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Abstract: This paper examines the volatility of cryptocurrencies, with particular attention to their
potential long memory properties. Using daily data for the three major cryptocurrencies, namely
Ripple, Ethereum, and Bitcoin, we test for the long memory property using, Rescaled Range Statistics
(R/S), Gaussian Semi Parametric (GSP) and the Geweke and Porter-Hudak (GPH) Model Method.
Our findings show that squared returns of three cryptocurrencies have a significant long memory,
supporting the use of fractional Generalized Auto Regressive Conditional Heteroscedasticity (GARCH)
extensions as suitable modelling technique. Our findings indicate that the Hyperbolic GARCH
(HYGARCH) model appears to be the best fitted model for Bitcoin. On the other hand, the Fractional
Integrated GARCH (FIGARCH) model with skewed student distribution produces better estimations
for Ethereum. Finally, FIGARCH model with student distribution appears to give a good fit for
Ripple return. Based on Kupieck’s tests for Value at Risk (VaR) back-testing and expected shortfalls
we can conclude that our models perform correctly in most of the cases for both the negative and
positive returns.

Keywords: volatility modelling; cryptocurrency; value at risk; expected shortfall; long memory

1. Introduction

Since the early 2000s, the perception of investors about traditional financial markets, their systems
and policies has changed dramatically. There is a global loss of confidence in the central bank based, fiat
currency centered, interconnected financial system. There are many reasons for this shift in confidence.
First of all, loose monetary policies of central banks and the simultaneous global imbalances created
an asset price bubble in early 2000s, which led to the global financial crisis in 2008 and the resulting
Great Recession (Allen and Carletti 2010; Carmassi et al. 2009). Financial crises are like storms for
economies: they increase unemployment rates and financing costs, deepen recessions, and negatively
affect global trade. Economies, especially emerging economies, need increasingly more financing in
order to refinance their debts in an environment of increasing risk premiums (Dominguez et al. 2012).

The 2008 financial crisis, at the same time, increased the volatility and thus changed the risk
perception of investors in global financial markets. Therefore, many investors trading in financial
markets, especially those invested in markets which did not fair the storm well, lost their confidence
in the ability of central banks to manage financial crises (Bordo and Siklos 2017; Cukierman 2013;
Wagner 2010).
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Simultaneously, during this period since 2000, many countries have tried to use currency
depreciations via lower interest rates as a competitive tool in global trade. These currency wars
between the major central banks have contributed to the excessive asset price increases during the
early part of the century. On the other hand, these currency manipulations have negatively impacted
investors’ confidence in financial markets, their regulators and central banks and the overall global
financial system (Blanchard 2016; Caballero et al. 2015; Cline and Williamson 2010).

The policy uncertainty, market volatility and change in investor confidence in the financial system,
coupled with recent developments in blockchain technology has led to the invent of, and (very quickly)
increasing demand for, cryptocurrencies (Çağlar 2007; Liu and Tsyvinski 2018; Panagiotidis et al. 2018,
2019, 2020).

Since its initial introduction, Bitcoin—the first and most common cryptocurrency—has received
unexpected attention and even notoriety in financial markets and has become part of commonplace
financial metrics to be followed by investors. According to Hileman and Rauchs (2017), the rise of
cryptocurrencies in financial markets can be attributed to the fact that unlike traditional fiat currencies,
cryptocurrencies are fully digital assets; have fast, reliable, low cost and anonymous exchange systems;
and are not controlled by a central authority such as central banks.

Barber et al. (2012) explored the Bitcoin as a potential solution to the structural problems in
financial systems. While examining the advantages of Bitcoin over other cryptographic currencies,
they conclude that Bitcoin has the potential to be a long-term stable currency. They state that, if the
system design is properly supported, decentralized digital currencies can have a strong influence on
financial markets (Barber et al. 2012).

In the last decade, the increasing popularity of cryptocurrencies has resulted in many to be created.
By the year 2018, there were approximately 1700 different cryptocurrencies in existence with a total
global daily transaction volume of 11 billion US dollars (Hileman and Rauchs 2017). Yet, three major
cryptocurrencies make up 60% of the transaction volume and 86% of the total cryptocurrency market
capitalization: namely Bitcoin, Ethereum and Ripple (BitInfoCharts 2018).

This fast development and increasing spread of cryptocurrencies evidenced by their increasing
transaction volume and market capitalization, has identified cryptocurrencies as a major disruptive
instrument in international financial markets. Thus, the academic and practitioner debate of how to
classify a cryptocurrency in the world of investments, namely whether as a “security,” a “commodity,”
or a “currency”, has become more significant and heated over the years. This classification is important
in many aspects of the study of these instruments, especially in determining the role cryptocurrencies
will play in diversified portfolios of rational investors (Jackson 2018). The debate on this issue is still
ongoing both in academic and practitioner worlds.

Cryptocurrency valuations, especially that of Bitcoin, have increased excessively against the dollar
in the last decade. As a result, they have become an attractive investment option to many investors. An
increasing number of investors now include, or consider including, cryptocurrencies in their portfolio
selection processes. Even though the traditional risk-return trade-off establishes the positive correlation
between risk and return, investors, when making portfolio decisions, tend to overestimate the potential
returns of an asset, while often ignoring or underestimating the risk.

There are two major risks that cryptocurrency investors are exposed to. First of all, the
cryptocurrencies do not have intrinsic asset values due to their blockchain based structures. Second,
cryptocurrency returns have significantly higher volatility than the returns of more traditional financial
assets such as stocks or precious metals etc. (Bouri et al. 2019; Liu and Tsyvinski 2018). Similarly,
cryptocurrency returns have been shown to have significantly higher volatility than major world fiat
currencies (Caginalp and Caginalp 2018; Catania et al. 2018; Sahoo 2017).

Since volatility of investment returns is a fundamental issue for the smart investor and portfolio
manager in contemporary financial markets, adequate modeling for volatility of cryptocurrencies
becomes vital for risk management. In this study, we model the volatility of cryptocurrencies by
appropriate Generalized Auto Regressive Conditional Heteroscedasticity (GARCH) type models.
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Unlike similar studies in the literature, the scope of the research is not limited to Bitcoin only, but
includes all three largest market capitalization cryptocurrencies: Bitcoin, Ethereum and Ripple.

Bitcoin and Ethereum are decentralized digital currencies without a single administrator and
operate on public blockchain ledgers. Unlike the other two, Ripple, is a centralized cryptocurrency,
which operates on a distributed ledger controlled by the Ripple Labs. In other words, all the ledger
books on which Ripple cryptocurrency (XRP) is traded, are managed by the Ripple Labs itself. Whereas
Bitcoin and Ethereum are released and added to the network as they are mined by independent sources,
Ripple Labs releases a certain amount of Ripple cryptocurrency tokens each month. In addition,
unlike its other cryptocurrency counterparts, Ripple cryptocurrency is intentionally designed to be
an effective tool in international fiat money transfers. Even with their slight differences in structure,
these three cryptocurrencies make up most of the market capitalization and more than half the world
trading volume. Therefore, correctly modelling their volatilities is a very important contribution to
the literature.

On the other hand, literature using persistency analysis on cryptocurrencies is continuously
growing. Specifically, the increasing evidence of long-term dependence in cryptocurrency
markets provides evidence that cryptocurrency price changes are not random and future prices
of cryptocurrencies are predictable. This predictability in prices contradicts with the efficient markets
hypothesis and random walk expectations of Malkiel and Fama (1970). If cryptocurrency prices
exhibit long memory, investors can predict future prices and beat the market (Mensi et al. 2019).
Therefore, the presence of long-term memory in cryptocurrency returns and volatility has gained a lot
of importance for both academics and practitioners. Gil-Alana et al. (2014) show that market analysts
and investors can use long-term memory models of cryptocurrency returns in order to improve the
risk-adjusted performance of their portfolios. Our study also contributes to this growing literature on
persistence and long-term memory in cryptocurrency returns by expanding the research into the three
major cryptocurrencies.

The study is designed as three basic sections. In the first part, the literature on cryptocurrencies
and specifically their volatility is summarized. In the next section, GARCH family models are used in
the estimation of the volatility the three major cryptocurrencies. In the final part, the results of the
selected GARCH model are presented and their contribution of findings to the efficient diversification
of international investors’ portfolios is discussed.

2. Literature Review

Forecasting volatility is very important for both investment decisions and risk management.
However, it is possible to say that simple methods of measuring volatility, such as standard deviation,
are no longer sufficient to adequately measure volatility of complex financial instruments in today’s
globally integrated financial markets. At its simplest, the standard deviation gives equal weight to all
past observations, which is not adequate for contemporary forecasting exercises. GARCH models,
on the other hand, provide a means for measuring time-varying volatility (Engle 1982). Therefore
GARCH family of volatility models have become the standard in the estimation of the volatility in
financial markets and for most traditional financial instruments (Baillie 1996; Bollerslev et al. 1992;
Ding and Granger 1996; Lo 1989; Pati et al. 2018; Poon and Granger 2003; Wang et al. 2018). However,
since cryptocurrencies are relatively a new phenomenon, there is still not a lot of literature on the
modeling of their volatility. The existing academic literature on the volatility of cryptocurrencies is
limited and also focuses exclusively on the most popular cryptocurrency, Bitcoin.

For instance, Urquhart (2018) argues that the increase in transaction volume and volatility of
Bitcoin are significant factors in its popularity. Caginalp and Caginalp’s (2018) findings also support
Urquhart’s (2018) results about the valuation of cryptocurrencies. Iwamura et al. (2014) explores
the reasons for price instability in cryptocurrencies and argues that a new monetary policy strategy
without central banks could stabilize the value of Bitcoin and other cryptocurrencies. In the study,
mentioning Satoshi Nakamoto’s 2008 paper, authors suggest that Bitcoin’s price inflation can be
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avoided by limiting the fluctuations in market value due to the previously announced limited amount
of supply (Iwamura et al. 2014).

Although Bitcoin has extremely high volatility, many researchers still consider it to be a valuable
diversification instrument for a portfolio (Bouri et al. 2018). Briere et al. (2015), document a low
correlation between Bitcoin and both traditional assets (stocks, bonds, and hard currencies) and
alternative investments (commodities, hedge funds, and real estate). Dyhrberg (2016), similarly, finds
that Bitcoin can be used as a hedging instrument for UK currency and equities, since positive and
negative shocks do not affect Bitcoin returns asymmetrically. Bouri et al. (2017) state that Bitcoin can
serve as an effective diversifier for most of the assets and a strong hedge for the commodity market.

Recent empirical studies on cryptocurrencies focus on the long memory behavior. In their recent
study, Bouri et al. (2019) investigate persistency in the price and volatility of Bitcoin. By using both
parametric and semiparametric methods, they find evidence that there exists a long memory in the
volatility of Bitcoin.

Chu et al. (2017) investigate the volatility of the most traded seven cryptocurrencies by using
various GARCH class models. Their results show that the IGARCH and GJRGARCH models provide
the best fits, in modelling the volatility in the most popular cryptocurrencies. They conclude these
extreme volatility characteristics of cryptocurrencies make them interesting for the risk-seeking
investors who want to enter into technology markets.

Sahoo (2017) also uses GARCH to model the volatility of Bitcoin prices, and comes to the conclusion
that Bitcoin is a high volatile currency. Peng et al. (2018) try to find the best GARCH model fit that
estimates volatility for three different cryptocurrencies by using daily and hourly closing price data for
Bitcoin, Ethereum and Dash for the 2016–2017 period. (Peng et al. 2018). Similarly, Katsiampa (2017),
also models the volatility of Bitcoin using closing prices with different GARCH models, and presents
evidence of long memory in the volatility in Bitcoin prices. Lahmiri et al. (2018) show the long-term
volatility of seven different cryptocurrency markets using the FIGARCH method and conclude that the
volatility shocks in these markets have long memory.

Mensi et al. (2019) investigate the impacts of structural breaks on the dual long memory levels of Bitcoin
and Ethereum price returns. By using four GARCH-class models (e.g., Fractional Integrated GARCH
(FIGARCH), Fractional Integrated APARCH (FIAPARCH), and Hyperbolic GARCH (HYGARCH), they
determine dual long memory and structural changes on cryptocurrency markets. They suggest that
the FIGARCH model with structural breaks variables provides a comparatively superior forecasting
accuracy performance.

In a VaR context, Likitratcharoen et al. (2018) predict the Value at Risk (VaR) of Bitcoin, Ethereum
and Ripple using historical and Gaussian parametric, VaR. They use Kupiec’s proportion of failures
(POF) test, independence test, and the Christoofersen (1998) and joint test in order to backtest their
VaR model. Their findings show that historical VaR model is suitable for measuring cryptocurrency
risk over delta normal VaR only for a high confidence level of critical values. Similarly, Osterrieder
and Lorenz (2017) and Gkillas and Katsiampa (2018) apply extreme value theory to estimate VaR.
Gkillas and Katsiampa (2018) analyze the tail behavior of the returns of five major cryptocurrencies
in order to find while Bitcoin Cash is the riskiest cryptocurrency analyzed, Bitcoin and Litecoin
are the least risky. Other studies also utilize Value-at-Risk methodologies on returns of different
cyrptocurrencies to analyze their time varying-volatilities. They use methodologies based on vine
copulas and robust volatility models. (Ardia et al. 2019; Stavroyiannis 2018; Troster et al. 2019; Pele
and Mazurencu-Marinescu-Pele 2019; Trucíos et al. 2019).

As the literature summarized above shows, the evidence on time-varying properties of the
volatility of cryptocurrency returns are fragmented. This study carries out a more comprehensive
analysis by using all three of the largest market cap and most liquid cryptocurrencies (namely, Bitcoin,
Ethereum, Ripple) and applying four different long-memory tests in the returns and volatilities of
cryptocurrencies to investigate their stochastic properties. Moreover, after worldwide adoption of the
Basel II Accord, Value at Risk (VaR) became the most widely used risk measure in quantitative finance.
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Value-at-Risk measures the approximate market risk of all regulated financial institutions following the
Basel Accords (Alexander 2009). Therefore, investors in cryptocurrencies need to accurately predict
VaR of their portfolio in order to acquire a sufficiently covered risk. Our analysis extends the findings
from the literature (Chu et al. 2017) by focusing not only on the risk measurement with VaR model, but
also expected shortfalls which is a coherent measure of risk.

3. Data

Most studies summarized above concentrate their GARCH models on Bitcoin only. In this paper,
however, we investigate the optimal GARCH model for not only Bitcoin but also the two other major
cryptocurrencies in the market: Ethereum and Ripple. The daily price data of three major crypto
currencies was extracted from Bitfinex, which provides advanced services such as cryptocurrency
exchange for digital currency traders and liquidity providers. Bitfinex is the world’s largest exchange
by volume for trading Bitcoin against the US Dollar. In order to obtain the longest uninterrupted period
possible for each cryptocurrency, we use different starting points for each. Bitcoin has the longest data
stream starting from January 1, 2014, followed by Ethereum we use data starting from October 3, 2016.
Finally, the data stream for Ripple starts on May 20, 2017. Data for all three cryptocurrencies end on
February 28, 2018.

Daily return series are calculated as log differences of price levels as follows:

rt = 100 × [lnPt − lnPt−1] (1)

where rt represents return at time t, lnPt is the natural logarithm of the opening price at date t and
lnPt−1 is the natural logarithm of the opening price at date t − 1.

The price and return series for Bitcoin, Ethereum, and Ripple are plotted in Figures 1–3, respectively.
From Figure 1A, we can see that Bitcoin prices started a gradual increase at the beginning of 2017,
but suddenly started rising rapidly at the end of 2017. This large and sudden increase corresponds
to the introduction of the bitcoin futures trading. The return series in Figure 1B, supports the same
observation. Returns of Bitcoin show high volatility all throughout the time period, however volatility
spikes are bigger and more frequent after 2017. Figure 2A,B show that Ethereum prices and returns
follow a very similar pattern, with increase in prices after 2017 and constantly high volatility since the
beginning of trading. In the case of Ripple; however, there is no gradual price increase. According to
Figure 3, the climb in Ripple prices begins with a rapid increase in December of 2017. Volatility pattern
is slightly different than Bitcoin and Ethereum as well. According to Figure 3B, Ripple return volatility
is relatively stable, but starts to spike after December 2017 as well.

J. Risk Financial Manag. 2020, 13, x FOR PEER REVIEW 5 of 21 

 

analysis extends the findings from the literature (Chu et al. 2017) by focusing not only on the risk 
measurement with VaR model, but also expected shortfalls which is a coherent measure of risk. 

3. Data 

Most studies summarized above concentrate their GARCH models on Bitcoin only. In this paper, 
however, we investigate the optimal GARCH model for not only Bitcoin but also the two other major 
cryptocurrencies in the market: Ethereum and Ripple. The daily price data of three major crypto 
currencies was extracted from Bitfinex, which provides advanced services such as cryptocurrency 
exchange for digital currency traders and liquidity providers. Bitfinex is the world’s largest exchange 
by volume for trading Bitcoin against the US Dollar. In order to obtain the longest uninterrupted 
period possible for each cryptocurrency, we use different starting points for each. Bitcoin has the 
longest data stream starting from January 1, 2014, followed by Ethereum we use data starting from 
October 3, 2016. Finally, the data stream for Ripple starts on May, 20, 2017. Data for all three 
cryptocurrencies end on February 28, 2018.  

Daily return series are calculated as log differences of price levels as follows:  𝑟௧ = 100 𝑥 [𝑙𝑛𝑃௧ −  𝑙𝑛𝑃௧ିଵ] (1) 

where rt represents return at time t, lnPt is the natural logarithm of the opening price at date t and 
lnPt−1 is the natural logarithm of the opening price at date t − 1.  

The price and return series for Bitcoin, Ethereum, and Ripple are plotted in Figures 1–3, 
respectively. From Figure 1A, we can see that Bitcoin prices started a gradual increase at the 
beginning of 2017, but suddenly started rising rapidly at the end of 2017. This large and sudden 
increase corresponds to the introduction of the bitcoin futures trading. The return series in Figure 1B, 
supports the same observation. Returns of Bitcoin show high volatility all throughout the time period, 
however volatility spikes are bigger and more frequent after 2017. Figure 2A,B show that Ethereum 
prices and returns follow a very similar pattern, with increase in prices after 2017 and constantly high 
volatility since the beginning of trading. In the case of Ripple; however, there is no gradual price 
increase. According to Figure 3, the climb in Ripple prices begins with a rapid increase in December 
of 2017. Volatility pattern is slightly different than Bitcoin and Ethereum as well. According to Figure 
3B, Ripple return volatility is relatively stable, but starts to spike after December 2017 as well.  
 

 

(A) Time series plots of Bitcoin price. 

Figure 1. Cont.



J. Risk Financial Manag. 2020, 13, 107 6 of 20J. Risk Financial Manag. 2020, 13, x FOR PEER REVIEW 6 of 21 

 

 
(B) Time series plots of Bitcoin return. 

Figure 1. Time Series Plots of Bitcoin price and return. (A) Presents the plot historical plot of daily 
closing prices for Bitcoin between January 1, 2014 and February 28, 2018. (B) Presents the daily returns 
for Bitcoin for the same time period. The data is obtained from Bitfinex. 

 
(A) Time series plots of Ethereum price 

 
(B) Time series plots of Ethereum return 

Figure 1. Time Series Plots of Bitcoin price and return. (A) Presents the plot historical plot of daily
closing prices for Bitcoin between January 1, 2014 and February 28, 2018. (B) Presents the daily returns
for Bitcoin for the same time period. The data is obtained from Bitfinex.
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Figure 3. Time Series Plots of Ripple Price and Return. (A) Presents the plot historical plot of daily
closing prices for Ripple between May 20, 2017 and February 28, 2018; (B) presents the daily returns for
Ripple for the same time period. The data is obtained from Bitfinex.

Descriptive statistics for cryptocurrencies’ return series are shown in Table 1. Results show that
all series have high excess kurtosis. Bitcoin and Ethereum have negative skewness. These statistics
indicate that the distributions of the series seem to be leptokurtic. Moreover, Ljung-Box Q (20) statistics
for all returns are insignificant, while it is significant for squared returns of all cryptocurrencies. Besides,
regardless of the lag chosen, all ARCH (Autoregressive conditional heteroskedasticity) test statistics
are highly significant. Therefore, conditional heteroscedasticity and serial correlations should be taken
into account while modeling these series.
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Table 1. Descriptive Statistics.

Statistic BTC ETH XRP

Mean 0.158 0.605 0.351
Maximum 24.348 25.859 63.137
Minimum −28.703 −34.48 −37.713
Std. Dev. 4.09 6.613 9.859
Skewness −0.442 −0.076 1.54
Kurtosis 9.873 6.363 11.715

Jarque-Bera 2951.355 339.707 1014.636
ARCH 1-2 52.23 *** 49.4 *** 6.16 ***
ARCH 1-5 25.45 *** 22.42 *** 2.88 ***
ARCH 1-10 14.02 *** 11.83 *** 4.33 ***

Q(20) 27.75 22.62 26.94
Qsq(20) 212.32 *** 159.79 *** 69.52 ***

Observations 1475 719 285

Table 1 provides the descriptive statistics for the returns of Bitcoin, Ethereum and Ripple daily returns. BTC
represents Bitcoin, ETH represents Ethereum and XRP represents Ripple. BTC data series starts on January 1, 2014,
ETH data series starts on October 3, 2016 and the Ripple data series starts on May 20, 2017. All series end on
February 28, 2018. In addition to traditional descriptive statistics, the table also provides the ARCH 1-2, ARCH
1-5 and ARCH 1-10 estimations and Ljung-Box Q20 statistics for the returns and squared returns for each of the
cryptocurrencies. *, **, *** represent statistical significance at 10%, 5% and 1% levels, respectively.

4. Methodology

In order to better detect various characteristics of cryptocurrency returns, we employ long memory
tests before modeling the volatility of these series. According to the results of these long memory
tests, we later estimate the appropriate GARCH class model, which accurately takes into account the
asymmetry in the relevant series. Long memory process could be described as a slowly decaying
autocovariance function. At this point it is necessary to remind that volatility is highly persistent in
high-frequency financial time series.

4.1. Long Memory Tests

In order to test for long memory properties in these series, we employ four different statistics:
The Hurst–Mandelbrot Rescaled Range (R/S) statistics; Lo (1991) Rescaled Range R/S; Geweke and
Porter-Hudak (1983) (GPH); and the Robinson and Henry (1999) Gaussian Semiparametric (GSP) test
statistics. Each one of these long-term memory statistics are detailed below. When testing for long-term
memory for all three cryptocurrencies, we use the absolute returns and squared returns as proxies of
daily volatility following Arouri et al. (2012).

4.1.1. Rescaled Range (R/S) Statistics

Rescaled range statistic R/S was introduced by Hurst (1951) and later revised by Mandelbrot
and Wallis (1969) in order to detect the presence of long-term memory in time series. According to
Mandelbrot (1971), R/S statistics could be used in economic and financial analysis. Essentially, rescaled
range statistic R/S is the range of partial sums of deviations of a time series from its mean rescaled by
its standard deviation (Zivot and Wang 2003). Consequently, Hurst exponent H symbolizes the scaling
behavior of the range of cumulative departures of a time series from its mean.

Formally, the range R of a time series {xt}, t = 1, . . . , T is determined as:

RT = max
1≤t≤T

T∑
t=1

(xt − x) − min
1≤t≤T

T∑
t=1

(xt − x) (2)
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Here, x is given as an estimate of the sample mean. The classical rescaled range is the best known
R/S statistic:

R/S = σ̂−1

max
1≤t≤T

T∑
t=1

(xt − x) − min
1≤t≤T

T∑
t=1

(xt − x)

 , σ̂2 = T−1
T∑

t=1

(xt − x)2 (3)

This statistic is robust to data non-normality, but in the presence of autocorrelation the coefficients
may be biased. Therefore, Lo (1991) developed a modified rescaled range QT, which adjusts for possible
short term dependence by applying the Newey West heteroscedasticity and autocorrelation consistent
estimator instead of the sample standard deviation S:

QT = S−1
T

max
1≤t≤T

T∑
t=1

(xt − x) − min
1≤t≤T

T∑
t=1

(xt − x)

 (4)

S2
T = S2 +

2
T

τ∑
j=1

ω j(τ)


T∑

i= j+1

(xi − x)
(
xi− j − x

),ω j(τ) = 1−
j

τ+ 1

Here Mandelbrot’s null hypothesis is “there is no long-term dependence” under the assumption
of no autocorrelation, while Lo’s null hypothesis is only “there is no long-term dependence”.

4.1.2. Geweke and Porter-Hudak (GPH) Model

Geweke and Porter-Hudak (1983) suggested a semi-nonparametric approach to test for long-term
memory in the sense of fractionally integrated processes. Furthermore, Geweke and Porter-Hudak
(1983) used Fourier transformation and spectral density into the following formula.

Let rt be the return series. The GPH estimator of the long memory parameter d for rt can be then
determined using the following periodogram:

log
[
I(w j)

]
= β0 + β1 log

[
4 sin2

(w j

2

)]
+ ε j (5)

where w j = 2π j/T, j = 1, 2, . . . , n; ε j is the residual term and w j represents the n =
√

T Fourier
frequencies. I(w j) stands for the sample periodogram defined as:

I(w j) =
1

2πT

∣∣∣∣∣∣∣
T∑

t=1

rte−w jt

∣∣∣∣∣∣∣
2

where rt is assumed to be a covariance stationary time series. The estimate of fractional difference
parameter d, namely d̂GPH, is −β̂1. GPH test for the null hypothesis is “there is no long memory
(d = 0)”.

4.1.3. Gaussian Semiparametric (GSP) Method

The Gaussian Semiparametric estimation model developed by Robinson and Henry (1999) is
based on the specification of the shape of the spectral density of the time series. The Robinson and
Henry (1999) GSP estimator of the long memory parameter for a covariance stationary series, which is
consistent and asymptotically normal under certain assumptions, is given by:

f (w) = Gw1−2H as w→ 0+ (6)
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where 1
2 < H < 1, 0 < G < ∞ and f (w) is the spectral density of rt. The periodogram with respect to

the observations of rt, t = 1, . . . , T is defined as:

I(w j) =
1

2πT

∣∣∣∣∣∣∣
T∑

t=1

rteitw j

∣∣∣∣∣∣∣
2

(7)

Accordingly, the Hurst exponent parameter H is obtained by minimizing the function R(H).

H = argmin
∆1≤H≤∆2

R(H)

where: 

0 < ∆1 < ∆2 < 1

R(H) = log

 1
m

m∑
j=1

I(w j)

w1−2H
j

− (2H − 1) 1
m

m∑
j=1

log(w j)

m ∈ (0, [n/2])
w j = 2π j/T

4.2. Results of Long Memory Tests

Tables 2–4 provide the results of the long-range dependence tests for daily returns and daily
squared returns for Bitcoin, Ethereum and Ripple, respectively. According to the four tests utilized
(Hurst–Mandelbrot R/S, Lo R/S, GPH and GSP), and presented in Panels A in Tables 2–4, test statistics
do not reject the null hypothesis of no long-range dependence in return series. The results indicate that
daily returns for Bitcoin, Ethereum and Ripple do not exhibit the long memory effect.

Panels B in Tables 2–4, present results for the squared daily returns of these three cryptocurrencies.
Long-term memory test results demonstrate the presence of the long memory effect at the 1% level. The
d parameter is statistically significant and lies within the interval (0, 0.5), indicating that the squared
return series exhibit long memory process.

Table 2. Long Memory Tests for Bitcoin (BTC) Return and Squared Return.

Panel 2A: Bitcoin (BTC) Daily Returns

Statistic Hurst–Mandelbrot
R/S Lo R/S GPH GSP

d parameter - - –0.027 (0.025) –0.01 (0.018)
Test Statistics 2.094 2.117
Critical values Probability Probability

90% [0.861, 1.747] [0.2722] [0.5635]
95% [0.809, 1.862]
99% [0.721, 2.098]

Panel 2B: Bitcoin (BTC) Squared Daily Returns

Statistic Hurst–Mandelbrot
R/S Lo R/S GPH GSP

d parameter - - 0.175 (0.025) 0.175 (0.018)
Test Statistics 3.252 2.900
Critical values Probability Probability

90% [0.861, 1.747] [0.0000] [0.0000]
95% [0.809, 1.862]
99% [0.721, 2.098]

This table provides the results of the four different long-term memory tests run on daily returns of Bitcoin and
squared daily returns of Bitcoin between January 1, 2014 and February 28, 2018. The 4 different long memory test
results presented are: Hurst–Mandelbrot Rescaled Range (R/S) statistics, Lo (1991) Rescaled Range R/S statistics,
Geweke and Porter-Hudak (1983) (GPH) statistics, and the Robinson and Henry (1999) Gaussian Semiparametric
(GSP) test statistics. Panel 2 A presents the results for Bitcoin daily returns and Panel 2B represents the results for
squared daily Bitcoin returns.
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Table 3. Long Memory Tests for Ethereum Return and Squared Return.

Panel 3A: Ethereum (ETH) Daily Returns

Statistic Hurst–Mandelbrot
R/S Lo R/S GPH GSP

d parameter - - 0.034 (0.038) 0.022 (0.026)
Test Statistics 1.676 1.665
Critical values Probability Probability

90% [0.861, 1.747] [0.3796] [0.3963]
95% [0.809, 1.862]
99% [0.721, 2.098]

Panel 3B: Ethereum (ETH) Squared Daily Returns

Statistic Hurst–Mandelbrot
R/S Lo R/S GPH GSP

d parameter - - 0.264 (0.038) 0.255 (0.026)
Test Statistics 2.482 2.139
Critical values Probability Probability

90% [0.861, 1.747] [0.0000] [0.0000]
95% [0.809, 1.862]
99% [0.721, 2.098]

This table provides the results of the four different long-term memory tests run on daily returns of Ethereum and
squared daily returns of Ethereum between October 3, 2016 and February 28, 2018. The 4 different long memory test
results presented are: Hurst–Mandelbrot Rescaled Range (R/S) statistics, Lo (1991) rescaled Range R/S statistics,
Geweke and Porter-Hudak (1983) (GPH) statistics, and the Robinson and Henry (1999) Gaussian Semiparametric
(GSP) test statistics. Panel 3A presents the results for Ethereum daily returns and Panel 3B represents the results for
squared daily Ethereum returns.

Table 4. Long Memory Tests for Ripple Return and Squared Return.

Panel 4A: Ripple (XRP) Daily Returns

Statistic Hurst–Mandelbrot
R/S Lo R/S GPH GSP

d parameter - - 0.076 (0.063) 0.038 (0.041)
Test Statistics 1.496 1.492
Critical values Probability Probability

90% [0.861, 1.747] [0.2298] [0.3613]
95% [0.809, 1.862]
99% [0.721, 2.098]

Panel 4B: Ripple (XRP) Squared Daily Returns

Statistic Hurst–Mandelbrot
R/S Lo R/S GPH GSP

d parameter - - 0.18 (0.063) 0.122 (0.041)
Test Statistics 2.011 1.887
Critical values Probability Probability

90% [0.861, 1.747] [0.0047] [0.0035]
95% [0.809, 1.862]
99% [0.721, 2.098]

This table provides the results of the four different long-term memory tests run on daily returns of Ripple and
squared daily returns of Ripple between October 3, 2016 and February 28, 2018. The four different long memory test
results presented are: Hurst–Mandelbrot Rescaled Range (R/S) statistics, Lo (1991) Rescaled Range R/S statistics,
Geweke and Porter-Hudak (1983) (GPH) statistics, and the Robinson and Henry (1999) Gaussian Semiparametric
(GSP) test statistics. Panel 4A presents the results for Ripple daily returns and Panel 4B represents the results for
squared daily Ripple returns.

These results are in accordance with results in previous similar studies on cryptocurrencies.
Mensi et al. (2019) state that the persistence level of both returns and volatility of Bitcoin and Ethereum
decrease after considering long memory and switching states. In addition, Bouri et al. (2016) show
evidence of a long memory in two measures of volatility of Bitcoin. In this study, we analyze all three
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major cryptocurrencies that make up close to 86% of the entire cryptocurrency market cap and find
that long-term memory exists in the squared terms for all three.

In short, these long-term memory test results confirm that GARCH-class models, which take into
account long-term memory properties, are the most appropriate models for the volatility of Bitcoin,
Ethereum and Ripple.

4.3. GARCH Models

The main assumption underlying Bollerslev’s (1986) GARCH modeling is that the market variance
depends not only on historical conditional market variance but also on market shocks. Generalized
Auto Regressive Conditional Heteroscedasticity (GARCH, p, q) equation is written in the following
form:

Rt = α0 +
∑k

i=1
βiXi +

∑h

j=1
ψ jRt− j + εt (8)

where εt|Ωt−1 ∼ N(0, ht)

ht = ω+
∑p

i=1
βiht−i +

∑q

j=1
α jε

2
t− j (9)

where ht = σ2
t |Ωt−1 .

The satisfying conditions for the equations are ω > 0,α > 0, β ≥ 0,
( p∑

i=1
αi +

q∑
i=1

βi < 1
)
. εt stands

for disturbance term for mean equation, Rt describes the return of the asset at time t, and X’s
denote explanatory variables. Equations (8) and (9) are the mean and the conditional variance
equations, respectively.

In this model, in order to assure a positive conditional variance, estimated parameters should
satisfy non-negativity constraints. Hence, GARCH models consider only the magnitude of the
shock—not its sign.

4.3.1. The Fractional Integrated GARCH (FIGARCH) Model

Most of the time, high frequency financial data follows a pattern that yields a sum of α1 and β1 close
to one, with α1 small and β1 large. Therefore, the effect of shocks on the conditional variance diminishes
very slowly. In these situations, Baillie et al. (1996) suggest the class of Fractionally Integrated GARCH
(FIGARCH) models. This model captures slowly decaying volatility as well as recognizing both the
long memory and short memory characteristics of conditional variance (Chkili et al. 2014). Fractionally
integrated processes are significantly different from both stationary and unit-root processes with their
persistence and mean reverting features.

Formally, the FIGARCH (1, d, 1) can be defined with lag operator “L” as follows

ht = ω+ βht−1 +
[
1−

(
1− βL−1

)
(1− λL)(1− L)d

]
ε2

t (10)

where ω > 0, β ≺ 1 and λ < 1. The fractional integration parameter d reflects the degree of long memory
or the persistence of shocks to conditional variance, and satisfies the condition 0 ≤ d ≤ 1. If 0 < d < 1,
the model implies an intermediate range of persistence and indicates the volatility shocks disperse
only at a hyperbolic rate. If the integration parameter d = 0 then the model has a short memory and
reduces to a GARCH (1,1) model. On the other hand, if d = 1, the model transforms to IGARCH (1,1)
whose variance process is no longer mean-reverting (Chkili et al. 2014).

4.3.2. Hyperbolic GARCH (HYGARCH) Model

Davidson (2004) has developed a new GARCH-class model called hyperbolic GARCH (HYGARCH)
model. This new model extends the conditional variance of the FIGARCH model by introducing
weights into the difference operator. The HYGARCH model allows for modeling long memory property
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in conditional volatility with hyperbolic convergence rates. The HYGARCH (1, d,1) model can be
written as follows:

ht = ω+
[
1− (1− βL)−1λL

{
1 + α

(
(1− L)d

− 1
)}]
ε2

t (11)

where ω > 0, α ≥ 0, β ≺ 1, λ < 1 and 0 ≤ d ≤ 1.
Davidson (2004) argues that the HYGARCH model allows for the existence of both second

moments, and even more extreme amplitudes than the simple IGARCH and FIGARCH models.

4.4. The VaR and Backtesting

Value at Risk (VaR) is a risk measure that determines the losses that may happen in extreme events
for a given confidence level. Main parameters of VaR are the significance level (confidence level 1-α)
and the risk horizon (h), which is the period of time in terms of trading days.

VaR is an especially popular and useful tool for risk management in the sense that it measures both
risk factor and the sensitivity to the same risk factor, simultaneously. VaR finds most of its universal
applicability in its ability to quantify various types of risk (Alexander 2009).

VaR can identify extreme events, however it is not sub-additive, i.e., the total risk of a portfolio
does not equal the sum of the risks of the individual assets. Due to this shortcoming “Expected
Shortfall” has been developed as an alternative but related measure of risk (Scaillet 2000).

Expected shortfall is a risk measure, used to predict the expected value of the losses conditional
on the loss being larger than the VaR (Scaillet 2004).

ESFt = E(|Lt | > |VaRt|) (12)

where Lt is the expected value of loss if a VaRt violation occurs. Hendricks (1996) interpreted the ESF1
as the excess value of the losses over the VaR, the ESF2 as expected value of loss exceeding the VaR
level, divided by the associated VaR values.

In this study, we use both long and short trading positions and estimate the relevant VaRs for the
FIGARCH and HYGARCH models under the student-t and skewed student-t distributions. The daily
VaR for long and short trading positions at time t can be calculated as

VaRL,t = µ̂t + stασ̂t (13)

and
VaRS,t = µ̂t + st1−ασ̂t (14)

where stα represents the left quantile at % α for the student-t distribution and st1−α the right quantile
at % α. µ̂t denotes the estimated daily conditional mean whereas σ̂t represents the estimated standard
deviation of the cryptocurrency returns obtained from a FIGARCH and HYGARCH models.

The daily VaR’s for the skewed-Student-t distribution for long and short positions is given by

VaRL,t = µ̂t + skstασ̂t (15)

and
VaRS,t = µ̂t + skst1−ασ̂t

In order to determine the accuracy of the VaR model, estimations should be backtested. This
testing method enables us to compare the actual losses (or gains) in the past observations to the VaR
and determine exceedances or failures. The most widely known test is Kupiec’s (1995) POF-test
that examines whether the proportion of failures (POF) calculated from the data corresponds to its
theoretical value.

If N =
∑T

t=1 It, is the number of exceptions in the sample size T, then:
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It+1 =

{
1 i f rt+1 < VaRt+1|t(∝)
0 i f rt+1 ≥ VaRt+1|t(∝)

(16)

where it follows a binomial distribution, N|B(T, α). If α = E(N/T) is the expected exception frequency,
then the null hypothesis is whether the failure rate of the model is equal to the expected one: H0:
α = α0 and where α0 is the pre-specified VaR level.

Under the null hypothesis, the Kupiec’s (1995) likelihood ratio test is given by:

LRuc = −2log
{
αN

0 (1− α0)
T−N

}
+ 2log

{(N
T

)N
(1−

(N
T

)
)

T−N}
(17)

The Likelihood ratio statistics is asymptotically χ2 (1) chi squared distributed with one degree of
freedom. If the null hypothesis, H0: α = α0, cannot be rejected, then the model will be favored for
VaR prediction, which exhibits unconditional coverage measured by α = E(N/T) equals the desired
coverage level α0.

5. Findings

In this part, results from the estimated GARCH-type models are presented. Student-t and skewed
student-t distributions have been used since the returns have heavier tails than the normal distribution.
We estimate FIGARCH, HYGARCH, FIAPARCH models with regard to long memory test results in
order to account for the long memory properties of our cryptocurrency returns. However, in Table 5
we only report the best results from the various estimated GARCH models. As can be seen from the
table, we fit HYGARCH, and FIGARCH both student-t and skewed student-t distributions to the
return series of Bitcoin, Ethereum, and Ripple.

Table 5. Estimation Results of Bitcoin, Ethereum, and Ripple returns.

Estimation Method

BTC ETH XRP

HYGARCH
Student

HYGARCH
sk.-t

FIGARCH
sk.-t

HYGARCH
sk.-t

FIGARCH
Student

FIGARCH
sk.-t

Cst(M) 0.145 *** 0.114 ** 0.368 ** 0.351 ** −0.192 0.092
Cst(V) 0.128 0.146 272.83 1.127 0.722 0.377

d-Figarch 0.65 *** 0.659 *** 0.68 *** 0.643 ** 0.625 ** 0.60 **
ARCH(Alpha1) 0.207 ** 0.201 ** 0.281 ** 0.326 0.594 *** 0.586 ***
GARCH(Beta1) 0.678 *** 0.68 *** 0.636 *** 0.633 *** 0.896 *** 0.903 ***

Student(DF) 2.737 *** 3.584 ***
Asymmetry -0.023 0.103 *** 0.098 *** 0.104

Tail 2.739 *** 4.115 *** 3.73 *** 3.648 ***
Log Alpha (HY) 0.241 ** 0.238 ** 0.106

No. Observations 1475 1475 719 719 285 285
No. Parameters 7 8 7 8 6 7
Log Likelihood −3758.126 −3757.843 −2256.649 −2256.91 −994.076 −993.21

AIC 5.105 5.106 6.296 6.30 7.018 7.019
SW 5.130 5.134 6.341 6.351 7.094 7.108
SB 5.105 5.106 6.296 6.29 7.017 7.017

H-Quinn 5.114 5.116 6.313 6.319 7.048 7.054
JB 34298 35411 177.96 168.64 210.67 281.64

Nyblom stability test 3.964 4.152 1.989 1.679 1.070 1.171
Pearson (50) 54.322 * 53.847 * 81.486 *** 67.30 *** 49.912 48.50

This table presents the results of various estimated GARCH type models. HYGARCH, and FIGARCH models with
both student t and skewed student t distributions are fitted to all three return series. Models with the best outcomes
are presented. BTC, ETH and XRP represent the daily return series for Bitcoin, Ethereum and Ripple respectively.
BTC data series starts on January 1, 2014, ETH data series starts on October 3, 2016 and the Ripple data series starts
on May 20, 2017. All series end on February 28, 2018. Sk.-t is the skewed Student-t distribution. *, ** and *** indicate
statistical significance at the 10%, 5% and 1% levels respectively.

Especially, d-FIGARCH coefficients are statistically significant at 1% level, which implies the
existence of long memory in the selected cryptocurrencies’ volatility. The values of AIC, SW, SB,
and H-Quinn are given in Table 5 for the fitted models. We only include the most appropriate methods
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based on these information criteria and Log-likelihood statistics. However, there are small differences
between these models.

The student-t distribution gives the smallest value of AIC, SW, SB, and H-Quinn with HYGARCH
(1, 0.65, 1) model for Bitcoin. The best fitting model for Ethereum is the FIGARCH (1, 0.68, 1) with
skewed student-t distribution. Asymmetric parameters are also positive and statistically significant for
Ethereum at a 1% level, indicating that Ethereum returns are skewed to the right. In addition, the tail
parameters in HYGARCH and FIGARCH models are statistically significant and positive for both
Bitcoin and Ethereum. These results reveal that these two cryptocurrencies are fat-tailed. The student-t
distribution gives the smallest values of information criteria for Ripple returns. Thus, we may suggest
that FIGARCH (1, 0.625, 1) is the best fitting model for Ripple.

In Sample VaR Estimations

In this section, the GARCH models were tested for VaR levels ranging from 5% to 1%. Table 6 displays
the in-sample VaR estimations which are calculated from FIGARCH and HYGARCH models for daily
returns of Bitcoin, Ethereum and ripple, respectively. The Kupiec tests are conducted for each of these
models in order to investigate whether the empirical failure rate is equal to the pre-specified VaR level.

Table 6. In-sample Value-at-Risk (VaR) Backtesting for Cryptocurrency Returns.

Panel A: VaR Backtesting Results for Bitcoin (BTC) Returns.

BTC HYGARCH sk.-t BTC HYGARCH

Short positions Short positions

Quantile Success rate Kupiec LRT P-value Success rate Kupiec LRT P-value
0.95 0.947 0.253 0.614 0.951 0.044 0.833

0.975 0.974 0.034 0.851 0.974 0.0348 0.851
0.99 0.989 0.104 0.746 0.989 0.1041 0.746

Long positions Long positions

Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value
0.05 0.054 0.728 0.393 0.057 1.725 0.188

0.025 0.023 0.099 0.752 0.025 0.0004 0.983
0.01 0.010 0.004 0.947 0.010 0.004 0.947

Panel B: VaR Backtesting Results for Ethereum (ETH) Returns.

ETH FIGARCH sk.-t ETH HYGARCH sk.-t

Short positions Short positions
Quantile Success rate Kupiec LRT P-value Success rate Kupiec LRT P-value

0.95 0.933 3.864 ** 0.049 0.936 2.727 * 0.098
0.975 0.973 0.058 0.808 0.979 0.534 0.464
0.99 0.988 0.088 0.765 0.991 0.210 0.646

Long positions Long positions

Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value
0.05 0.058 1.019 0.312 0.051 0.031 0.858

0.025 0.030 0.863 0.352 0.026 0.058 0.808
0.01 0.011 0.088 0.765 0.009 0.005 0.942

Panel C: VaR Backtesting Results for Ripple (XRP) Returns.

XRP FIGARCH XRP FIGARCH sk.-t

Short positions Short positions
Quantile Success rate Kupiec LRT P-value Success rate Kupiec LRT P-value

0.95 0.933 1.515 0.218 0.940 0.527 0.467
0.975 0.968 0.467 0.494 0.968 0.467 0.494
0.99 0.975 4.341 ** 0.037 0.982 1.337 0.247

Long positions Long positions
Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value

0.05 0.045 0.118 0.730 0.052 0.040 0.839
0.025 0.017 0.724 0.394 0.028 0.106 0.744
0.01 0.007 0.285 0.592 0.010 0.007 0.929

Panels A, B and C represent the VaR backtesting results for Bitcoin, Ethereum and Ripple, respectively using the
models presented in Table 5. BTC data series starts on January 1, 2014, ETH data series starts on October 3, 2016 and
the Ripple data series starts on May 20, 2017. All series end on February 28, 2018. The table reports the Kupiec
test statistics. Both short and long position VaRs are tested. Sk.-t is the skewed Student-t distribution. *, ** and ***
indicate that statistics are significance at the 10%, 5% and 1% level of significant respectively. The best model is the
one with the least rejections.
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The Kupiec test statistics are not significant in most cases, indicating that the FIGARCH and
HYGARCH models perform well in estimating the volatility of these cryptocurrency returns. Kupiec
test statistics is only significant at 5% level for Ethereum and 1% level for Ripple in short positions.
Moreover, the Kupiec test statistics are not statistically significant for any of the three cryptocurrencies
for long trading positions. More precisely, the results show that the FIGARCH and HYGARCH models
with skewed student t distributions outperform the other methods.

The next risk measure considered for the three cryptocurrencies is Expected Shortfalls (ESF).
The expected shortfall results for long and short positions are identified as ESF1 and ESF2, respectively,
and are presented in Table 7.

Table 7. In-sample Value-at-Risk (VaR) Expected Shortfalls.

Panel A: Expected Shortfalls for Bitcoin (BTC).

BTC HYGARCH HYGARCHsk.-t

α quantile ESF1 ESF2 ESF1 ESF2

Short positions

0.95 7.7225 1.5586 7.5319 1.5416
0.97 9.0107 1.4334 9.0107 1.4624
0.99 9.6857 1.2315 9.6857 1.26

Long positions

0.05 –8.72 1.6721 –8.88 1.6717
0.025 –11.08 1.6698 –11.38 1.6709
0.01 –13.46 1.5745 –13.46 1.537

Panel B: Expected Shortfalls for Ethereum (ETH).

ETH FIGARCH HYGARCHsk.-t

α quantile ESF1 ESF2 ESF1 ESF2

Short positions

0.95 13.8 1.3663 13.93 1.33
0.97 15 1.3255 15.15 1.3606
0.99 15.92 1.2213 16.59 1.2115

Long positions

0.05 −12.62 1.4874 −13.25 1.4821
0.025 −14.19 1.3998 −15.03 1.3772
0.01 −19.48 1.3946 −20.11 1.3148

Panel C: Expected Shortfalls for Ripple (XRP).

XRP FIGARCH FIGARCHsk.-t

α quantile ESF1 ESF2 ESF1 ESF2

Short positions

0.95 22.44 1.635 23.52 1.6362
0.97 31.35 1.6778 31.35 1.607
0.99 34.19 1.3312 42.07 1.4082

Long positions

0.05 −17.24 1.3569 −16.84 1.4136
0.025 −23.05 1.2638 −20.02 1.2529
0.01 −28.26 1.0676 −27.22 1.1236

Panels A, B and C represent the VaR backtesting Expected Shortfalls for Bitcoin, Ethereum and Ripple, respectively
using the models presented in Table 5. BTC data series starts on January 1, 2014, ETH data series starts on October 3,
2016 and the Ripple data series starts on May 20, 2017. All series end on February 28, 2018. Expected Shortfalls for
both long and short positions are presented. ESF 1 represents the excess value of losses above the VaR level and ESF
2 represents the expected value of losses exceeding the VaR level divided by the associated VaR values.
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According to our findings, expected shortfalls are the highest for Ripple and lowest for Bitcoin
for all risk levels. In conclusion, investors should be aware that Ethereum and Ripple are subject to a
much higher risk than Bitcoin and may require higher capital to cover for potential losses.

6. Conclusions

Volatility of various assets in financial markets has been broadly analyzed in the finance literature.
However, there exists little empirical research on modelling volatility and investigating long memory
property of cryptocurrencies. Studies on cryptocurrencies has recently prompted the interest of
researchers as their use has increased adequately.

The main purpose of this study is to model the volatility of the mostly mined cryptocurrencies:
Bitcoin, Ethereum, and Ripple. By modelling volatility, we take into account long memory properties of
these cryptocurrencies. This gives us the opportunity to examine market efficiency. Similar to previous
researches, Cheah et al. (2018), Bouri et al. (2019) and Mensi et al. (2019), our findings also indicate
that cryptocurrency market has a long memory and that such a memory implies inefficiency in the
market where the estimated memory in volatility can help investors capture speculative profits.

From the price data, it can be observed that cryptocurrencies are highly volatile especially over
the period spanning between July 2017 and February 2018. In addition, our findings indicate that
HYGARCH model appears to be the best fitted model for Bitcoin as reported by the AIC, SW, SB and
H-Quinn criteria, and Log likelihood. Considering long memory also improves the performance of
modelling cryptocurrencies with GARCH models. On the other hand, the FIGARCH model with
skewed student distribution produces better estimations for Ethereum. Further, FIGARCH model
with student distribution appears to give a good fit for Ripple return. All of the series for the selected
cryptocurrencies exhibit fat-tail problem which may be a sign for the probability that an investment
return in the selected cryptocurrencies may move beyond three standard deviations.

Other studies dealing with cryptocurrencies also attain almost identical results: Bouri et al. (2019)
found long memory in the volatility of Bitcoin. Mensi et al. (2019) argued that FIGARCH model with
structural breaks variables outperforms the other models in the forecasting accuracy performance.
Lahmiri et al. (2018) suggested that the FIGARCH model is the best suited for estimating the
volatility and volatility shocks in these markets have long memory. Moreover, like previous study
of Stavroyiannis (2018), VaR and expected shortfall analysis show that the capital requirements of
the cryptocurrencies are high. In conclusion, models which take into account volatility clustering,
asymmetry and long memory in the cryptocurrency volatilities predict more accurately the VaR and
ESF for both the short and the long trading positions.

The findings of this research will help investors and especially the institutional investors in
developing investment strategies by providing cryptocurrencies as a potential investment instrument
in order to achieve a better portfolio diversification. Furthermore, as the three of the cryptocurrencies
selected for this research cover 86% of market cap and more than 60% of trading volume in the recent
years, the findings of this study could also be a good benchmark point for the institutional investors
dealing with the other cryptocurrencies.

Cryptocurrencies might become a mainstream financial instrument in the future of the global
financial markets besides common stocks, commodities and precious metals or Fx instruments. Thus,
this research will also provide investors with a better understanding of the cryptocurrencies markets
and will encourage further studies.
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