrophy (DMD) that may
not fully capture the complexity of the disease in humans, including the genetic and
environmental variability that influences DMD progression. These findings have clinical
and translational importance, as they indicate that creatine may improve tissue function
and offer a promising therapeutic approach to mitigate the degenerative effects of DMD.
Furthermore, the research highlights that creatine monohydrate, already widely used for
ergogenic purposes, may have broader applications in clinical conditions such as DMD.
The reduction of pseudohypertrophy and the preservation of muscle tissue observed in
creatine-treated mice suggest additional benefits for muscle function and quality of life in
patients with DMD.

As a future perspective, the qualitative results of this preliminary study on inflam-
mation, glycogen, and fibrosis could be confirmed by more methods, such as RT-PCR or
Western blotting.

5. Conclusions
This preliminary study investigated the effects of creatine monohydrate in dystrophic

MDX mice over eight weeks, using a dosage of 0.03 g per kilogram of body weight.
Despite the non-significant quantitative difference between the dystrophic animals, the
not supplemented ones (Group IV) in relation to the supplemented ones (Group III), there
was a lower mean volume of sarcoplasm in the supplemented ones, an important reference
for evaluating inflammation, fibrosis, and the preservation of intramuscular glycogen.
From this, new studies may confirm that, in addition to its known ergogenic benefits,
creatine may offer therapeutic potential in the treatment of dystrophic muscle degeneration,
contributing to tissue integrity and modulating inflammatory processes.
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