On the Performance of Wavelet Based Unit Root Tests
Abstract
:1. Introduction
2. Wavelet Transform
3. Regression Based Wavelet Unit Root Tests
4. Small Sample Properties
4.1. The Size Performance of the Wavelet Based Tests
4.2. The Size-Adjusted Power Performance of the Wavelet Based Tests
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Proofs of the Theorems and the Lemmas
References
- Chang, Yoosoon, and Joon Y. Park. 2002. On the asymptotics of ADF tests for unit roots. Econometric Reviews 21: 431–47. [Google Scholar] [CrossRef]
- Dickey, David A., and Wayne A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–31. [Google Scholar]
- Dickey, David A., and Wayne A. Fuller. 1981. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49: 1057–72. [Google Scholar] [CrossRef]
- Elliott, Graham, Thomas J. Rothenberg, and James H. Stock. 1996. Efficient Tests for an Autoregressive Unit Root. Econometrica 64: 813–36. [Google Scholar] [CrossRef]
- Eroğu, Burak. 2018. Wavelet Variance Ratio Test And Wavestrapping for the Determination of the Cointegration Rank. CEFIS Working Paper Series November 2017; Frankfurt am Main, Germany: The Center for Financial Studies. [Google Scholar]
- Fan, Yanqin, and Ramazan Gencay. 2010. Unit Root Tests with Wavelets. Econometric Theory 5: 1305–31. [Google Scholar] [CrossRef]
- Gençay, Ramazan, Faruk Selçuk, and Brandon J. Whitcher. 2001. An Introduction to Wavelets and Other Filtering Methods in Finance and Economics. Cambridge, MA, USA: Academic Press. [Google Scholar]
- Granger, Clive W. J. 1966. The typical spectral shape of an economic variable. Econometrica 34: 150–61. [Google Scholar] [CrossRef]
- Granger, Clive W. J. 1981. Some Properties of Time Series Data and Their Use in Econometric Model Specification. Journal of Econometrics 16: 121–30. [Google Scholar] [CrossRef]
- Mallat, Stephane G. 1989. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. Pattern Analysis and Machine Intelligence. IEEE Transactions 11: 674–93. [Google Scholar]
- Ng, Serena, and Pierre Perron. 2001. Lag length selection and the construction of unit root tests with good size and power. Econometrica 69: 1519–54. [Google Scholar] [CrossRef]
- Nielsen, Morten Ørregaard. 2009. A powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic. Econometric Theory 25: 1515–44. [Google Scholar] [CrossRef]
- Nielsen, Morten Ørregaard. 2010. Nonparametric Cointegration Analysis of Fractional Systems with Unknown Integration Orders. Journal of Econometrics 155: 170–87. [Google Scholar] [CrossRef]
- Perron, Pierre, and Zhongjun Qu. 2007. A simple modification to improve the finite sample properties of Ng and Perron’s unit root tests. Economics Letters 94: 12–19. [Google Scholar] [CrossRef]
- Phillips, Peter C. B., and Pierre Perron. 1988. Testing for a Unit Root in Time Series Regression. Biometrika 75: 335–46. [Google Scholar] [CrossRef]
- Trokic, Mirza. 2016. Wavelet Energy Ratio Unit Root Tests. Econometric Reviews, 1–19. [Google Scholar] [CrossRef]
1. | The quadrature mirror relationship can be characterized by: for (Fan and Gencay 2010). |
2. | The results for the maximum overlap discrete wavelet transform are available upon request. |
3. | Similar to the results observed in the literature, we observe that GLS detrending generates better power performance than the ordinary least squares (OLS) detrending mechanism, so we use GLS detrending in this study. Results for OLS detrending are available upon request. |
4. | We also consider Daubechies and Symlet wavelets with different lengths, but they exhibit similar performance by means of size and size-adjusted power. |
5. | The results for other intermediate values of are available upon request. |
6. | In the simulation, we observe that, for all tests, the optimal is very close. As a result, we use the same for all tests. A similar approach is adopted by Ng and Perron (2001). The values of critical values with other significant levels are available upon request. |
7. | The simulations can be conducted under different ARMA innovations. These results are available upon request. Since they do not alter the findings, we skip them for brevity. |
8. | We also consider GLS detrending, but, for the space considerations, we do not present them. If requested, they are available from the authors. |
, | , | |||
---|---|---|---|---|
1 | 9.8 | −16.94 | −2.83 | 0.17 |
18.8 | −7.91 | −1.92 | 0.23 |
Wavelet | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 | −0.8 | Haar | 0.212 | 0.729 | 0.040 | 0.046 | 0.034 | 0.085 | 0.067 |
Db2 | 0.212 | 0.729 | 0.041 | 0.049 | 0.035 | 0.084 | 0.066 | ||
Db4 | 0.220 | 0.729 | 0.038 | 0.047 | 0.034 | 0.086 | 0.067 | ||
sym2 | 0.214 | 0.727 | 0.041 | 0.049 | 0.035 | 0.085 | 0.066 | ||
sym4 | 0.207 | 0.723 | 0.040 | 0.046 | 0.033 | 0.084 | 0.065 | ||
0 | Haar | 0.040 | 0.046 | 0.028 | 0.030 | 0.028 | 0.031 | 0.031 | |
Db2 | 0.041 | 0.045 | 0.029 | 0.030 | 0.030 | 0.031 | 0.031 | ||
Db4 | 0.045 | 0.047 | 0.033 | 0.036 | 0.031 | 0.035 | 0.036 | ||
sym2 | 0.044 | 0.046 | 0.030 | 0.031 | 0.030 | 0.033 | 0.032 | ||
sym4 | 0.040 | 0.043 | 0.028 | 0.029 | 0.027 | 0.032 | 0.031 | ||
0.8 | Haar | 0.037 | 0.020 | 0.040 | 0.040 | 0.040 | 0.043 | 0.039 | |
Db2 | 0.039 | 0.020 | 0.040 | 0.040 | 0.041 | 0.042 | 0.036 | ||
Db4 | 0.042 | 0.020 | 0.040 | 0.043 | 0.040 | 0.040 | 0.036 | ||
sym2 | 0.039 | 0.019 | 0.040 | 0.040 | 0.041 | 0.042 | 0.037 | ||
sym4 | 0.038 | 0.018 | 0.036 | 0.037 | 0.034 | 0.039 | 0.034 | ||
1 | −0.8 | Haar | 0.227 | 0.803 | 0.035 | 0.039 | 0.031 | 0.088 | 0.074 |
Db2 | 0.228 | 0.804 | 0.035 | 0.037 | 0.034 | 0.087 | 0.071 | ||
Db4 | 0.241 | 0.806 | 0.043 | 0.056 | 0.034 | 0.091 | 0.073 | ||
sym2 | 0.232 | 0.804 | 0.034 | 0.036 | 0.032 | 0.087 | 0.071 | ||
sym4 | 0.229 | 0.802 | 0.039 | 0.046 | 0.033 | 0.089 | 0.073 | ||
0 | Haar | 0.048 | 0.054 | 0.033 | 0.033 | 0.033 | 0.036 | 0.035 | |
Db2 | 0.050 | 0.053 | 0.033 | 0.033 | 0.035 | 0.037 | 0.035 | ||
Db4 | 0.053 | 0.055 | 0.040 | 0.042 | 0.037 | 0.042 | 0.042 | ||
sym2 | 0.051 | 0.054 | 0.034 | 0.035 | 0.035 | 0.038 | 0.037 | ||
sym4 | 0.051 | 0.053 | 0.035 | 0.036 | 0.032 | 0.038 | 0.038 | ||
0.8 | Haar | 0.045 | 0.022 | 0.046 | 0.046 | 0.048 | 0.049 | 0.044 | |
Db2 | 0.045 | 0.022 | 0.046 | 0.046 | 0.047 | 0.049 | 0.042 | ||
Db4 | 0.050 | 0.024 | 0.050 | 0.053 | 0.048 | 0.050 | 0.044 | ||
sym2 | 0.048 | 0.022 | 0.046 | 0.047 | 0.048 | 0.049 | 0.042 | ||
sym4 | 0.048 | 0.022 | 0.045 | 0.046 | 0.042 | 0.048 | 0.042 | ||
−0.8 | Haar | 0.498 | 0.999 | 0.030 | 0.032 | 0.028 | 0.113 | 0.072 | |
Db2 | 0.501 | 0.999 | 0.031 | 0.032 | 0.030 | 0.113 | 0.069 | ||
Db4 | 0.519 | 0.999 | 0.033 | 0.040 | 0.029 | 0.116 | 0.068 | ||
sym2 | 0.502 | 0.999 | 0.031 | 0.032 | 0.030 | 0.116 | 0.071 | ||
sym4 | 0.513 | 0.999 | 0.032 | 0.034 | 0.030 | 0.116 | 0.069 | ||
0 | Haar | 0.051 | 0.038 | 0.010 | 0.011 | 0.011 | 0.017 | 0.020 | |
Db2 | 0.058 | 0.039 | 0.012 | 0.012 | 0.012 | 0.017 | 0.021 | ||
Db4 | 0.064 | 0.040 | 0.015 | 0.017 | 0.014 | 0.023 | 0.029 | ||
sym2 | 0.055 | 0.037 | 0.012 | 0.012 | 0.012 | 0.018 | 0.021 | ||
sym4 | 0.065 | 0.041 | 0.013 | 0.014 | 0.013 | 0.021 | 0.024 | ||
0.8 | Haar | 0.045 | 0.021 | 0.025 | 0.026 | 0.026 | 0.032 | 0.027 | |
Db2 | 0.049 | 0.022 | 0.025 | 0.025 | 0.026 | 0.032 | 0.024 | ||
Db4 | 0.056 | 0.024 | 0.027 | 0.028 | 0.026 | 0.032 | 0.026 | ||
sym2 | 0.048 | 0.022 | 0.026 | 0.026 | 0.027 | 0.032 | 0.025 | ||
sym4 | 0.056 | 0.023 | 0.022 | 0.023 | 0.022 | 0.030 | 0.024 |
Wavelet | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 | −0.8 | Haar | 0.113 | 0.636 | 0.051 | 0.053 | 0.047 | 0.067 | 0.06 |
Db2 | 0.114 | 0.637 | 0.053 | 0.056 | 0.049 | 0.069 | 0.062 | ||
Db4 | 0.118 | 0.638 | 0.052 | 0.055 | 0.05 | 0.068 | 0.062 | ||
sym2 | 0.115 | 0.638 | 0.053 | 0.056 | 0.051 | 0.069 | 0.062 | ||
sym4 | 0.115 | 0.635 | 0.054 | 0.057 | 0.05 | 0.069 | 0.063 | ||
0 | Haar | 0.046 | 0.049 | 0.047 | 0.047 | 0.047 | 0.048 | 0.047 | |
Db2 | 0.048 | 0.05 | 0.049 | 0.048 | 0.048 | 0.049 | 0.047 | ||
Db4 | 0.05 | 0.049 | 0.048 | 0.047 | 0.047 | 0.048 | 0.045 | ||
sym2 | 0.048 | 0.049 | 0.048 | 0.048 | 0.048 | 0.048 | 0.047 | ||
sym4 | 0.047 | 0.048 | 0.046 | 0.046 | 0.045 | 0.046 | 0.045 | ||
0.8 | Haar | 0.045 | 0.04 | 0.044 | 0.045 | 0.045 | 0.045 | 0.044 | |
Db2 | 0.048 | 0.041 | 0.046 | 0.047 | 0.046 | 0.047 | 0.045 | ||
Db4 | 0.05 | 0.041 | 0.048 | 0.048 | 0.047 | 0.048 | 0.045 | ||
sym2 | 0.047 | 0.04 | 0.045 | 0.045 | 0.046 | 0.046 | 0.044 | ||
sym4 | 0.047 | 0.041 | 0.046 | 0.047 | 0.046 | 0.047 | 0.045 | ||
1 | −0.8 | Haar | 0.112 | 0.651 | 0.049 | 0.051 | 0.047 | 0.067 | 0.062 |
Db2 | 0.114 | 0.651 | 0.046 | 0.048 | 0.046 | 0.067 | 0.061 | ||
Db4 | 0.112 | 0.652 | 0.052 | 0.056 | 0.048 | 0.068 | 0.062 | ||
sym2 | 0.108 | 0.652 | 0.047 | 0.048 | 0.045 | 0.066 | 0.061 | ||
sym4 | 0.111 | 0.652 | 0.049 | 0.051 | 0.046 | 0.065 | 0.06 | ||
0 | Haar | 0.047 | 0.049 | 0.048 | 0.048 | 0.048 | 0.049 | 0.048 | |
Db2 | 0.048 | 0.048 | 0.047 | 0.047 | 0.047 | 0.047 | 0.046 | ||
Db4 | 0.048 | 0.051 | 0.048 | 0.05 | 0.048 | 0.049 | 0.047 | ||
sym2 | 0.047 | 0.05 | 0.049 | 0.048 | 0.048 | 0.049 | 0.047 | ||
sym4 | 0.048 | 0.05 | 0.047 | 0.047 | 0.047 | 0.047 | 0.046 | ||
0.8 | Haar | 0.046 | 0.041 | 0.046 | 0.046 | 0.046 | 0.046 | 0.044 | |
Db2 | 0.048 | 0.041 | 0.045 | 0.046 | 0.046 | 0.046 | 0.044 | ||
Db4 | 0.047 | 0.041 | 0.047 | 0.048 | 0.047 | 0.047 | 0.044 | ||
sym2 | 0.047 | 0.041 | 0.046 | 0.046 | 0.046 | 0.047 | 0.044 | ||
sym4 | 0.047 | 0.041 | 0.046 | 0.046 | 0.046 | 0.047 | 0.044 | ||
−0.8 | Haar | 0.268 | 0.994 | 0.031 | 0.032 | 0.029 | 0.074 | 0.056 | |
Db2 | 0.267 | 0.994 | 0.03 | 0.031 | 0.03 | 0.074 | 0.056 | ||
Db4 | 0.27 | 0.994 | 0.033 | 0.038 | 0.03 | 0.075 | 0.056 | ||
sym2 | 0.267 | 0.994 | 0.032 | 0.033 | 0.031 | 0.075 | 0.058 | ||
sym4 | 0.272 | 0.994 | 0.032 | 0.034 | 0.03 | 0.073 | 0.056 | ||
0 | Haar | 0.062 | 0.048 | 0.041 | 0.041 | 0.041 | 0.044 | 0.042 | |
Db2 | 0.063 | 0.049 | 0.043 | 0.043 | 0.043 | 0.046 | 0.042 | ||
Db4 | 0.065 | 0.049 | 0.043 | 0.044 | 0.043 | 0.045 | 0.041 | ||
sym2 | 0.063 | 0.049 | 0.043 | 0.043 | 0.043 | 0.046 | 0.042 | ||
sym4 | 0.068 | 0.051 | 0.044 | 0.044 | 0.043 | 0.046 | 0.042 | ||
0.8 | Haar | 0.06 | 0.028 | 0.041 | 0.042 | 0.042 | 0.044 | 0.039 | |
Db2 | 0.06 | 0.028 | 0.04 | 0.041 | 0.04 | 0.043 | 0.037 | ||
Db4 | 0.065 | 0.028 | 0.042 | 0.043 | 0.042 | 0.043 | 0.036 | ||
sym2 | 0.06 | 0.028 | 0.041 | 0.041 | 0.041 | 0.044 | 0.038 | ||
sym4 | 0.065 | 0.029 | 0.042 | 0.043 | 0.041 | 0.045 | 0.038 |
Wavelet Based Tests | |||||||
---|---|---|---|---|---|---|---|
T | |||||||
100 | −0.8 | 0.315 | 0.066 | 0.068 | 0.064 | 0.150 | 0.121 |
0 | 0.053 | 0.037 | 0.036 | 0.036 | 0.042 | 0.043 | |
0.8 | 0.048 | 0.046 | 0.046 | 0.049 | 0.048 | 0.040 | |
1000 | −0.8 | 0.113 | 0.047 | 0.048 | 0.047 | 0.067 | 0.062 |
0 | 0.048 | 0.050 | 0.048 | 0.048 | 0.049 | 0.047 | |
0.8 | 0.045 | 0.039 | 0.044 | 0.045 | 0.045 | 0.043 | |
Standard Tests | |||||||
T | |||||||
100 | −0.8 | 0.582 | 0.037 | 0.039 | 0.035 | 0.162 | 0.119 |
0 | 0.069 | 0.047 | 0.048 | 0.047 | 0.054 | 0.056 | |
0.8 | 0.054 | 0.071 | 0.070 | 0.072 | 0.072 | 0.043 | |
1000 | −0.8 | 0.186 | 0.041 | 0.042 | 0.039 | 0.080 | 0.074 |
0 | 0.050 | 0.048 | 0.048 | 0.049 | 0.049 | 0.049 | |
0.8 | 0.047 | 0.053 | 0.053 | 0.053 | 0.054 | 0.048 |
GLS Demeaning | ||||||||
---|---|---|---|---|---|---|---|---|
Wavelet | ||||||||
Haar | −0.8 | 0.307 | 0.771 | 0.065 | 0.071 | 0.059 | 0.147 | 0.123 |
0 | 0.047 | 0.035 | 0.032 | 0.033 | 0.033 | 0.038 | 0.041 | |
0.8 | 0.044 | 0.002 | 0.044 | 0.044 | 0.047 | 0.047 | 0.041 | |
db2 | −0.8 | 0.315 | 0.771 | 0.066 | 0.068 | 0.064 | 0.150 | 0.121 |
0 | 0.053 | 0.037 | 0.036 | 0.036 | 0.038 | 0.042 | 0.043 | |
0.8 | 0.048 | 0.002 | 0.046 | 0.046 | 0.049 | 0.048 | 0.040 | |
sym2 | −0.8 | 0.317 | 0.772 | 0.065 | 0.067 | 0.064 | 0.151 | 0.120 |
0 | 0.054 | 0.037 | 0.036 | 0.037 | 0.038 | 0.042 | 0.044 | |
0.8 | 0.049 | 0.002 | 0.048 | 0.047 | 0.051 | 0.050 | 0.042 | |
OLS demeaning | ||||||||
Wavelet | ||||||||
Haar | −0.8 | 0.423 | 0.999 | 0.073 | 0.063 | 0.077 | 0.184 | 0.105 |
0 | 0.017 | 0.020 | 0.011 | 0.021 | 0.013 | 0.017 | 0.033 | |
0.8 | 0.013 | 0.000 | 0.015 | 0.023 | 0.019 | 0.020 | 0.029 | |
db2 | −0.8 | 0.423 | 0.999 | 0.077 | 0.068 | 0.081 | 0.190 | 0.119 |
0 | 0.018 | 0.018 | 0.010 | 0.014 | 0.013 | 0.016 | 0.028 | |
0.8 | 0.014 | 0.000 | 0.014 | 0.018 | 0.020 | 0.019 | 0.026 | |
sym2 | −0.8 | 0.432 | 0.999 | 0.078 | 0.069 | 0.081 | 0.192 | 0.119 |
0 | 0.019 | 0.019 | 0.010 | 0.015 | 0.014 | 0.017 | 0.031 | |
0.8 | 0.015 | 0.000 | 0.015 | 0.018 | 0.021 | 0.020 | 0.028 |
T | Wavelet | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0 | −0.8 | Haar | 0.99 | 0.109 | 0.104 | 0.109 | 0.111 | 0.104 | 0.111 | 0.111 |
0.9 | 0.988 | 0.073 | 0.523 | 0.537 | 0.507 | 0.769 | 0.640 | ||||
Db2 | 0.99 | 0.115 | 0.105 | 0.108 | 0.109 | 0.105 | 0.113 | 0.113 | |||
0.9 | 0.989 | 0.073 | 0.520 | 0.535 | 0.505 | 0.772 | 0.643 | ||||
Db4 | 0.99 | 0.113 | 0.104 | 0.110 | 0.111 | 0.106 | 0.115 | 0.115 | |||
0.9 | 0.989 | 0.072 | 0.516 | 0.521 | 0.508 | 0.781 | 0.655 | ||||
sym2 | 0.99 | 0.114 | 0.107 | 0.109 | 0.111 | 0.104 | 0.112 | 0.113 | |||
0.9 | 0.989 | 0.075 | 0.524 | 0.539 | 0.507 | 0.773 | 0.645 | ||||
sym4 | 0.99 | 0.117 | 0.109 | 0.111 | 0.109 | 0.109 | 0.114 | 0.114 | |||
0.9 | 0.991 | 0.078 | 0.522 | 0.530 | 0.512 | 0.776 | 0.641 | ||||
0 | Haar | 0.99 | 0.101 | 0.110 | 0.110 | 0.112 | 0.101 | 0.111 | 0.115 | ||
0.9 | 0.884 | 0.980 | 0.859 | 0.859 | 0.843 | 0.903 | 0.870 | ||||
Db2 | 0.99 | 0.103 | 0.113 | 0.110 | 0.114 | 0.104 | 0.113 | 0.115 | |||
0.9 | 0.889 | 0.982 | 0.853 | 0.854 | 0.839 | 0.901 | 0.866 | ||||
Db4 | 0.99 | 0.101 | 0.112 | 0.114 | 0.116 | 0.106 | 0.114 | 0.118 | |||
0.9 | 0.889 | 0.981 | 0.854 | 0.856 | 0.837 | 0.896 | 0.856 | ||||
sym2 | 0.99 | 0.102 | 0.112 | 0.112 | 0.113 | 0.105 | 0.113 | 0.116 | |||
0.9 | 0.883 | 0.979 | 0.853 | 0.854 | 0.838 | 0.900 | 0.865 | ||||
sym4 | 0.99 | 0.106 | 0.115 | 0.117 | 0.118 | 0.111 | 0.117 | 0.120 | |||
0.9 | 0.898 | 0.982 | 0.852 | 0.851 | 0.844 | 0.897 | 0.857 | ||||
0.8 | Haar | 0.99 | 0.105 | 0.114 | 0.113 | 0.115 | 0.108 | 0.115 | 0.117 | ||
0.9 | 0.873 | 0.952 | 0.789 | 0.790 | 0.767 | 0.844 | 0.811 | ||||
Db2 | 0.99 | 0.103 | 0.111 | 0.111 | 0.112 | 0.105 | 0.113 | 0.114 | |||
0.9 | 0.875 | 0.950 | 0.790 | 0.791 | 0.771 | 0.851 | 0.817 | ||||
Db4 | 0.99 | 0.103 | 0.113 | 0.113 | 0.115 | 0.107 | 0.115 | 0.118 | |||
0.9 | 0.879 | 0.951 | 0.805 | 0.808 | 0.781 | 0.860 | 0.824 | ||||
sym2 | 0.99 | 0.104 | 0.114 | 0.111 | 0.113 | 0.106 | 0.115 | 0.115 | |||
0.9 | 0.878 | 0.951 | 0.791 | 0.791 | 0.770 | 0.851 | 0.818 | ||||
sym4 | 0.99 | 0.106 | 0.115 | 0.113 | 0.115 | 0.109 | 0.114 | 0.115 | |||
0.9 | 0.886 | 0.954 | 0.801 | 0.797 | 0.790 | 0.855 | 0.813 | ||||
1 | −0.8 | Haar | 0.99 | 0.093 | 0.087 | 0.091 | 0.091 | 0.088 | 0.093 | 0.090 | |
0.9 | 0.371 | 0.017 | 0.148 | 0.151 | 0.143 | 0.237 | 0.189 | ||||
Db2 | 0.99 | 0.094 | 0.086 | 0.090 | 0.090 | 0.086 | 0.095 | 0.092 | |||
0.9 | 0.377 | 0.016 | 0.148 | 0.149 | 0.145 | 0.240 | 0.193 | ||||
Db4 | 0.99 | 0.092 | 0.086 | 0.086 | 0.086 | 0.086 | 0.090 | 0.088 | |||
0.9 | 0.373 | 0.016 | 0.147 | 0.156 | 0.144 | 0.242 | 0.197 | ||||
sym2 | 0.99 | 0.095 | 0.087 | 0.092 | 0.093 | 0.089 | 0.094 | 0.093 | |||
0.9 | 0.374 | 0.017 | 0.149 | 0.149 | 0.146 | 0.238 | 0.193 | ||||
sym4 | 0.99 | 0.095 | 0.087 | 0.091 | 0.089 | 0.089 | 0.093 | 0.090 | |||
0.9 | 0.377 | 0.017 | 0.152 | 0.154 | 0.149 | 0.243 | 0.194 | ||||
0 | Haar | 0.99 | 0.101 | 0.111 | 0.108 | 0.110 | 0.102 | 0.110 | 0.114 | ||
0.9 | 0.728 | 0.895 | 0.776 | 0.775 | 0.756 | 0.820 | 0.791 | ||||
Db2 | 0.99 | 0.100 | 0.114 | 0.111 | 0.113 | 0.104 | 0.112 | 0.116 | |||
0.9 | 0.735 | 0.900 | 0.775 | 0.774 | 0.754 | 0.819 | 0.787 | ||||
Db4 | 0.99 | 0.104 | 0.113 | 0.109 | 0.111 | 0.103 | 0.111 | 0.114 | |||
0.9 | 0.747 | 0.899 | 0.775 | 0.779 | 0.754 | 0.818 | 0.776 | ||||
sym2 | 0.99 | 0.103 | 0.112 | 0.108 | 0.110 | 0.102 | 0.109 | 0.112 | |||
0.9 | 0.737 | 0.898 | 0.771 | 0.771 | 0.751 | 0.818 | 0.785 | ||||
sym4 | 0.99 | 0.107 | 0.115 | 0.112 | 0.113 | 0.108 | 0.114 | 0.114 | |||
0.9 | 0.747 | 0.900 | 0.765 | 0.761 | 0.756 | 0.812 | 0.768 | ||||
0.8 | Haar | 0.99 | 0.102 | 0.111 | 0.110 | 0.112 | 0.103 | 0.112 | 0.114 | ||
0.9 | 0.839 | 0.927 | 0.746 | 0.749 | 0.718 | 0.806 | 0.778 | ||||
Db2 | 0.99 | 0.104 | 0.112 | 0.110 | 0.112 | 0.107 | 0.113 | 0.112 | |||
0.9 | 0.847 | 0.928 | 0.751 | 0.752 | 0.730 | 0.814 | 0.782 | ||||
Db4 | 0.99 | 0.103 | 0.111 | 0.110 | 0.111 | 0.105 | 0.113 | 0.114 | |||
0.9 | 0.854 | 0.928 | 0.773 | 0.776 | 0.745 | 0.829 | 0.793 | ||||
sym2 | 0.99 | 0.102 | 0.112 | 0.112 | 0.114 | 0.104 | 0.114 | 0.118 | |||
0.9 | 0.845 | 0.927 | 0.753 | 0.754 | 0.724 | 0.814 | 0.786 | ||||
sym4 | 0.99 | 0.103 | 0.110 | 0.108 | 0.110 | 0.106 | 0.110 | 0.112 | |||
0.9 | 0.858 | 0.930 | 0.763 | 0.759 | 0.754 | 0.819 | 0.779 |
T | Wavelet | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | −0.8 | Haar | 0.99 | 0.058 | 0.055 | 0.057 | 0.057 | 0.057 | 0.058 | 0.057 | |
0.9 | 0.400 | 0.026 | 0.162 | 0.163 | 0.161 | 0.229 | 0.182 | ||||
Db2 | 0.99 | 0.060 | 0.053 | 0.057 | 0.058 | 0.058 | 0.058 | 0.058 | |||
0.9 | 0.411 | 0.024 | 0.161 | 0.161 | 0.160 | 0.229 | 0.184 | ||||
Db4 | 0.99 | 0.060 | 0.054 | 0.055 | 0.055 | 0.055 | 0.057 | 0.056 | |||
0.9 | 0.405 | 0.024 | 0.159 | 0.162 | 0.158 | 0.229 | 0.184 | ||||
sym2 | 0.99 | 0.058 | 0.054 | 0.056 | 0.056 | 0.055 | 0.056 | 0.056 | |||
0.9 | 0.401 | 0.024 | 0.160 | 0.161 | 0.159 | 0.225 | 0.180 | ||||
sym4 | 0.99 | 0.057 | 0.053 | 0.056 | 0.056 | 0.057 | 0.058 | 0.057 | |||
0.9 | 0.407 | 0.024 | 0.165 | 0.164 | 0.165 | 0.233 | 0.186 | ||||
0 | Haar | 0.99 | 0.061 | 0.061 | 0.059 | 0.059 | 0.058 | 0.060 | 0.061 | ||
0.9 | 0.646 | 0.805 | 0.611 | 0.613 | 0.595 | 0.648 | 0.648 | ||||
Db2 | 0.99 | 0.060 | 0.061 | 0.061 | 0.061 | 0.061 | 0.061 | 0.062 | |||
0.9 | 0.640 | 0.800 | 0.612 | 0.616 | 0.599 | 0.649 | 0.646 | ||||
Db4 | 0.99 | 0.059 | 0.060 | 0.059 | 0.059 | 0.058 | 0.060 | 0.060 | |||
0.9 | 0.648 | 0.804 | 0.627 | 0.628 | 0.613 | 0.662 | 0.636 | ||||
sym2 | 0.99 | 0.061 | 0.062 | 0.060 | 0.061 | 0.059 | 0.061 | 0.060 | |||
0.9 | 0.644 | 0.804 | 0.611 | 0.616 | 0.597 | 0.650 | 0.644 | ||||
sym4 | 0.99 | 0.060 | 0.060 | 0.059 | 0.059 | 0.059 | 0.060 | 0.060 | |||
0.9 | 0.650 | 0.802 | 0.617 | 0.614 | 0.613 | 0.652 | 0.631 | ||||
0.8 | Haar | 0.99 | 0.059 | 0.059 | 0.058 | 0.058 | 0.058 | 0.059 | 0.058 | ||
0.9 | 0.670 | 0.672 | 0.365 | 0.373 | 0.345 | 0.430 | 0.476 | ||||
Db2 | 0.99 | 0.060 | 0.060 | 0.058 | 0.059 | 0.058 | 0.060 | 0.060 | |||
0.9 | 0.676 | 0.667 | 0.398 | 0.407 | 0.381 | 0.471 | 0.515 | ||||
Db4 | 0.99 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.059 | 0.060 | |||
0.9 | 0.679 | 0.665 | 0.446 | 0.459 | 0.423 | 0.517 | 0.552 | ||||
sym2 | 0.99 | 0.059 | 0.058 | 0.054 | 0.055 | 0.053 | 0.055 | 0.057 | |||
0.9 | 0.678 | 0.668 | 0.391 | 0.401 | 0.374 | 0.463 | 0.513 | ||||
sym4 | 0.99 | 0.060 | 0.060 | 0.058 | 0.059 | 0.058 | 0.059 | 0.059 | |||
0.9 | 0.678 | 0.675 | 0.452 | 0.454 | 0.444 | 0.510 | 0.531 | ||||
1000 | 0 | −0.8 | Haar | 0.99 | 0.621 | 0.699 | 0.650 | 0.654 | 0.625 | 0.677 | 0.675 |
0.9 | 1.000 | 1.000 | 0.978 | 0.979 | 0.973 | 1.000 | 0.999 | ||||
Db2 | 0.99 | 0.626 | 0.696 | 0.650 | 0.652 | 0.629 | 0.680 | 0.674 | |||
0.9 | 1.000 | 0.999 | 0.977 | 0.977 | 0.973 | 1.000 | 0.999 | ||||
Db4 | 0.99 | 0.627 | 0.703 | 0.650 | 0.647 | 0.631 | 0.683 | 0.677 | |||
0.9 | 1.000 | 1.000 | 0.974 | 0.971 | 0.972 | 1.000 | 0.999 | ||||
sym2 | 0.99 | 0.622 | 0.697 | 0.645 | 0.645 | 0.620 | 0.676 | 0.670 | |||
0.9 | 1.000 | 0.999 | 0.977 | 0.977 | 0.972 | 1.000 | 0.999 | ||||
sym4 | 0.99 | 0.626 | 0.699 | 0.641 | 0.645 | 0.623 | 0.671 | 0.664 | |||
0.9 | 1.000 | 1.000 | 0.976 | 0.976 | 0.972 | 1.000 | 0.999 | ||||
0 | Haar | 0.99 | 0.523 | 0.704 | 0.707 | 0.711 | 0.680 | 0.711 | 0.711 | ||
0.9 | 1.000 | 1.000 | 0.999 | 0.998 | 0.999 | 1.000 | 0.999 | ||||
Db2 | 0.99 | 0.526 | 0.707 | 0.707 | 0.707 | 0.684 | 0.709 | 0.707 | |||
0.9 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 1.000 | 0.999 | ||||
Db4 | 0.99 | 0.528 | 0.711 | 0.712 | 0.718 | 0.686 | 0.715 | 0.717 | |||
0.9 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 1.000 | 0.999 | ||||
sym2 | 0.99 | 0.523 | 0.711 | 0.711 | 0.712 | 0.682 | 0.714 | 0.712 | |||
0.9 | 1.000 | 1.000 | 0.999 | 0.998 | 0.999 | 1.000 | 0.999 | ||||
sym4 | 0.99 | 0.533 | 0.716 | 0.714 | 0.714 | 0.690 | 0.717 | 0.715 | |||
0.9 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 1.000 | 0.999 | ||||
0.8 | Haar | 0.99 | 0.527 | 0.703 | 0.705 | 0.707 | 0.679 | 0.708 | 0.708 | ||
0.9 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 1.000 | 0.999 | ||||
Db2 | 0.99 | 0.524 | 0.704 | 0.701 | 0.703 | 0.674 | 0.704 | 0.704 | |||
0.9 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 1.000 | 0.999 | ||||
Db4 | 0.99 | 0.519 | 0.697 | 0.689 | 0.695 | 0.665 | 0.694 | 0.697 | |||
0.9 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 1.000 | 0.999 | ||||
sym2 | 0.99 | 0.522 | 0.709 | 0.706 | 0.710 | 0.678 | 0.709 | 0.711 | |||
0.9 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 1.000 | 0.999 | ||||
sym4 | 0.99 | 0.525 | 0.702 | 0.694 | 0.694 | 0.668 | 0.696 | 0.696 | |||
0.9 | 1.000 | 1.000 | 0.999 | 0.998 | 0.999 | 1.000 | 0.999 |
T | Wavelet | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1000 | 1 | −0.8 | Haar | 0.99 | 0.391 | 0.447 | 0.454 | 0.456 | 0.438 | 0.474 | 0.471 |
0.9 | 0.551 | 0.429 | 0.248 | 0.255 | 0.238 | 0.433 | 0.413 | ||||
Db2 | 0.99 | 0.387 | 0.444 | 0.455 | 0.457 | 0.436 | 0.473 | 0.469 | |||
0.9 | 0.554 | 0.429 | 0.245 | 0.248 | 0.238 | 0.434 | 0.414 | ||||
Db4 | 0.99 | 0.393 | 0.448 | 0.455 | 0.454 | 0.439 | 0.477 | 0.472 | |||
0.9 | 0.554 | 0.430 | 0.250 | 0.266 | 0.238 | 0.435 | 0.416 | ||||
sym2 | 0.99 | 0.397 | 0.455 | 0.461 | 0.460 | 0.443 | 0.479 | 0.474 | |||
0.9 | 0.557 | 0.437 | 0.246 | 0.249 | 0.240 | 0.436 | 0.416 | ||||
sym4 | 0.99 | 0.395 | 0.452 | 0.456 | 0.458 | 0.440 | 0.474 | 0.467 | |||
0.9 | 0.556 | 0.435 | 0.254 | 0.264 | 0.242 | 0.437 | 0.416 | ||||
0 | Haar | 0.99 | 0.514 | 0.698 | 0.694 | 0.694 | 0.668 | 0.697 | 0.694 | ||
0.9 | 0.950 | 1.000 | 0.948 | 0.948 | 0.942 | 0.982 | 0.972 | ||||
Db2 | 0.99 | 0.521 | 0.702 | 0.699 | 0.699 | 0.673 | 0.703 | 0.699 | |||
0.9 | 0.954 | 0.999 | 0.951 | 0.950 | 0.945 | 0.983 | 0.974 | ||||
Db4 | 0.99 | 0.519 | 0.694 | 0.697 | 0.699 | 0.670 | 0.701 | 0.697 | |||
0.9 | 0.953 | 0.999 | 0.953 | 0.954 | 0.945 | 0.983 | 0.973 | ||||
sym2 | 0.99 | 0.518 | 0.690 | 0.691 | 0.696 | 0.666 | 0.695 | 0.695 | |||
0.9 | 0.952 | 0.999 | 0.948 | 0.948 | 0.942 | 0.982 | 0.972 | ||||
sym4 | 0.99 | 0.516 | 0.693 | 0.692 | 0.695 | 0.668 | 0.695 | 0.694 | |||
0.9 | 0.953 | 1.000 | 0.950 | 0.951 | 0.945 | 0.983 | 0.973 | ||||
0.8 | Haar | 0.99 | 0.529 | 0.699 | 0.704 | 0.706 | 0.673 | 0.707 | 0.706 | ||
0.9 | 0.998 | 1.000 | 0.993 | 0.992 | 0.991 | 0.999 | 0.998 | ||||
Db2 | 0.99 | 0.526 | 0.697 | 0.696 | 0.697 | 0.667 | 0.700 | 0.700 | |||
0.9 | 0.998 | 1.000 | 0.992 | 0.992 | 0.991 | 0.999 | 0.998 | ||||
Db4 | 0.99 | 0.530 | 0.699 | 0.694 | 0.697 | 0.665 | 0.698 | 0.699 | |||
0.9 | 0.998 | 1.000 | 0.994 | 0.994 | 0.992 | 0.999 | 0.998 | ||||
sym2 | 0.99 | 0.526 | 0.698 | 0.696 | 0.701 | 0.669 | 0.700 | 0.702 | |||
0.9 | 0.998 | 1.000 | 0.993 | 0.992 | 0.991 | 0.999 | 0.998 | ||||
sym4 | 0.99 | 0.529 | 0.695 | 0.689 | 0.689 | 0.665 | 0.691 | 0.690 | |||
0.9 | 0.998 | 1.000 | 0.993 | 0.993 | 0.993 | 0.999 | 0.998 | ||||
−0.8 | Haar | 0.99 | 0.246 | 0.255 | 0.218 | 0.220 | 0.215 | 0.234 | 0.228 | ||
0.9 | 0.796 | 0.607 | 0.261 | 0.264 | 0.257 | 0.549 | 0.483 | ||||
Db2 | 0.99 | 0.242 | 0.250 | 0.213 | 0.214 | 0.211 | 0.231 | 0.224 | |||
0.9 | 0.793 | 0.604 | 0.257 | 0.259 | 0.255 | 0.546 | 0.479 | ||||
Db4 | 0.99 | 0.240 | 0.256 | 0.214 | 0.215 | 0.212 | 0.232 | 0.225 | |||
0.9 | 0.792 | 0.609 | 0.257 | 0.267 | 0.253 | 0.543 | 0.478 | ||||
sym2 | 0.99 | 0.235 | 0.248 | 0.208 | 0.210 | 0.207 | 0.225 | 0.221 | |||
0.9 | 0.793 | 0.599 | 0.255 | 0.257 | 0.253 | 0.542 | 0.475 | ||||
sym4 | 0.99 | 0.238 | 0.256 | 0.218 | 0.218 | 0.214 | 0.235 | 0.228 | |||
0.9 | 0.794 | 0.613 | 0.261 | 0.263 | 0.258 | 0.550 | 0.485 | ||||
0 | Haar | 0.99 | 0.269 | 0.302 | 0.291 | 0.293 | 0.286 | 0.293 | 0.293 | ||
0.9 | 0.997 | 1.000 | 0.941 | 0.942 | 0.940 | 0.992 | 0.968 | ||||
Db2 | 0.99 | 0.260 | 0.293 | 0.278 | 0.281 | 0.274 | 0.280 | 0.282 | |||
0.9 | 0.997 | 1.000 | 0.938 | 0.938 | 0.937 | 0.991 | 0.966 | ||||
Db4 | 0.99 | 0.266 | 0.292 | 0.280 | 0.283 | 0.276 | 0.281 | 0.283 | |||
0.9 | 0.998 | 1.000 | 0.943 | 0.945 | 0.940 | 0.991 | 0.968 | ||||
sym2 | 0.99 | 0.262 | 0.292 | 0.281 | 0.281 | 0.275 | 0.283 | 0.283 | |||
0.9 | 0.998 | 1.000 | 0.938 | 0.938 | 0.937 | 0.992 | 0.967 | ||||
sym4 | 0.99 | 0.259 | 0.290 | 0.275 | 0.278 | 0.269 | 0.277 | 0.277 | |||
0.9 | 0.997 | 1.000 | 0.941 | 0.941 | 0.939 | 0.992 | 0.967 | ||||
0.8 | Haar | 0.99 | 0.267 | 0.292 | 0.281 | 0.285 | 0.276 | 0.283 | 0.284 | ||
0.9 | 0.999 | 1.000 | 0.970 | 0.970 | 0.970 | 0.998 | 0.987 | ||||
Db2 | 0.99 | 0.266 | 0.289 | 0.280 | 0.280 | 0.273 | 0.283 | 0.283 | |||
0.9 | 0.999 | 1.000 | 0.971 | 0.970 | 0.971 | 0.998 | 0.988 | ||||
Db4 | 0.99 | 0.262 | 0.285 | 0.277 | 0.279 | 0.271 | 0.279 | 0.282 | |||
0.9 | 0.999 | 1.000 | 0.971 | 0.972 | 0.970 | 0.998 | 0.989 | ||||
sym2 | 0.99 | 0.260 | 0.281 | 0.275 | 0.279 | 0.268 | 0.277 | 0.278 | |||
0.9 | 0.999 | 1.000 | 0.971 | 0.970 | 0.970 | 0.998 | 0.989 | ||||
sym4 | 0.99 | 0.261 | 0.283 | 0.271 | 0.273 | 0.268 | 0.275 | 0.274 | |||
0.9 | 1.000 | 1.000 | 0.972 | 0.971 | 0.971 | 0.998 | 0.987 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eroğlu, B.A.; Soybilgen, B. On the Performance of Wavelet Based Unit Root Tests. J. Risk Financial Manag. 2018, 11, 47. https://doi.org/10.3390/jrfm11030047
Eroğlu BA, Soybilgen B. On the Performance of Wavelet Based Unit Root Tests. Journal of Risk and Financial Management. 2018; 11(3):47. https://doi.org/10.3390/jrfm11030047
Chicago/Turabian StyleEroğlu, Burak Alparslan, and Barış Soybilgen. 2018. "On the Performance of Wavelet Based Unit Root Tests" Journal of Risk and Financial Management 11, no. 3: 47. https://doi.org/10.3390/jrfm11030047
APA StyleEroğlu, B. A., & Soybilgen, B. (2018). On the Performance of Wavelet Based Unit Root Tests. Journal of Risk and Financial Management, 11(3), 47. https://doi.org/10.3390/jrfm11030047