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Abstract: In this work we study a variant of the GARCH model when we consider the arrival of
heterogeneous information in high-frequency data. This model is known as HARCH(n). We modify
the HARCH(n) model when taking into consideration some market components that we consider
important to the modeling process. This model, called parsimonious HARCH(m,p), takes into
account the heterogeneous information present in the financial market and the long memory of
volatility. Some theoretical properties of this model are studied. We used maximum likelihood and
Griddy-Gibbs sampling to estimate the parameters of the proposed model and apply it to model the
Euro-Dollar exchange rate series.

Keywords: GARCH model; HARCH model; PHARCH model; Griddy-Gibs; Euro-Dollar

1. Introduction

High frequency data are those measured in small time intervals. This kind of data is important to
study the micro structure of financial markets and also because their use is becoming feasible due to
the increase of computational power and data storage.

Perhaps the most popular model used to estimate the volatility in a financial time series is the
GARCH(1,1) model; see Engle (1982), Bollerslev (1986):

rt = σtεt, εt ∼ iid (0, 1) ,
σ2

t = α0 + α1r2
t−1 + β1σ2

t−1,
(1)

with α0 > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1.
When we use high frequency data in conjunction with GARCH models, these need to be modified

to incorporate the financial market micro structure. For example, we need to incorporate heterogeneous
characteristics that appear when there are many traders working in a financial market trading with
different time horizons.

The HARCH(n) model was introduced by Müller et al. (1997) to try to solve this problem. In fact,
this model incorporates heterogeneous characteristics of high frequency financial time series and it is
given by

rt = σtεt,

σ2
t = c0 + ∑n

j=1 cj

(
∑

j
i=1 rt−i

)2
,

(2)

where c0 > 0, cn > 0, cj ≥ 0 ∀j = 1, . . . , n− 1 and εt are identically and independent distributed (i.i.d.)
random variables with zero expectation and unit variance.

However, this model has a high computational cost to fit when compared with GARCH models,
due to the long memory of volatility, so the number of parameters to be estimated is usually large.
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We propose a new model known as the parsimonious heterogeneous autoregressive conditional
heteroscedastic model, in short-form PHARCH, as an extension of the HARCH model. Specifically,
we call a PHARCH(m,p), with aggregations of different sizes a1, . . . , am, where m is the number of the
market components, the model given by

rt = σtεt,
σ2

t = C0 + C1 (rt−1 + . . . + rt−a1)
2 + . . .+

+Cm (rt−1 + . . . + rt−am)
2 + b1σ2

t−1 + . . . + bpσ2
t−p,

(3)

where εt ∼ i.i.d. (0, 1), C0 > 0, Cj ≥ 0, ∀j = 1, . . . , m− 1, Cm > 0, bj ≥ 0, j = 1, . . . , p.
HARCH models are important because they take account the natural behavior of the traders

in the market. However they have some problems, mainly because they need to include several
aggregations, so the number of parameters to estimate is large, because of the large memory feature
of financial time series. Parsimonious HARCH includes only the most important aggregations in its
structure, which makes the model more realistic. We can see some simulations in Figure 1, where the
characteristics of clustering and volatility are better represented in PHARCH processes than in ARCH
or HARCH processes.
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Figure 1. Simulations of ARCH, HARCH and PHARCH processes.

The organization of the paper is as follows. In Section 2 we provide some background information
on Markov chains and give the necessary and sufficient conditions for the PHARCH model to be
stationary. In Section 3 we obtain forecasts for the proposed model, and in Section 4 we introduce the
data that will be used for illustrative purposes. The actual application is given in Section 5, and we
close the paper with some conclusions in Section 6.

2. Background

In this section we provide briefly some background on Markov chains and results on stationarity
of PHARCH models.

2.1. Markov Chains

Suppose that X = {Xn, n ∈ Z+}, Z+ := {0, 1, 2, . . .} are random variables defined over
(Ω,F ,B(Ω)), and assume that X is a Markov chain with transition probability P(x, A), x ∈ Ω, A ⊂ Ω.
Then we have the following definitions:
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1. A function f : Ω → IR is called the smallest semi-continuous function if lim infy→x f (y) ≥
f (x), x ∈ Ω. If P(·, A) is the smallest semi-continuous function for any open set A ∈ B(Ω),
we say that (the chain) X is a weak Feller chain.

2. A chain X is called ϕ-irreducible if there exists a measure ϕ on B(Ω) such that, for all x, whenever
ϕ(A) > 0, we have,

U(x, A) = ∑∞
n=1 Pn(x, A) > 0.

3. The measure ψ is called maximal with respect to ϕ, and we write ψ > ϕ, if ψ(A) = 0 implies
ϕ(A) = 0, for all A ∈ B(Ω). If X is ϕ-irreducible, then there exists a probability measure ψ,
maximal, such that X is ψ-irreducible.

4. Let d = {d(n)} a distribution or a probability measure on Z+, and consider the Markov chain Xd
with transition kernel

Kd(x, A) :=
∞

∑
n=0

Pn(x, A)d(n).

If there exits a transition kernel T satisfying

Kd(x, A) ≥ T(x, A), x ∈ Ω, A ∈ B(Ω),

then T is called the continuous component of Kd.
5. If X is a Markov chain for which there exits a (sample) distribution d such that Kd has a continuous

component T, with T(x, Ω) > 0, ∀x, then X is called a T-chain.
6. A measure π over B(Ω), σ-finite, with the property

π(A) =
∫

Ω
π(dx)P(x, A), A ∈ B(Ω),

is called an invariant measure.

The following two lemmas will be useful. See Meyn and Tweedie (1996) for the proofs and further
details. We denote by IA(·) the indicator function of A.

Lemma 1. Suppose that X is a weak Feller chain. Let C ∈ B(Ω) be a compact set and V a positive function. If

V (Xn)− E [V (Xn+1) |Xn] ≥ 0, Xn ∈ Cc,

then there exists an invariant measure, finite on compact sets of Ω.

Lemma 2. Suppose that X is a weak Feller chain. Let C ∈ B(Ω) be a compact set, and V a positive function
that is finite at some x0 ∈ Ω. If

V (Xn)− E [V (Xn+1) |Xn] ≥ 1− bIC(Xn), Xn ∈ Ω,

with b a constant, b < ∞, then there exists an invariant probability measure π on B(Ω).

Lemma 3. Suppose that X is a ψ-irreducible aperiodic chain. Then the following conditions are equivalent:

1. There exists a function f : Ω → [1, ∞), a set C ∈ B(Ω), a constant b < ∞ and a function V : Ω →
[0, ∞), such that

V (Xn)− E [V (Xn+1) |Xn] ≥ f (Xn)− bIC(Xn), Xn ∈ Ω.
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2. The chain is positive recurrent with invariant probability measure π, and π ( f ) < ∞.

2.2. Stationarity of PHARCH(m,p) Models

We first give a necessary condition for Model (3) to be stationary. We know that
E
(
rt−irt−j

)
= 0, ∀i 6= j, and if rt is stationary, we must have

E
(

r2
t

)
= E

(
σ2

t

)
= C0 + E

(
r2

t

) m

∑
i=1

aiCi + E
(

σ2
t

) p

∑
i=1

bi,

so

E
[
r2

t

]
=

C0

1−
(

∑m
i=1 aiCi + ∑

p
i=1 bi

) .

Therefore,

∑m
i=1 aiCi + ∑

p
i=1 bi < 1. (4)

To prove a sufficient condition it will be necessary to represent the PHARCH(m,p) as a Markov
process. We use the definitions given in the previous section, so the process

Xt =
(
rt−1, . . . , rt−am+1, σt, . . . , σt−p+1

)
, (5)

whose elements follow Equation (3), is also a T-chain.

The proofs of the following results are based on Dacorogna et al. (1996), and they are given in the
Appendix A.

Proposition 1. The Markov Chain Xt that represents a PHARCH(m,p) process is a T-chain.

Proposition 2. The Markov Chain that represents a PHARCH(m,p) process is recurrent with an invariant
probability measure (stationary distribution), and its second moments are finite if the condition given in (4)
is satisfied.

Note that if εt ∼ t(v) (a Student’s t distribution with ν degrees of freedom) in (3), then the
necessary and sufficient condition becomes

m

∑
i=1

v
v− 2

aiCi +
p

∑
i=1

bi < 1, for v > 2.

3. Forecasting

In this section we make some considerations about forecasting and validation of the proposed
model. Usually two data bases are used for testing tha forecasting ability of a model: one (in-sample),
used for estimation, and the other (out-of-sample) used for comparing forecasts with true values.
There is an extra complication in the case of volatility models: there is no unique definition of volatility.
Andersen and Bollerslev (1998) show that if wrong estimates of volatility are used, evaluation of
forecasting accuracy is compromised. We could use the realized volatility as a basis for comparison, or
use some trading system.

We could, for example, have a model for hourly returns and use the realized volatility computed
from 15 min returns for comparisons. In general, we can compute vh,t = ∑ah

i=1 r2
t−i, where ah is the

aggregation factor (4, in the case of 15 min returns). Then use some measure based on sh = ṽh,t − vh,t,
for example, mean squared error, where ṽh,t is the volatility predicted by the proposed model. See
Taylor and Xu (1997), for example.
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Now consider Model (3). The forecast of volatility at origin t and horizon ` is given by

σ̂2
t (l)= E(σ2

t+l |Xt)

= E(C0 + C1
(
rt+l−1 + . . . + rt+l−a1

)2
+ . . .+

+Cm (rt+l−1 + . . . + rt+l−am)
2 + b1σ2

t+l−1 + . . . + bpσ2
t+l−p|Xt),

where Xt = (rt, σt, rt−1, σt−1, ...), for l = 1, 2, . . .
Since a0 = 1 < a1 < a2 < . . . < am < ∞, then we have three cases:

(i) If l = 1,

σ̂2
t (l) = E(C0 + C1

(
rt+l−1 + . . . + rt+l−a1

)2
+ . . .+

+Cs (rt+l−1 + . . . + rt+l−as)
2 + . . .+

+Cm (rt+l−1 + . . . + rt+l−am)
2 +

+b1σ2
t+l−1 + . . . + bpσ2

t+l−p/Xt)

= C0 + C1
(
rt + . . . + rt+1−a1

)2
+ . . .+

+Cs (rt + . . . + rt+1−as)
2 + . . .+

+Cm (rt + . . . + rt+1−am)
2 + b1σ2

t + . . . + bpσ2
t+1−p.

(ii) If l is such that as−1 < l < as, s = 1, 2, . . . , m, then we have,

σ̂2
t (l) = E(C0 + C1

(
rt+l−1 + . . . + rt+l−a1

)2
+ . . .+

+Cs (rt+l−1 + . . . + rt+l−as)
2 + . . .+

+Cm (rt+l−1 + . . . + rt+l−am)
2 +

+b1σ2
t+l−1 + . . . + bpσ2

t+l−p/Xt)

= E(C0 + ∑s−1
i=1 Ci

(
∑ai

j=1 rt+l−j

)2
+

+∑m
i=s Ci

(
∑l−1

j=1 rt+l−j

)2
+ ∑m

i=s Ci

(
∑ai

j=l rt+l−j

)2
+

+∑m
i=s Ci

(
∑l−1

j=1 rt+l−j

) (
∑ai

j=l rt+l−j

)
+

+b1σ2
t+l−1 + . . . + bpσ2

t+l−p/Xt)

= E(C0 + ∑s−1
i=1 Ci

(
∑ai

j=1 σt+l−jεt+l−j

)2
+

+∑m
i=s Ci

(
∑l−1

j=1 σt+l−jεt+l−j

)2
+

+∑m
i=s Ci

(
∑ai

j=l rt+l−j

)2
+

+∑m
i=s Ci

(
∑l−1

j=1 σt+l−jεt+l−j

) (
∑ai

j=l rt+l−j

)
+

+b1σ2
t+l−1 + . . . + bpσ2

t+l−p/Xt),

and given the independence of εt and E(εt) = 0, we have E
(
rt−irt−j

)
= 0, ∀i 6= j; hence,

σ̂2
t (l) = E(C0 + ∑s−1

i=1 Ci ∑ai
j=1 σ2

t+l−j + ∑m
i=s Ci ∑l−1

j=1 σ2
t+l−j+

+∑m
i=s Ci

(
∑ai

j=l rt+l−j

)2
+ b1σ2

t+l−1 + . . . + bpσ2
t+l−p/Xt)

= C0 + ∑s−1
i=1 Ci ∑ai

j=1 σ̂2
t+l−j + ∑m

i=s Ci ∑l−1
j=1 σ̂2

t+l−j+

+∑m
i=s Ci

(
∑ai

j=l rt+l−j

)2
+ b1σ̃2

t+l−1 + . . . + bpσ̃2
t+l−p,

where, for i = 1, . . . , p, we have that σ̃2
t+l−i =

{
σ2

t+l−i, i ≥ l
σ̂2

t+l−i, i < l

(iii) If l is such that l > am, s = 1, 2, . . . , m, then it follows
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σ̂2
t (l)= E

(
C0 +

m

∑
i=1

Ci

ai

∑
j=1

σ2
t+l−j + b1σ2

t+l−1 + . . . + bpσ2
t+l−p/Xt

)

= C0 +
m

∑
i=1

Ci

ai

∑
j=1

σ̂2
t+l−j + b1σ̃2

t+l−1 + . . . + bpσ̃2
t+l−p,

where for i = 1, . . . , p, we have σ̃2
t+l−i =

{
σ2

t+l−i, i ≥ l
σ̂2

t+l−i, i < l

4. High Frequency Data

In this section we further elaborate on high frequency data and introduce the series that
will be analyzed later. High frequency data are very important in the financial environment, mainly
because there exist large movements in short intervals of time. This aspect represents an interesting
opportunity for trading. Furthermore, it is well known that volatilities in different frequencies have
significant cross-correlation. We can even say that coarse volatility predicts fine volatility better than
the inverse, as shown in Dacorogna et al. (2001).

As an example, take the tick by tick foreign exchange (FX) time series Euro-Dollar, from January
First 1999 to December 31, 2002. Returns are calculated using bid and ask prices, as

rt = ln
((

pbid
t + pask

t

)
/2
)
− ln

((
pbid

t−1 + pask
t−1

)
/2
)

. (6)

We discard Saturdays and Sundays, and we replace holidays with the means of the last ten
observations of the returns for each respective hour and day. After cleaning the data (see Dacorogna
et al. (2001), for details) we will consider equally spaced returns, with sampling interval ∆t = 15 min.
This seems to be adequate, as many studies indicate.

Figure 2 shows Euro-Dollar returns calculated as above. The length of this time series is 95,317.
The figure shows that the absolute returns present a seasonal pattern. This is due to the fact that
physical time does not follow, necessarily, the same pattern as the business time. This is a typical
behavior of a financial time series and we will use a seasonal adjustment procedure similar to that of
Martens et al. (2002). However, we will use absolute returns instead of squared returns; that is, we will
compute the seasonal pattern as

Sd,s,h =
1
s

s

∑
j=1
|(rd,j,h|, (7)

where rd,s,h is the return in the weekday d, week s and hour h, and s is the number of weeks from the
beginning of the series. Therefore, Sd,Ns ,h is the rolling window mean of the absolute returns with the
beginning fixed.

In Figure 3 we have the autocorrelation function of these returns and of squared returns.
The seasonality pattern is no longer present.

FX data has some distinct characteristics, mainly because they are produced twenty four hours
a day, seven days a week. In particular, Euro-Dollar is the most liquid FX in the world. However, there
are periods where the activity is greater or smaller, causing seasonal patterns to occur, as seen above.

Let us analyze some facts about these returns that we will denote simply by rt. We can see
in Figure 4 the histogram fitted with a non-parametric density kernel estimate, using unbiased
cross-validation method to estimate the bandwidth. It shows fat tails and high kurtosis, namely,
121, while its skewness coefficient is −0.079, showing almost symmetry. A normality test (Jarque-Bera)
rejects the hypothesis that these returns are normal.
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Figure 2. Euro-Dollar returns: acf of returns, acf of absolute returns and acf of squared returns.

The seasonally adjusted returns are then given by

r̃t = r̃d,s,h =
rd,s,h

Sd,s,h
. (8)

We may assume for example that the errors of a GARCH model fitted to these returns follow
a Student’s t distribution or a generalized error distribution, which represents better the fat tails of
the distribution.

Often the optimization of the likelihood function can be a very difficult task, due mainly to the
flat behavior of likelihood function, as can be seen in Zumbach (2000). Bayesian methods are an
alternative, and in the next section we will use the Griddy-Gibbs sampling to estimate the parameters
of a PHARCH model.

Figure 4 also shows that the Euro-Dollar series has some clusters of volatility. This is a typical
behavior of financial time series. A problem is that we do not know how many clusters there are
and what their sizes are. The reason for this is that the information arriving is different for each
sampling frequency.

We can look these clusters as market components and they depend on the heterogeneity of the
market. These market components are considered in our PHARCH model, as seen in Equation (3).
Differently from GARCH-type models, PHARCH models have a variance equation with returns over
intervals of different sizes. Therefore PHARCH models take into account the sign of the returns and
not only their absolute value as GARCH models do. Two subsequent returns with similar sizes in the
same direction will cause a higher impact on the variance than two subsequent returns with similar
sizes but opposite signs.

Now we need to determine the number and the size of the market components for the Euro-Dollar
FX series. Ruilova (2007) proposed some technical rules to determine these market components, and
Dacorogna et al. (2001) proposed some empirical rules.

To help us to determine if the component sizes chosen are correct we can use the impact of
the component.
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We define the impact Ii of the ith component as,

Ii = aiCi, ∀i. (9)

Note that the stationary condition to PHARCH(m) models can be written in terms of these
impacts; namely,

m

∑
i=1

Ii < 1.

We also notice that if we consider the Student’s t distribution with ν degrees of freedom, the
impact should be defined as

Ii =
v

v− 2
aiCi, ∀i ≥ 1. (10)

As remarked above, the number of components in a financial series can vary depending how
the returns are being traded in this market. That is, liquid series can have a structure with more
components than a non-liquid series.

5. Application

Due to the complexity of the proposed model, the likelihod function may be flat in the
neighbourhood of the maxima, so the optimization procedure using traditional procedures may
fail. An alternative is to use Bayesian methods. Some references on the use of Bayesian procedures
for the family of ARCH processes are Geweke (1989), Kleibergen and Dijk (1993), Geweke (1994) and
Bauwens and Lubrano (1998).
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Figure 3. Autocorrelation functions of the Euro-Dollar returns and squared returns after
seasonal adjustment.
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Euro-Dollar Deseasonality Returns
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Figure 4. Euro-Dollar returns, absolute returns, squared returns and histogram after taking off
seasonal pattern.

It is well known that when the analytical expressions of the full conditional distributions are
known we can use Gibbs sampling. However, if the conditional distributions are not known, we need
to modify the algorithm or to use another algorithm, such as the Metropolis-Hastings one. Another
alternative to solve this is to use the Griddy-Gibbs sampler of Ritter and Tanner (1992).

Griddy-Gibbs sampling can be used when the joint conditional distribution of at least one
parameter does not have a distribution form known but it has an analytical expression that can
be evaluated on a grid of points. For that, we evaluate the analytical expressions of the joint
conditional distribution function, and by numerical integration we can generate random variables of
this distribution; see Davis and Rabinowitz (1975).

A problem that appears when we use Griddy-Gibbs sampling is to determine a window and
the number of points where we will evaluate numerically the desired function. An inadequate
determination of this grid of points could cause errors in the parameters estimation. In general
it seems suitable to have 50 points in the grid for a good evaluation.

We will use a technique to reduce the variance that is to compute the conditional mean

N

∑
n=1

E
(
θi|θn

1 , . . . , θn
i−1, θn

i+1, . . . , θn
n , y
)

/N,

instead of ∑N
n=1 θn

i /N to estimate E (θi|θ1, θ2, . . . , θi−1, θi+1, . . . , θn, y). Here θn
i denotes the value of the

parameter θi at iteration n.
An important fact is that aggregate returns have, generally, a magnitude greater than

non-aggregate returns, so the components with larger aggregations have smaller values. For this
reason, we can use the impacts defined above to study the contribution of each component to the model.

In order to establish the number of components in the PHARCH model, we will use information
of the financial market behavior based on the behavior of the traders. So, we consider five components,
as seen in the Table 1, corresponding to information arriving at the market at the rate of 15 min, 1 h,
1 day, 1 week and 1 month.
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This means that we need to estimate the parameters of a PHARCH(5) process with aggregations
1, 4, 96, 480 and 1920 as follows.

rt = σtεt

σ2
t = C0 + C1r2

t−1 + C2 (rt−1 + . . . + rt−4)
2 + (11)

+C3 (rt−1 + . . . + rt−96)
2 + C4 (rt−1 + . . . + rt−480)

2 +

+C5 (rt−1 + . . . + rt−1920)
2

where Cj ≥ 0, j = 1, . . . , 5, C0 > 0 , and εt ∼ t (0, 1, v).
The number of parameters to estimate is seven because we considered εt ∼ t (0, 1, v), v > 2.

We use an autoregressive processes to filter the data and to take into account the information given by
the acf function of the returns shown in the Figure 3.

We consider non-informative priors, that is, uniform distributions on the parametric space, as
follows: C0, C1, C2, C3, C4, C5 ∼ U(0, 1) and v ∼ U(3, ct), where U denotes the uniform distribution
and ct is a large number; in particular, we used ct = 50.

Estimates using maximum likelihood (ML) are shown in Table 2, and the corresponding impacts
are shown in Figure 5. The optimizer used to evaluate the impacts was simulated annealing; see
Belisle (1992). Several problems were faced in the process of using ML because in some situations
the optimizer did not converge. Sometimes we can solve this problem, using initial values near to
optimum. But this may not be a normal situation in real cases. So the need for alternative procedures.

As we can see, the impact of the components decreases for larger aggregations. This is a natural
result because intraday traders are those who dominate the market. Another fact is that the weekly
component has a similar impact to the monthly component, meaning that both have similar weight
contributions to predicting volatility. The results show that an impact can be significant even when the
parameter is small. The above estimates will serve as a comparison with Griddy-Gibbs estimates.

In the Griddy–Gibbs sampling we use a moving window: we define a new window in each
iteration as a function of the mean, mode and standard deviation.

Table 1. Component description of PHARCH process for Euro-Dollar.

Component Aggregations of Range of Time DescriptionEuro-Dollar Intervals

Short term,
1 1 15 min intraday traders,

market makers.

Intraday traders
2 4 1 h with few transactions

per day.

3 96 1 day Daily traders.

4 480 1 week Medium term traders.

Long term traders,
5 1920 1 month investors,

derivative traders.
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Table 2. Parameter estimation by maximum likelihood using simulate annealing optimizer.

Parameter Estimates

C0 0.529

C1 0.101

C2 0.0173

C3 0.000374

C4 0.0000415

C5 0.0000105

ν 3.638

C1 C2 C3 C4 C5

0
.0

0
.0

5
0
.1

0
0
.1

5
0
.2

0

Impact of the Components

Figure 5. Impact of the components estimated by maximum likelihood.

Table 3 shows the results of the estimation of a parsimonious HARCH(5) model for the Euro-Dollar,
using this criterion of selection for a moving window for each parameter, where the conditional density
will be computed. The number of points where this density was evaluated was 50.

We used the non conditional and conditional mean in each step of the iteration to calculate
the estimate parameters. As expected, conditional method was faster than non-conditional, but the
difference was very small.

We see that the values are practically the same by both methods (maximum likelihood and
Griddy-Gibbs sampling).

In Figure 6 we can see the convergence of the parameters using Griddy-Gibbs for each iteration
step. We can see the fast convergence of the parameters.
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Figure 6. Convergence of the parameters using Griddy-Gibbs sampler.

Now, we compare HARCH modeling with GARCH modeling. In Figures 7–9 we present a residual
analysis after the fitting of a GARCH model. In Figures 10–12 we have the corresponding graphs for
the PHARCH(5) fitting. We see a slightly better fit of the PHARCH model. If we use the prediction
mean squared error (PMSE) as a criterion for comparison, we obtain the values 15.58 and 15.20, for
GARCH and PHARCH modeling, respectively, using the standardized residuals and 1000 values for
the prediction period.

Table 3. Estimated parameters for the PHARCH(5)model with aggregations 1, 4, 96, 480 and 1920 for
the Euro-Dollar series, using Griddy-Gibbs sampling.

Parameter Non-Conditional Conditional Std. Dev.

C0 0.532 0.532 0.00471

C1 0.102 0.102 0.00321

C2 0.0174 0.0174 0.000709

C3 0.00359 0.000360 0.0000205

C4 0.0000402 0.0000403 0.00000421

C5 0.0000104 0.0000103 0.00000105

ν 3.649 3.649 0.034
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Figure 7. Euro-Dollar residuals, absolute residuals, squared residuals and histogram of the residuals
after fitting a GARCH process.
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Figure 8. Autocorrelation and partial autocorrelation functions of the residuals, absolute residuals and
squared residuals after GARCH fitting.
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Figure 9. QQ-Plot of GARCH Residuals.
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Figure 10. Euro-Dollar residuals, absolute residuals, squared residuals and histogram of the residuals
after fitting a PHARCH process.
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Figure 11. Autocorrelation and partial autocorrelation functions of the residuals, absolute residuals
and squared residuals after PHARCH fitting.
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Figure 12. QQ-plot of PHARCH residuals.

6. Conclusions

PHARCH models are good models for the analysis of high frequency data, since the
financial market agents behave differently, incorporating heterogeneous information to the
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market microstructure. Nevertheless, their use still depends on solving some issues, mainly
computational ones.

One big challenge in the analysis of high frequency data is dealing with large amounts of
observations, and complex models bring computational difficulties, even with the recent technological
breakthroughs in computing technology. Therefore, the first issue here is to develop techniques that
help us to improve the computational algorithms. Maximum likelihood estimation may collapse, as
we have described earlier. Techniques such as genetic algorithms and neural networks are viable
optimization alternatives.

Another possibility is to use Bayesian techniques, such as the Griddy-Gibbs samples that we have
used. The disadvantage of the Griddy-Gibbs sampler lies in its high computational load. From another
viewpoint, more sophisticated volatility models might be developed, taking into account the arrival of
information, for example, a stochastic volatility model or stochastic duration model; or we could adapt
existing models such as CHARN (conditional heteroskedasticity nonlinear autoregressive) models to
heterogeneity of information characteristics. Finally, extensions similar to those proposed to GARCH
models could be studied for HARCH models.

A feature of the HARCH models is that the market components are chosen in a subjective way.
In the analysis of the Euro-Dollar series, we considered five components, with different aggregations.
A different number of components could be proposed, depending of the degree of information one
has. This is clearly a matter for further studies.

One last remark is that the performance of the different estimation methods should be evaluated.
This evaluation could be done using prediction capabilities, for example. Other possibility is calculating
some measure of risk. Volatility models are often established with the purpose of computing the VaR
(value at risk) or other risk measure or for establishing trading strategies. In this context, an evaluation
of the performance of the proposed model and several estimation procedures should be interesting.
A comparison of returns of different trading systems that use a proposed model will be of fundamental
importance. Further details on these aspects can be found in Acar and Satchell (2002), Dunis et al.
(2003), Ghysels and Jasiak (1994) and Park and Irwin (2005).

Other models for high frequency data use the realized volatility as a basis, instead of models such
as ours and models of the ARCH family, which assume that volatility is a letent variable. Among the
former, we mention the autoregressive fractionally integrated moving average (ARFIMA) models,
the heterogeneous autoregressive model of realized volatilidade (HAR–RV) of Corsi (2009) and the
mixed data sampling regression (MIDAS) proposed by Ghysels Santa-Clara and Valkanov (2002).
A comparison of the PHARCH models with HAR and MIDAS would be useful, but due to the length
of the present paper, this will be the object of future research.
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the theory with an application to real data. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partially funded by Fapesp grant 2013/00506-1.
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Appendix A

Proof of Proposition 1. Let Xt following (3) and (5). Assume that the innovations distribution has
a non-zero absolutely continuous component, with a positive density on a Borel set with a non-empty
interior. Examples of this are the normal and Student’s t distribution.

Then Xt can be written as Xt = H(Xt−1, εt), where H is a non-linear continuous function for
each εt fixed. Then, using the Continuous Mapping Theorem we obtain the weak convergence of Xt,
namely, the conditional distribution Xt given Xt−1 = yk converges to the conditional distribution of Xt

given Xt−1 = y if yk → y. So, the Markov Chain Xt that represents the PHARCH(m,p) process is also
a T-chain.
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Proof of Proposition 2. Define the function V as:

V (Xt) :=
am−1

∑
i=1

αir2
t−i + 2

am−2

∑
i=1

am−1

∑
j=i+1

β jrt−irt−j +
p−1

∑
i=0

γiσ
2
t−i.

A simple algebraic computation gives

E
[

am−1

∑
i=1

αir2
t+1−i |Xt

]
= α1σ2

t +
am−2

∑
i=1

αi+1r2
t−i,

E
[

2
am−2

∑
i=1

am−1

∑
j=i+1

β jrt+1−irt+1−j |Xt

]
= 2

am−3

∑
i=1

am−2

∑
j=i+1

β j+1rt−irt−j,

and using (4) we have,

E
[

p−1

∑
i=0

γiσ
2
t+1−i |Xt

]
=γ0

C0 +
m

∑
i=1

Ci

σ2
t +

ai−1

∑
j=1

rt−j

2
+

p

∑
i=1

biσ
2
t+1−i

+

+
p−1

∑
i=1

γiσ
2
t+1−i.

Therefore, taking αam = βam = γp = 0 and a0 = 1 and grouping we have

V (Xt)−E [V (Xt+1) |Xt] =
m

∑
k=1

ak−1

∑
j=ak−1

(
αj − αj+1 − γ0

m

∑
i=k

Ci

)
r2

t−j+

+
m

∑
l=1

al−2

∑
j=1

al−1

∑
k=al−1+j

(
βk − βk+1 − γ0

m

∑
i=l

Ci

)
rt−jrt−k+

+
p−1

∑
i=1

(γi − γi+1 − γ0bi+1) σ2
t−i+

+

(
γ0 − γ1 − γ0b1 − α1 − γ0

m

∑
i=1

Ci

)
σ2

t − γ0C0.

We choose k ∈ Z+, al−1 < k < al , l ∈ {1, . . . , m}, and βk = βk+1 + ∑m
i=l Ci.

If we take αj > β j, for all j, then we have V (Xt) ≥ 0, and we can take γ0 = 1, so

V(Xt)−E [V (Xt+1) |Xt] =
m

∑
k=1

ak−1

∑
j=ak−1

(
αj − αj+1 −

m

∑
i=k

Ci

)
r2

t−j

+
p−1

∑
i=1

(γi − γi+1 − bi+1) σ2
t−i (A1)

+

(
1− γ1 − b1 − α1 −

m

∑
i=1

Ci

)
σ2

t − C0.

Similarly, we can choose k ∈ Z+, al−1 < k < al , l ∈ {1, . . . , m}, αk > αk+1 + ∑m
i=l Ci and

γi > γi+1 + bi+1.
If ∑m

i=1 aiCi + ∑
p
i=1 bi < 1, then we have for the expressions in Equation (A1):

ξi =
(

αi − αi+1 −∑m
j=k Cj

)
> 0, i = 1, . . . , am − 1 and k is chosen such that i ∈ (ak−1, ak);

ξam−1+i = (γi − γi+1 − bi+1) > 0, i = 1, . . . , p− 1; and
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ξam+p−1 =

(
1− γ1 − b1 − α1 −

m

∑
i=1

Ci

)
> 0.

So, V(Xt)−E [V (Xt+1) |Xt] can be as large as we want if Xt ∈ Cc.
Then, using Lemma 1 we have that there exists an invariant measure, finite on compact sets of Ω.
Choosing vmin = min(ξi), for i = 1, . . . , am + p− 1, we have,

V (Xt)−E [V (Xt+1) |Xt] ≥ vmin

am−1

∑
i=1

r2
t−j + vmin

p

∑
i=1

σ2
t−i − C0

≥ 1− (C0 + 1) I
B
(

0,
√

C0+1
vmin

),

where B (c, r) is the ball with center c and radius r.
Therefore, the Markov chain Xt =

(
rt−1, . . . , rt−am+1, σt, . . . , σt−p+1

)
that represents the

PHARCH(m,p) process is recurrent, with an invariant probability measure (stationary distribution).
Now, if we consider f

(
x1, . . . , xam+p−1

)
= x2

1 + . . . + x2
am+p−1, then,

V (Xt)−E [V (Xt+1) |Xt] ≥
vmin

2
f
(
rt−1, . . . , rt−am+1, σt, . . . , σt−p+1

)
+

+ C01
B
(

0,
√

2C0
vmin

).

We conclude, using Lemmas 2 and 3, that the process Xt is a T chain having a stationary
distribution with finite second order moments.
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