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Abstract: In this study, we enhance the dynamic connectedness measures originally introduced
by Diebold and Yilmaz (2012, 2014) with a time-varying parameter vector autoregressive model
(TVP-VAR) which predicates upon a time-varying variance-covariance structure. This framework
allows to capture possible changes in the underlying structure of the data in a more flexible and
robust manner. Specifically, there is neither a need to arbitrarily set the rolling-window size nor a loss
of observations in the calculation of the dynamic measures of connectedness, as no rolling-window
analysis is involved. Given that the proposed framework rests on multivariate Kalman filters, it is less
sensitive to outliers. Furthermore, we emphasise the merits of this approach by conducting Monte
Carlo simulations. We put our framework into practice by investigating dynamic connectedness
measures of the four most traded foreign exchange rates, comparing the TVP-VAR results to those
obtained from three different rolling-window settings. Finally, we propose uncertainty measures for
both TVP-VAR-based and rolling-window VAR-based dynamic connectedness measures.

Keywords: TVP-VAR; dynamic connectedness; Monte Carlo simulation

JEL Classification: C32; C50; F31; G15

1. Introduction

Investigating the propagation of financial crises into the economy has been at the epicenter of
academic research in recent years, especially in the aftermath of the global financial crisis of 2007-2009.
On general principles, crises are unpredictable; however, transmission mechanisms relating to financial
turmoil do share certain similarities (Reinhart and Rogoff 2008). In turn, researchers have developed
elaborate methods aiming to capture transmission mechanisms that relate to such events.

A notable empirical method is the one by Diebold and Yilmaz (2009, 2012, 2014) who introduced
a variety of connectedness measures based on the notion of the forecast error variance decomposition
that was derived from the rolling-window VARs. In the present study, we provide an extension
to the Diebold and Yilmaz (2014) connectedness approach by applying a time-varying parameter
vector autoregressive model (TVP-VAR) with a time-varying covariance structure, as opposed to the
constant-parameter rolling-window VAR approach.!

Although there is in fact a wealth of literature regarding TVP-VAR models (see, inter alia, Primiceri 2005; Cogley and
Sargent 2005; Koop and Korobilis 2013, 2014; Del Negro and Primiceri 2015; Petrova 2019) we do not focus on the TVP-VAR
framework specifically, but we are rather concerned with utilising the TVP-VAR framework in order to improve the accuracy
of the dynamic connectedness measures.
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The Diebold and Yilmaz (2009, 2012, 2014) VAR-based connectedness approach has already attracted
significant attention by the existing economic and financial literature, and has been applied to issues
relating to the stock market interdependencies, volatility spillovers, business cycle spillovers, as well as
bond yield spillovers (see, inter alia, Alter and Beyer 2014; Antonakakis 2012; Awartani and Maghyereh
2013; Bekaert et al. 2014; Bubék et al. 2011; Diebold and Yilmaz 2015; McMillan and Speight 2010). At the
same time, alternative measures of connectedness have been provided by Barunik et al. (2016, 2017),
Barunik and K¥ehlik (2018), and Geraci and Gnabo (2018).

It would be instructive at this point to note that the Diebold and Yilmaz (2009, 2012, 2014)
approach facilitates the measurement of interdependence across a network of variables, thus providing
a framework for analysing both an idiosyncratic influence (i.e., own) and influence by others
(i.e., network). the ensuing measures predicate upon the estimation of the forecast error variance
decompositions that derive from a VAR model. In addition, these measures allow to further classify
interdependence and provide granulated information, considering the fact that results can be obtained
for (i) aggregate, (ii) directional, as well as (iii) net interdependence. More particularly, as far
as net interdependence is concerned, this measure allows for distinguishing between net shock
transmitters and net shock receivers, which in turn helps attain a better understanding of the
underlying dynamics and facilitates the formulation of policy implications. As a final step, the dynamic
nature of interconnectedness is typically being investigated through the use of the rolling-windows
approach, whereby the researcher begins by deciding upon the relevant window length and forecast
horizon. What is more, it should be noted that in their 2009 study, Diebold and Yilmaz investigated
the interdependence across the variables of interest by utilising a Cholesky-type VAR framework (i.e.,
where the ordering of the variables affects outcomes), whereas in their 2012 study, they utilised a
generalised VAR approach (i.e., where the ordering of the variables is irrelevant). Finally, in their 2014
study, Diebold and Yilmaz emphasized the concept of connectedness and offered ways to measure
connectedness based on their previous relevant research.

This extension improves the existing method in four ways: (i) potential changes in the values of
the parameters can be more accurately determined, (ii) outliers do not affect outcomes, (iii) there is no
need to set an arbitrary rolling-window size, and (iv) there is no loss of observations in the calculation
of the dynamic measures. To be more explicit, while the last two improvements are rather created by
construction, the first two can be evidenced by the application of Monte Carlo simulations. In point of
fact, when we test the robustness of our estimations, both in terms of outliers’ sensitivity and changes
in the values of the parameters, the results indicate that the TVP-VAR estimations are superior to those
generated by rolling-windows.

In turn, we illustrate the accuracy of our proposed method by considering connectedness in the
foreign exchange market. More specifically, we collect monthly data on the exchange rate between
the USD and the following currencies: (i) EUR/EC, (ii) GBP, (iii) CHF, and (iv), JPY. the choice
of the currencies was based on their respective position on the list of the most traded currencies
of the world. the USD ranks first, and in this regard, it serves as the base currency of the study.
Subsequently, we estimate results for different window-lengths (i.e., 25, 26, ..., 274, 275 months)
in order to (i) deduct how dynamic total connectedness changes with the window size, and (ii)
contrast these results with those obtained from our TVP-VAR approach. We find that our proposed
TVP-VAR-based measure of connectedness is similar to the averaged dynamic connectedness measures
of the rolling-window VAR model; nonetheless, TVP-VAR values immediately adjust to underlying
events, while rolling-window-based estimates either overreact (given an inadequate window size) or
smooth out the effect (given a large window size).

In line with the aforementioned analysis, we then select three window sizes that are neither too
large nor too small. In particular, we choose 50, 100, and 200 observations-wide windows. Windows
were chosen on the basis of their mean absolute prediction error (MAPE) value stemming from a
12-step-ahead forecast. Prominent among our results is the fact that (i) the TVP-VAR model exhibits
similar trend-movements to the 50-month rolling-windows VAR; nonetheless, the latter is much
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less volatile, and (ii) despite how the 100-month rolling-windows VAR is as persistent as its TVP
counterpart, it does not appear to adjust to changes as quickly as the TVP-VAR model.

Finally, we utilise the results from our empirical application in order to provide two additional
inputs to the existing literature. First, we propose a method to generate confidence intervals of dynamic
connectedness by combining bootstrapped generalised impulse response functions (see, Koop et al.
1996; Pesaran and Shin 1998) with the joint confidence bands for impulse response functions suggested
by Liitkepohl et al. (2015). This combined approach refines the intervals approach introduced by
Kilian (1998, 1999). Second, we offer an uncertainty estimation of TVP-VAR-based connectedness
measures by letting forgetting factors and Minnesota priors vary randomly.

It would also be instructive at this point to note that, so far, there have been two seminal studies
in the field of dynamic connectedness through TVP-VARs; namely, Antonakakis and Gabauer (2017)
and Korobilis and Yilmaz (2018). Both studies adopt a similar framework, although they investigate
different issues. To be more explicit, Antonakakis and Gabauer (2017) provided evidence of the
superiority of TVP-VAR connectedness estimations using the exchange rate market as a point of
reference, whereas Korobilis and Yilmaz (2018) provided similar evidence by using the stock market
as a point of reference. The present study constitutes a more detailed and complete illustration
of the analysis provided by Antonakakis and Gabauer (2017), as three rolling-window sizes have
been chosen based upon the mean absolute prediction error, which is better than just an arbitrarily
chosen window size, as in the original paper. Furthermore, we have provided a prior sensitivity
analysis, uncertainty intervals for all connectedness measures, and finally, have evaluated the forecasting
performance of the suggested approach. All of the above further strengthen the argument in favor of
TVP-VAR-generated connectedness measures. It should also be noted that, despite the rather scarce
literature on TVP-VAR dynamic connectedness, studies in this area have gradually started to emerge (see,
inter alia, Gabauer and Gupta 2018; Antonakakis et al. 2018, 2019, 2019a, 2019b; Chatziantoniou and
Gabauer 2019), signifying a rather promising area for future research.

In retrospect, this study contributes to the existing literature in a number of ways. First, it
provides the framework for generating refined measures of connectedness based on a time-varying
VAR modeling approach. Second, it allows for presenting new evidence regarding the exchange-rate
connectedness of some of the most popular currencies of the world. Finally, it facilitates both the
introduction of alternative specifications of error bounds and the implementation of a thorough
sensitivity analysis.

The remainder of this study is organized as follows. In Section 2 we describe our proposed
method, whereas in Section 3 we illustrate its advantages by applying Monte Carlo simulations.
In Section 4 we provide a description of the employed dataset. In Section 5 we proceed with the
empirical comparison between the various connectedness measures. Finally, Section 6 concludes
the study.

2. Methodology

TVP-VAR

Our proposed TVP-VAR method extends the originally proposed connectedness approach
of Diebold and Yilmaz (2014) by allowing the variance-covariance matrix to vary via a Kalman
filter estimation with forgetting factors in the spirit of Koop and Korobilis (2014). By doing so, our
method (i) overcomes the burden of the often arbitrarily chosen rolling-window size, that could lead to very
erratic or flattened parameters, and (ii) avoids the loss of valuable observations. In this respect, this method
may also be employed to examine dynamic connectedness measures for both low-frequency data and
limited time-series data. Furthermore, Koop and Korobilis (2014) point out that the heteroscedastic
procedure outperforms its homoscedastic counterpart.
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The TVP-VAR(p) model can be written as follows:

Yy =Aszi 1+ € €1|Q_1 ~ N(0,X;) 1)
vec(Ar) =vec(As_1) + &t & Q1 ~ N(0,E¢) )
with
Y1 Ay
- ytiz Al = Aoy
Yt—p Apt

where );_; represents all information available until t-1, y; and z;_; represents m x 1 and mp x 1
vectors, respectively, A; and A;; are m x mp and m x m dimensional matrices, respectively, €; is an
m x 1 vector, and & is an m?p x 1 dimensional vector, whereas the time-varying variance-covariance
matrices Iy and &¢ are m x m and m?p x m?p dimensional matrices, respectively. Moreover, vec(A;) is
the vectorisation of A; which is an m?p x 1 dimensional vector.

For the initialization of the Kalman filter, we wused the Primiceri (2005) and
Del Negro and Primiceri (2015) prior. Hence, in our study, we set Aors, ZSLS, and Xppg as
equal to the VAR estimation results of the first 60 months:

vec(Ag) ~N(vec(Aors), Z51s)
Lo =XoLs-

In the interests of numerical stability, we implement decay factors in the Kalman filter algorithm.
the choice of decay factors resembles the choice of priors in general, and depends on the expected
amount of time variation in the parameters. In this study, we consider the benchmark values for x;
and «x, provided by the Koop and Korobilis (2014) study, according to which x; = 0.99 and x, = 0.96.
It should also be stressed that even though estimation procedures are available which allow the decay
factors to vary over time, we keep them constant at fixed values, since Koop and Korobilis (2013)
found that the value added by time-varying decay factors with respect to the forecasting performance
was questionable and increased the computation burden of the Kalman filter algorithm significantly.
In turn, the multivariate Kalman filter can be formulated as follows:

vec(At)|z1:4-1 NN(UEC(AHtfl)'Zf\lt—l)
At\t—l :At—l\t—l
€ =Y — A 1211
It =KoX;_1—1 + (1 - K2)eter
Br=(1- Kfl)zfx—utq
Zf\ltq :z‘tAfl|t71 + &t
Lyt :Zt—lzf\lt—lz;—l tI,
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We updated Ay, Z{‘, and Xy, given the information at time ¢, by the following steps:

vec(At)|z1: NN(UEC<At\t)'):‘{|‘t)

_yA 1 y—1
Ki =Xj; 121Dy

Ay =Agp Ky — Agp1zi-1)

A A
Z‘t|t =(I- Kt)zt\t—l

€t =Yt — AgZe—1

!
Ly =128 g1+ (1 — K2)€p €48,

where K; represents the Kalman gain that explains by how much the parameters, A;, should be
changed in any given state. On the one hand, if the parameter uncertainty, Zfl‘t_l is small (large), it
means that the parameters, A;, should be similar to (adjusted to) their prior states. On the other hand,
if the error variance X is small (large), meaning that the estimation is very accurate (inaccurate), the
parameters, ®;, should be similar to (adjusted to) their prior values.

The time-varying coefficients and time-varying variance-covariance matrices are used to estimate
the generalized connectedness procedure of Diebold and Yilmaz (2014) that is based on generalized
impulse response functions (GIRF) and generalized forecast error variance decompositions (GFEVD)
in accordance with Koop et al. (1996) and Pesaran and Shin (1998). In order to calculate the GIRF
and GFEVD, we transform the TVP-VAR to its vector moving average (VMA) representation based
on the Wold representation theorem. Retrieving the VMA representation can be illustrated by
recursive substitution:

yr =] (Mi(z¢—2 +111-1) + 11¢) 3)
=J' (M¢(M¢(z1—3 + 111—2) + 111-1) + 11¢) 4)
@)
ko
ZI/(Mfflzt—k—l +3Y M{’It—j) (6)
j=0
with

€t I

A 0 0
Mt:<1 L ) m=|.|=Je TJ=]. @)

m(p—1) m(p—1)xm : .

where M; is an mp X mp dimensional matrix, #; is an mp x 1 dimensional vector, and J is an mp X m
dimensional matrix.
Taking the limit as k approaches oo yields to

k . 00 ,
yr =lim_oo (M{ ' zi g+ Y. Miy_) = Y I'Mly,_;, (8)
j=0 j=0

where it directly follows

[ee]

ye=Y I'MJer;  By=J'M]J, j=01,.. ©)

j=0

yr =) Bjer; (10)
j=0
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where Bj; is an m x m dimensional matrix.

The GIRFs (‘I’l-]-,t(H )) represent the responses of all variables j, following a shock in variable i.
Since we did not have a structural model, we computed the differences between an H-step-ahead
forecast, once where variable i is shocked and once where variable i is not shocked. the difference can
be attributed to the shock in variable i, which can be calculated by

GIRF(H, 6j1, Q1) =E(yr+Hlej = 8jt, Q1) — E(Yr171Q% 1) (11)
BHtZte]‘ 5jt
Y (H) =——L 5= /2 (12)
It - - Jit Jiot
it A/ Zjjt
_1
Yj,t(H) :ijrfBH/tZtej, (13)

where e; is an m x 1 selection vector with unity in the jth position, and zero otherwise. In turn,
we compute the GFEVD (¢;;:(H)), which represents the pairwise directional connectedness from j to i
and illustrates the influence variable j has on variable i in terms of its forecast error variance share.
These variance shares are then normalised, so that each row sums up to one, meaning that all variables
together explain 100% of variable i’s forecast error variance. This is calculated as follows:

H-1
S .

m H-1wg?2
j=1 thl 11Iz'j,t

¢ijr(H) =

with 2}”21 $ij+(H) = 1and Zj':l ¢ij+(H) = m. the denominator represents the cumulative effect of all
the shocks, while the numerator illustrates the cumulative effect of a shock in variable i. Using the
GFEVD, we construct the total connectedness index by

Yili1,izj i (H)

Ci(H) = =
HH) Yij—1 Pij(H)

%100 = % 100. (15)

Yii,izj i (H)
m

This connectedness approach shows how a shock in one variable spills over to other variables.
First, we look at the case where variable i transmits its shock to all other variables j, called fotal
directional connectedness to others and defined as

Y Bjit (H)

Cioyip(H) =221
j(H) Yt @jie(H)

* 100. (16)

Second, we calculate the directional connectedness variable i receives from variables j, called total
directional connectedness from others and defined as

Z]T'n:u;éj J’z‘j,t(H)

Ci<—j,t(H) = Z:n:l ¢ij,t(H)

* 100. (17)

Finally, we subtract fotal directional connectedness to others from total directional connectedness from
others to obtain the net total directional connectedness, which can be interpreted as the influence variable i
has on the analyzed network.

Cit = Cisjt(H) = Cijs(H) (18)

If C;; is positive, it means that variable 7 influences the network more than itself being influenced.
By contrast, if C;; is negative, it means that variable i is driven by the network.
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Finally, we break down the net total directional connectedness even further to examine the
bidirectional relationships by computing the net pairwise directional connectedness,

NPDC;i(H) = (¢jit(H) — ¢jj:(H)) + 100. (19)

If NPDC;j(H) > 0 (NPDC;j(H) < 0), it means that variable i dominates (is dominated by)
variable j.

3. Monte Carlo Simulation

In this section, we perform two different kinds of Monte Carlo simulations so as to check whether
the TVP-VAR model indeed outperforms the rolling-window VAR in the case of a single outlier and a
structural break in the parameters. We simulate the following VAR(1) process:

yir=Az 1 +e €O ~N(0I). (20

Specifically, the simulation for each scenario is repeated 10,000 times, whereas the sample
under investigation has a length of 400 and the burn-in phase corresponds to 5000 observations.
the Monte Carlo simulation is estimated for various rolling-window sizes (in particular, 50, 100, 150,
200, 250, 300) and VAR models based on up to 10 endogenous variables, which result in qualitatively
similar results. For the sake of brevity, we calculate the time-varying parameters with both methods
(i.e., 200 observation rolling-window VAR and TVP-VAR?) and compute the absolute deviation between
the estimated and the true parameters as follows:

Dryp; = |Aryps — Al (21)
Dy, = |Arw, — A| (22)

where Aryp; and Agw, are the estimated time-varying parameters of the TVP-VAR and the
rolling-window VAR, respectively, and Dryp; and Dgy ; are the absolute deviation from the true
value (A).

Finally, we subtract the aforementioned absolute deviations from each other, as follows:

DV; = Drw+ — Drvp. (23)

If DV; > 0 (DV; < 0), then the estimated parameters of the rolling-window VAR model are further
away from the true parameters than the TVP-VAR results, which in turn implies that the TVP-VAR is
more (less) accurate.

In the first two cases, the coefficient matrix in the Monte Carlo simulation is defined as follows:

06 03
03 0.6

09 0.0
A = 27100 09 (24)

while in the third case, the coefficient matrix is adjusted from A; to A, simulating a structural break
in the parameters.

The Monte Carlo simulation results for the aforementioned two cases are shown in Figures 1 and
2 and reported in Table 1. In every case, we observe that the deviations across the rolling-window
VAR and the TVP-VAR results, DV;, are significantly positive, indicating that the TVP-VAR model
outperforms the rolling-window VAR specification.

2 Both the code for Monte Carlo simulation and the results of different rolling-windows are available upon request.
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D11rw-D117ve Dizrw-Diztve

Figure 1. Monte Carlo simulation results with a single outlier.

Diorw-Dio1ve

L0 -0.41

Figure 2. Monte Carlo simulation results with a structural break.

Table 1. Monte Carlo simulation results.

DVy DVyp DV DV;,
(W0)] () 3) )
Outlier 0.025 *** 0.016 *** 0.012 *** 0.027 ***
(0.0003) (0.0002) (0.0002) (0.0003)
Structural Break 0.033 *** 0.040 *** 0.032 *** 0.028 ***
in Parameters (0.0005) (0.001) (0.0005) (0.0004)

Note: *p < 0.1; ** p < 0.05; **p < 0.01.
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4. Data and Summary Statistics

We employed a dataset that is based on monthly exchange rates retrieved from the Bank of
England online database. More specifically, the dataset consists of the Euro/European Currency Unit
(EUR/ECU), British pound (GBP), Swiss franc (CHF), and Japanese yen (JPY) against the United States
dollar (USD), including data from February 1975 until January 2019. To the effect that we capture
the period before the introduction of the EUR, we employed the ECU as the appropriate proxy of
that period.

In Figure 3, we can see that the standardized exchange rates exhibit close co-movements, especially
the European ones. However, there are also some deviations from the common trend. For example,
the JPY starts to decouple in early 1990 (i.e., the start of Japan’s “Two Lost Decades”). Then in autumn
1992, both the GBP and the JPY deviate from the common trend due to the ERM I crisis caused by
speculative attacks against the GBP, as well as the Japanese banking crisis, respectively. In 2009, the GBP
appears to deviate from the common movement, a fact that could be explained by the important role
the UK played in the Great Recession of 2009.

Figure 3. Exchange rates.

Since the exchange rate series are non-stationary according to the ERS unit root test
(Stock et al. 1996), we obtained the monthly exchange rate return by applying the first logarithmic
difference: y; = In(x;) — In(x;_1). These returns are illustrated in Figure 4.
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Figure 4. Exchange rate returns.

Summary statistics regarding exchange rate returns are shown in Table 2, where evidently the
unconditional variance of the GBP is the lowest, followed by that of EUR, JPY, and CHF. This means
that the GBP exhibits the lowest volatility and thus remains the safest currency vis-a-vis the USD.
By contrast, the JPY is the most volatile and thus, the riskiest. Furthermore, we find that the GBP
is significantly positively skewed, whereas the JPY is significantly negatively skewed. In addition,
it seems that the EUR is the only series which is mesokurtic and that all other series are all significantly
leptokurtically distributed. On a final note, the normality test of Jarque and Bera (1980) illustrates that
the EUR is the only currency that is normally distributed.

Next, we focus on exchange rate characteristics. According to the ERS unit-root test, all series
are stationary in their returns. the weighted Ljung-Box statistics of Fisher and Gallagher (2012) show
that all series are significantly autocorrelated and exhibit ARCH/GARCH errors. This indicates
that employing a TVP-VAR model with time-varying variances seems to be appropriate. Finally,
the unconditional correlations indicate that all exchange rates are positively correlated with each other
and that the European currencies especially exhibit the highest correlations across all exchange rate
returns. It is also true that the highest unconditional correlation occurs between the EUR and CHF.



J. Risk Financial Manag. 2020, 13, 84 11 of 23

Table 2. Descriptive statistics of exchange rate returns.

EUR GBP JPY CHF
Mean 0.056 0.14 —0.156 —0.141
Variance 5.996 5.988 7.121 7.785
Skewness 0.124 0.411 *** —0.320 *** 0.057
(0.244) (0.000) (0.003) (0.591)
Excess 0.270 1.932 *** 0.794 *** 0.913 ***
Kurtosis (0.196) (0.000) (0.003) (0.001)
JB 2913 95.694 *** 22 557 ***  18.375 ***
(0.233) (0.000) (0.000) (0.000)
ERS —6.171 ***  —6.605 ** 5372 ** 6446 ***
(0.000) (0.000) (0.000) (0.000)
Q(20) 57.561 ***  64.935*** 79,655 *** 42297 ***
(0.000) (0.000) (0.000) (0.000)
QZ(ZO) 18.874 ** 59.908 ***  30.270 *** 12.111
(0.028) (0.000) (0.000) (0.300)
Unconditional Correlation
EUR 1.000 0.701 0.466 0.868
GBP 0.701 1.000 0.328 0.634
JPY 0.466 0.328 1.000 0.544
CHEF 0.868 0.634 0.544 1.000

Notes: *p < 0.1; ** p < 0.05; *** p < 0.01. () denote standard errors. the D’ Agostino (1970) and Anscombe and
Glynn (1983) statistics are used for skewness and kurtosis. JB (Jarque and Bera 1980) is the test for Normality,
ERS unit root test (Stock et al. 1996) tests for stationarity, Q(20) and Q?(20) are the weighted Ljung-Box
statistic for serial correlation in the returns and squared series (Fisher and Gallagher 2012), respectively.

5. Empirical Illustration

5.1. Dynamic Total Connectedness

We begin by presenting results for Dynamic Total Connectedness measures. These results are
illustrated in Figure 5. More particularly, we consider the dynamic total connectedness of 50 different
VAR models separated by virtue of window-length (i.e., 25, 30, ..., 265, 270), their mean values,
as well as results from the TVP-VAR. Interestingly, the mean of all rolling-window VARs” dynamic
total connectedness measures are similar to the results of the TVP-VAR. Furthermore, it is shown that
the window size strongly influences the results of the dynamic total connectedness. the smaller the
window size, the more volatile the results, whereas a large window size flattens out the dynamics
over time.

Then, in the interests of comparison, we choose three window sizes and compare their results to
the TVP-VAR. According to Figure 6, it seems as if a 100-month rolling-window size exhibits similar
behaviour to that provided by the TVP-VAR model. In addition, we choose the 50-month and the
200-month rolling-window VAR models.

In Figure 7, we present the dynamic total connectedness measures of our proposed TVP-VAR
approach, along with those based on the traditional rolling-window VAR methodology. It can be
observed that the dynamic total connectedness based on the TVP-VAR adjusts immediately to events,
and even faster than the smallest window-sized rolling window VAR, as evidenced by (i) the increase in
1992 and (ii) the decrease in 2009. Moreover, it should be mentioned that the 200-month rolling-window
VAR drops nearly 40% of the observations and flattens out all dynamics. It even absorbs the effect the
Great Recession had on the exchange rate market.
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Figure 5. Dynamic total connectedness. the darker the series, the smaller the window size, and
vice versa (25, 26, ..., 274, 275).
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Figure 6. Mean absolute prediction error based on the 12-step-ahead forecast.
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Figure 7. Dynamic total connectedness.
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On a final note, despite that the overriding goal of the study is not to focus on the underlying
story of our application, but rather, to emphasize the merits of the TVP-VAR connectedness approach,
we should not lose sight of the fact that connectedness across the variables of our network increases
during turbulent periods. In line with what we mentioned earlier, regarding the efforts of researchers
to identify the relevant mechanisms that come into play during a crisis, our study provides new
evidence that rather supports the idea that the foreign exchange market is very closely related
(e.g., internationalization of the banking system) and that in the light of a financial crisis, developments
in one currency might very well influence developments in another currency.

5.2. Net Total and Net Pairwise Directional Connectedness

We then turn to net total and net pairwise results, in order to (i) distinguish between net
transmitters and net receivers of shocks in the foreign exchange market, and (ii) to specify the exact
position between any given pair within our network of variables. We start with net total results
and Figure 8. In Figure 8, a similar pattern is observed, in the sense that the net connectedness
measures based on the smallest (largest) rolling-window size overreact (underreact) to dynamics.
In comparison with Figure 7, it becomes clearer that the smallest rolling-window VAR overreacts
to changes over time, as it can be seen in the net total connectedness plot of GBP, JPY, and CHFE.
We can observe that in the case of the GBP, the smallest rolling-window VAR deviates substantially
from all others in 1980, from 1990 to 1995, and in 2012; in the case of the JPY, it deviates strongly
around 2004 and 2012; while with respect to the CHF, we can see large deviations from 1980 until 1985,
from 1992 until 1996, and again in 2012. Focusing on the upper part of Figure §, it is quite evident
that both EUR/USD and CHF/USD are persistent net transmitters of shocks in the foreign exchange
market, while both GBP/USD and JPY /USD are persistent net receivers of shocks. With regard to
the net pairwise directional connectedness results, the smallest window also appears to be the most
volatile one. By contrast, the largest window size flattens out the net total connectedness dynamics.
For example, if we focus on the EUR, we see a constant increase from 1990 to 2010 excluding all the
adjustments within, while in the case of the GBP, it predicts approximately half of the influence of all
others between 1998 and 2007. Once more, it seems that the middle-sized rolling-window is the most
appropriate, even if it partially faces some weaknesses as well, such as the small adjustment in the case
of the GBP (i.e., where it adjusts very slowly compared to the TVP-VAR after 1998). In other words,
it seems that the TVP-VAR has the flexibility of the smallest rolling-window VAR model. All these
observations hold, both for the total net and the net pairwise results.

It is interesting that the EUR and the CHF both dominate the GBP and the JPY, whereas the GBP
dominates the JPY, both in 1990 when the Japanese financial crisis occurred, and between 2007-2010
when the Great Recession emerged. the bilateral relationship between the EUR and CHF is also
interesting since it seems that both are influencing each other by the same amount, and hence, no one
is driving the other, even if the co-movement between those two is the highest across all exchange
rates of the study.
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Figure 8. Net total and net pairwise directional connectedness measures.

Even though the dynamics between rolling-window VARs and TVP-VAR models differ, all models
came up with similar static connectedness measures, as shown in Table 3. All of them identified that
the EUR and the CHF are the main transmitters of shocks, whereas the JPY is the main receiver of
shocks, followed by the GBP.

Table 3. Dynamic connectedness table.

TVP-VAR
TO (i) EUR GBP JPY CHF FROM (i)
EUR 40.1 18.2 10.9 30.8 59.9
GBP 23.8 48.3 74 20.5 51.7
JPY 15.1 9.0 575 18.3 425
CHF 30.7 16.3 12.5 40.5 59.5
Contribution TO others 69.5 43.6 30.9 69.6 213.6
NET directional connectedness 9.6 -8.1 —11.6 10.1 TCI
NPSO transmitter 2 1 0 3 53.4
50-Month Rolling-Window VAR
EUR 40.0 19.8 9.9 30.2 60.0
GBP 24.6 474 7.6 20.5 52.6
JPY 13.9 8.9 60.0 17.3 40.0
CHF 30.3 17.5 11.8 40.4 59.6
Contribution TO others 68.7 46.2 29.3 68.0 TCI
NET directional connectedness 8.8 -6.4 —10.7 8.4 53.0

NPDC transmitter 3 1 0 2
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Table 3. Cont.

TVP-VAR

TO () EUR GBP JPY CHF FROM (i)

100-month Rolling-Window VAR
EUR 39.8 20.0 9.1 31.2 60.2
GBP 25.7 46.4 6.5 21.4 53.6
JPY 13.3 8.2 60.6 17.8 394
CHF 31.2 17.8 11.3 39.7 60.3
Contribution TO others 70.2 46.0 26.9 70.4 TCI
NET directional connectedness 10.0 -7.6 —-125 10.1 53.4
NPDC transmitter 3 1 0 2

200-Month Rolling-Window VAR
EUR 39.3 20.3 8.6 31.8 60.7
GBP 26.2 46.1 5.7 21.9 53.9
JPY 13.4 7.7 60.9 18.1 39.1
CHF 319 18.1 10.9 39.1 60.9
Contribution TO others 71.5 46.1 25.3 71.8 TCI
NET directional connectedness 10.8 -7.8 —-13.9 10.9 53.7
NPDC transmitter 3 1 0 2

Notes: Values reported are variance decompositions based on different VAR specficiations. Variance
decompositions are based on 12-months-ahead forecasts. In both periods, a VAR lag length of order 1 was
selected by the BIC.

The highest bilateral influence is between the EUR and the CHE, which seem to face symmetric
shocks from each other. Even though there is barely no domination between the CHF and the EUR, all
models indicate that the EUR is the main transmitter, since it dominates all others, followed by the
CHF which dominates the GBP and the JPY, and finally, the GBP dominates the JPY.

5.3. Sensitivity Analysis

5.3.1. Prior Sensitivity Analysis

Furthermore, we conducted a prior sensitivity analysis to see by how much results differ
depending on the employed prior assumptions. Hereby, we used one uninformative prior, one
informative prior, and 500 random Minnesota priors. the uninformative prior is specified as follows:
vec(Ag) ~ N(vec(0),m™ P -I)and Ly = Cov(y); for the informative prior we estimated a VAR
estimation based on the first 100 months: vec(Ag) ~ N(vec(Apors) and Ly = Zors. Finally,
the Minnesota priors are constructed as follows: vec(Ag) ~ N(vec(diag(U(m, —0.99,0.99))),m P - I)
and Xy = Cov(y), where the coefficients of the first lag are randomly uniformly distributed and all the
others are zero. This prior assumes that all exchange rates are following a univariate process which can
range from being highly persistent or being a random walk process. Since the parameters are all in a
range between —0.99 and 0.99, no series can be non-stationary. the parameters were chosen randomly,
and so we could analyze various settings of parameters which allowed us to see by how much the
results varied. Our results are based on 500 randomly chosen Minnesota priors.

As we can see in Figures 9 and 10, all priors are converging to very similar results after
50 observations (50 times updating parameters). This result is interesting, since it shows that after a
finite amount of coefficient updates, the results are going to be very similar.
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Figure 9. Prior sensitivity analysis: Dynamic total connectedness.
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Figure 10. Prior sensitivity analysis: Net total and net pairwise directional connectedness measures.

5.3.2. Forgetting Factor Sensitivity Analysis

In addition, this TVP-VAR model heavily relies on forgetting factors, which are often set to a fixed
value, as in Koop and Korobilis (2014), whereas in Koop and Korobilis (2013) they were allowed to
vary using an additional process. However, Koop and Korobilis (2013) also stressed that the additional
computation burden of this process is questionable since the forecasting performance is not being
improved. Hence, we make use of the same priors as discussed in Section 5.3.1, whereas in addition,
we allow both forgetting factors (x1, x2) to vary independently from each other between 0.96 and 0.99.
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Calculating dynamic connectedness measures by allowing the TVP-VAR forgetting factors and priors
to vary randomly offers additional information about how stable our results are. In Figures 11 and 12,
we can see by how much the dynamic total connectedness, net total connectedness, and net pairwise
directional connectedness vary in 95% of all cases. This allows us to interpret how significant our
results are. Furthermore, we get additional information; for instance, that the GBP cannot be identified
either as a transmitter or receiver of shocks in the period between 1990 and 1998.

80
3 Min/Max
B Informative
3 Uninformative
70 1

1980 1990 2000 2010

Figure 11. Dynamic total connectedness uncertainty.

Finally, this study also provides confidence intervals for the rolling-window VAR connectedness
measures. Hereby, we estimate the bootstrapped confidence intervals for the GIRF on which the
GFEVD is based on. This procedure is computationally very demanding, since in every rolling-window
estimation step, 200 GFEVD are estimated. In addition, Figures 13 and 14 illustrate the confidence
intervals of the rolling-window VAR connectedness measures. We note that the TVP-VAR uncertainty
measures mainly overlap with the small- and the medium-sized rolling-window VARs, and that they
are the ones that move the closest together. In Figure 14, when we focus on the net total connectedness
measures of the JPY, we can see that the smallest rolling-window VAR results deviate quite considerably
from all the others. This could indicate that estimation results have been driven by an outlier, since all
the other confidence intervals overlap. Given these intervals, we may now interpret whether exchange
rates are a significant net transmitter/receiver or net pairwise transmitter/receiver of shocks, which
improves the connectedness literature substantially. Based on the results presented in Figure 14, we
can state that the EUR and the CHF are significant net transmitters of shocks throughout the period of
analysis, whereas the GBP and the JPY are significant net receivers of shocks based on the estimation
results of the TVP-VAR and the 100-month rolling-window VAR results. Furthermore, the EUR and
the CHF significantly dominate the GBP and the JPY. the GBP acts as a significant net transmitter of
shocks to the JPY from 1990 until 1997 and from 2002 until 2008. Finally, it seems that neither the EUR
nor the CHF affect each other even though they exhibit the highest unconditional correlation.
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Figure 14. Confidence intervals: Net total and net pairwise directional connectedness measures

of uncertainty.

5.4. Forecast Performance

We also estimated forecasts for horizons up to one year (H = 1,2,3,6,9,12) with a forecast

evaluation period from January 1992 until January 2019. To evaluate the forecast performance, we
utilized both the MAPE for each series and the average MAPE over all series. As shown in Tables 4
and 5, the TVP-VAR models constantly outperform the rolling-window VAR models. Furthermore, we
observe that TVP-VAR models with x; = 0.99 are nearly always among the best models throughout
the forecast horizons.

Table 4. Forecast comparison using MAPE (I).

K1, K2 EUR GBP JPY CHF MAPE EUR GBP JPY CHF MAPE
1-Step Ahead Forecast 2-Step Ahead Forecast
0.99,0.99 0.740 0.688 0.751 0.713 0.723 1.001 0.883 0.951 0.935 0.943
099,098 0739 0.686 0751  0.711 0.722 1.000 0.881  0.951  0.934 0.941
0.99,0.97 0.738 0.684 0.751 0.710 0.721 0.999 0.878 0.951 0.933 0.940
0.99,0.96 0.737 0.682 0.750 0.709 0.720 0.998 0.876 0.951 0.932 0.939
098,099 0746 0.688 0757 0.721 0.728 1.010 0.888 0956  0.940 0.949
098,098 0745 0.687 0.757  0.720 0.727 1.008  0.885 0.956  0.939 0.947
0.98,0.97 0.743 0.686 0.757 0.719 0.726 1.006 0.882 0.955 0.938 0.945
098,09 0742 0.684 0756  0.719 0.725 1.004 0881 0954  0.938 0.944
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Table 4. Cont.

K1, K2 EUR GBP JPY CHF MAPE EUR GBP JPY CHF MAPE
1-Step Ahead Forecast 2-Step Ahead Forecast

0.97,0.99 0.756 0.687 0.763 0.727 0.733 1.025 0.893 0.962 0.946 0.956
0.97,0.98 0.754 0.686 0.763 0.726 0.732 1.021 0.890 0.962 0.944 0.954
0.97,0.97 0.752 0.686 0.762 0.725 0.731 1.018 0.889 0.961 0.943 0.952
0.97,0.96 0.751 0.685 0.760 0.725 0.730 1.015 0.887 0.960 0.942 0.951
0.96,0.99 0.767 0.692 0.770 0.734 0.741 1.039 0.904 0.969 0.953 0.966
0.96,0.98 0.765 0.690 0.770 0.732 0.739 1.035 0.900 0.969 0.950 0.963
0.96,0.97 0.762 0.687 0.769 0.731 0.737 1.031 0.896 0.968 0.948 0.961
0.96,0.96 0.760 0.685 0.767  0.730 0.735 1.027 0.894 0.967 0.947 0.959

RW 50 0.779 0.713 0.782 0.752 0.757 1.057 0.932 0.994 0.974 0.989
RW 100 0.740 0.704 0.759 0.724 0.732 1.005 0.902 0.963 0.936 0.951
RW 200 0.741 0.687 0.754 0.719 0.725 1.004 0.884 0.957 0.947 0.948

3-Step Ahead Forecast 6-Step Ahead Forecast

0.99,0.99 1.208 1.036 1.143 1.106 1.123 1.673 1.424 1.639 1.453 1.547
0.99,0.98 1.208 1.034 1.144 1.105 1.122 1.673 1.423 1.639 1.453 1.547
0.99,0.97 1.207 1.031 1.143 1.104 1.122 1.673 1.422 1.638 1.453 1.547
0.99,0.96 1.207 1.029 1.143 1.104 1.121 1.673 1.421 1.638 1.454 1.547
0.98,0.99 1.220 1.041 1.151 1.111 1.131 1.686 1.429 1.650 1.458 1.556
0.98,0.98 1.218 1.039 1.150 1.110 1.129 1.684 1.428 1.647 1.458 1.554
0.98,0.97 1.216 1.037 1.149 1.109 1.128 1.683 1.427 1.645 1.458 1.553
0.98,0.96 1.215 1.035 1.148 1.109 1.127 1.682 1.426 1.644 1.459 1.553

Table 5. Forecast comparison using MAPE (II).

K1, K2 EUR GBP JPY CHF MAPE EUR GBP JPY CHF MAPE
9-Step Ahead Forecast 12-Step Ahead Forecast

0.99,0.99 2.032 1.746 1.989 1.703 1.867 2.358 2.011 2.301 1.917 2.147
0.99,0.98 2.032 1.744 1.988 1.704 1.867 2.357 2.009 2.301 1.918 2.146
0.99,0.97 2.032 1.743 1.987 1.705 1.867 2.357 2.007 2.301 1.919 2.146
0.99,0.96 2.032 1.742 1.988 1.706 1.867 2.357 2.005 2.301 1.920 2.146
0.98,0.99 2.047 1.755 1.999 1.708 1.877 2.374 2.026 2.309 1.925 2.158
0.98,0.98 2.045 1.753 1.996 1.709 1.876 2.372 2.022 2.307 1.925 2.157
0.98,0.97 2.044 1.751 1.995 1.710 1.875 2.371 2.018 2.307 1.926 2.156
0.98,0.96 2.043 1.749 1.994 1.711 1.874 2.370 2.015 2.307 1.927 2.155
0.97,0.99 2.062 1.770 2.011 1.712 1.889 2.392 2.045 2.320 1.930 2172
0.97,0.98 2.059 1.765 2.007 1.711 1.885 2.389 2.038 2.317 1.930 2.168
0.97,0.97 2.056 1.762 2.004 1.711 1.883 2.386 2.033 2.315 1.930 2.166
0.97,0.96 2.054 1.759 2.003 1.712 1.882 2.384 2.030 2.315 1.931 2.165
0.96,0.99 2.080 1.795 2.027 1.722 1.906 2413 2.075 2.337 1.943 2.192
0.96,0.98 2.073 1.785 2.020 1.718 1.899 2.406 2.063 2.329 1.939 2.184
0.96,0.97 2.069 1.779 2.016 1.716 1.895 2.402 2.055 2.326 1.937 2.180
0.96,0.96 2.066 1.775 2.015 1.715 1.893 2.399 2.049 2.326 1.936 2177

RW 50 2.170 1.940 2.137 1.815 2.016 2.546 2.284 2.518 2.078 2.357
RW 100 2.111 1.775 2.032 1.754 1.918 2.487 2.050 2.353 1.996 2222
RW 200 2.045 1.749 2.005 1.732 1.883 2.375 2.018 2.316 1.948 2.164

6. Conclusions

In this study, we introduced a TVP-VAR-based dynamic connectedness approach. In particular,
this study constitutes a more detailed and complete illustration of the analysis provided by
Antonakakis and Gabauer (2017), as three rolling-window sizes have been chosen based upon
the mean absolute prediction error, which is better than just an arbitrarily chosen window
size as in the original paper. Furthermore, we have provided a prior sensitivity analysis,
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uncertainty intervals for all connectedness measures, and finally, have evaluated the forecasting
performance of the suggested approach. All of the above further strengthen the argument in
favor of TVP-VAR-generated connectedness measures. On general principles, our approach can
be regarded as an extension and improvement of the standard rolling-window VAR connectedness
approach introduced by Diebold and Yilmaz (2014). To be more explicit, this extension improves the
Diebold and Yilmaz (2014) method in four specific ways: (i) it allows for capturing possible changes
in the parameters more accurately than in the rolling-window VAR specification; (ii) it is not as
outlier-sensitive as the traditional rolling-windows approach; (iii) there is no need to arbitrarily set the
rolling-window size; and (iv) there is no loss of observations in the calculation of the dynamic measures.

In order to provide evidence that TVP-VAR-generated measures of connectedness outperform
their rolling-window counterparts, we began by constructing 50 different indices of dynamic total
connectedness (i.e., based on the respective window length) and by comparing these indices to the
results obtained by the TVP-VAR-generated connectedness approach. We noted that the TVP-VAR
version of the index adjusted immediately to events, while adjustment was faster even when
we compared against the shortest size of the rolling-window approach. We then turned to net
total and net pairwise connectedness indices. In this case, we noted that indices based on the
smallest rolling-window length tended to overreact across time and be more volatile, whereas
indices based on the largest rolling-window length tended to flatten out connectedness dynamics.
Again, TVP-VAR-generated indices tended to adjust quicker and be more flexible in responding to
economic events.

Since estimating a TVP-VAR model requires a prior, we conducted a prior sensitivity analysis
using one uninformative, one informative, and 500 randomly chosen Minnesota priors. In addition,
we allowed both forgetting factors to vary randomly and independently from each other between
0.96 and 0.99 in order to deduce how much results are influenced by the choice of the forgetting
factors. Findings in connection with the prior sensitivity analysis have shown that the influence of
the prior is negligible after updating the coefficients approximately 50 times, whereas the forgetting
factor sensitivity analysis provides information about the significance of the estimated results. In turn,
we constructed bootstrapped confidence intervals for the rolling-window VAR-based approach, in
order to be able to identify whether these connectedness measures were significant or not. On a final
note, we evaluated the forecasting performance of both the rolling-window VAR and the TVP-VAR
model and provided evidence that the TVP-VAR models constantly outperform the rolling-window
VAR model, and that TVP-VAR models with a x; = 0.99 in particular perform relatively better.

As far as the underlying narrative is concerned, the empirical investigation of the foreign exchange
rate transmission mechanism revealed that the EUR and the CHF are the main transmitters of shocks
throughout the period of analysis, whereas the GBP and the JPY are significant receivers of shocks.
Furthermore, the EUR and the CHF significantly dominated the GBP and the JPY, whereas the JPY
was driven by the GBP between 1990-1997 and 2002-2008. In addition, we found that neither the EUR
nor the CHF transmitted shocks to one another.
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