The Effect of U.S. Investor Sentiment on Cross-Listed Securities Returns: A High-Frequency Approach
Abstract
:1. Introduction
2. Literature Review
2.1. FEARS
2.2. SVI
2.3. ADRs
3. Data and Methodology
3.1. The SVI Sentiment Index
3.2. Additional Data
4. Results
4.1. New FEARS and ADR Returns
4.2. New FEARS and ADR Regional Index Returns
5. Robustness Tests
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Da et al. (2015) identify these search terms as having the highest negative correlation with stock market returns from July 2004 to December 2011. Even though our findings are consistent with theirs, there is a possibility that the list of search terms could have changed by including a longer data set in our study. |
2 | The paper by Qiu and Welch (2004) refers to an earlier version of Baker and Wurgler (2006) while it was still a working paper in 2004. |
3 | These are the top 30 search terms with the highest negative correlation with the S&P 500 from 1 January 2004 to 31 December 2011. Search terms like “gold prices” have a positive semantic acception, however, it is well known that gold is a commodity considered a safe haven by many investors. Meaning that when investors have negative expectations on stock returns, they sell stocks and buy assets like gold. Da et al. (2015) offers a more extensive discussion in this regard. |
4 | This index contains almost every American Depositary Receipt available in the market. |
5 | This data is available for download through https://fred.stlouisfed.org/series/DTWEXB (accessed on 16 March 2018). |
6 | More information about ETF’s using BNY Mellon ADR indices as benchmarks can be found at https://www.adrbnymellon.com/assets/resources/etf_factsheet-jan_2017.pdf (accessed on 16 March 2018). |
7 | This data is available for download at http://www.cboe.com/micro/vix/historical.aspx (accessed on 15 March 2018). |
8 | We tested for the stationarity condition of the VIX series in levels using the Augmented Dickey-Fuller test. The null hypothesis of the presence of a unit root is rejected with a t-statistic of −5.978. |
9 | This data is available for download at https://www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index (accessed on 15 March 2018). |
10 | This data is available for download at http://www.policyuncertainty.com/us_daily.html (accessed on 15 March 2018). |
11 | |
12 | We used 252 trading days as the average to calculate the annualized returns and U.S. dollar appreciation. |
13 | A potential explanation for this difference, is that their period of study (2004–2011) was highly marked by the 2008 financial crisis. In this study the period is expanded from 2004 to 2016, in which the 2008 financial crisis is less pronounced. |
References
- Alaganar, Vaira, and Ramaprasad Bhar. 2001. Diversification gains from American depositary receipts and foreign equities: Evidence from Australian stocks. Journal of International Financial Markets, Institutions & Money 11: 97–113. [Google Scholar]
- Baker, Malcom, and Jeffrey Wurgler. 2006. Investor sentiment and the cross-section of stock returns. The Journal of Finance 61: 1645–80. [Google Scholar] [CrossRef] [Green Version]
- Baker, Malcom, and Jeffrey Wurgler. 2007. Investor Sentiment in the Stock Market. The Journal of Economic Perspectives 21: 129. [Google Scholar] [CrossRef] [Green Version]
- Baker, Scott, Nicholas Bloom, and Steven Davis. 2015. Measuring economic policy uncertainty. The Quarterly Journal of Economics 131: 1593–1636. [Google Scholar] [CrossRef]
- Barberis, Nicholas, Andrei Shleifer, and Robert Vishny. 1998. A model of investor sentiment. Journal of Financial Economics 49: 307–43. [Google Scholar] [CrossRef]
- Bathia, Deven, Don Bredin, and Dirk Nitzsche. 2016. International sentiment spillovers in equity returns. International Journal of Finance & Economics 21: 332–59. [Google Scholar]
- Beckmann, Klaus S., Thanh Ngo, and Daphne Wang. 2015. The informational content of ADR mispricing. Journal of Multinational Financial Management 32: 1–14. [Google Scholar] [CrossRef]
- Brown, Gregory W., and Michael T. Cliff. 2004. Investor sentiment and the near-term stock market. Journal of Empirical Finance 11: 1–27. [Google Scholar] [CrossRef]
- Burgraff, Tobias, Toan Lulu Duc Huynh, Markus Rudolf, and Mei Wang. 2020. Do FEARS drive Bitcoin? Review of Behavioral Finance 13: 229–58. [Google Scholar] [CrossRef]
- Da, Zhi, Joseph Engelberg, and Pengjie Gao. 2011. In search of attention. The Journal of Finance 66: 1461–99. [Google Scholar] [CrossRef]
- Da, Zhi, Joseph Engelberg, and Pengjie Gao. 2015. The sum of all fears investor sentiment and asset prices. Review of Financial Studies 28: 1–32. [Google Scholar] [CrossRef] [Green Version]
- De Long, J. Bradford, Andrei Shleifer, Lawrence H. Summers, and Robert J. Waldmann. 1990. Noise trader risk in financial markets. Journal of Political Economy 98: 703–38. [Google Scholar] [CrossRef]
- Ely, David, and Mehdi Salehizadeh. 2001. American depositary receipts: An analysis of international stock price movements. International Review of Financial Analysis 10: 343–63. [Google Scholar] [CrossRef]
- Engelbert, Joseph. “Joey Engelberg-Professor of Finance” Website. Available online: http://rady.ucsd.edu/faculty/directory/engelberg/pub/portfolios/research.htm (accessed on 15 March 2018).
- Frugier, Alain. 2016. Returns, volatility and investor sentiment: Evidence from European stock markets. Research in International Business and Finance 38: 45–55. [Google Scholar] [CrossRef]
- Gagnon, Louis, and George Andrew Karolyi. 2010. Do International Cross-Listings Still Matter? Evidence on Financial Globalization and Crises. Edited by Thorsten Beck, Sergio Schmukler and Stijn Claessens. Amsterdam: Elsevier North-Holland Publishers, Available online: https://ssrn.com/abstract=1638197 (accessed on 10 October 2017).
- Gao, Zhenyu, Haohan Ren, and Bohui Zhang. 2020. Googling investor sentiment around the world. Journal of Financial and Quantitative Analysis 55: 549–80. [Google Scholar] [CrossRef] [Green Version]
- Grossmann, Axel, Teofilo Ozuna, and Marc W. Simpson. 2007. ADR mispricing: Do costly arbitrage and consumer sentiment explain the price deviation? Journal of International Financial Markets, Institutions & Money 17: 361–71. [Google Scholar]
- Hwang, Byoung-Hyoun. 2011. Country-specific sentiment and security prices. Journal of Financial Economics 100: 382–401. [Google Scholar] [CrossRef]
- Irresberger, Felix, Janina Mühlnickel, and Gregor NF Weiß. 2015. Explaining bank stock performance with crisis sentiment. Journal of Banking & Finance 59: 311–29. [Google Scholar]
- Jiang, Christine X. 1998. Diversification with American depository receipts: The dynamics and the pricing factors. Journal of Business Finance & Accounting 25: 683–99. [Google Scholar]
- Kabir, M. Humayun, M. Kabir Hassan, and Neal Maroney. 2011. International diversification with American depository receipts (ADRs). Pacific-Basin Finance Journal 19: 98–114. [Google Scholar] [CrossRef] [Green Version]
- Keynes, John Maynard. 1936. The General Theory of Interest, Employment and Money. London: MacMillan. [Google Scholar]
- Kostopoulos, Dimitrios, Steffen Meyer, and Charline Uhr. 2020. Google search volume and individual investor trading. Journal of Financial Markets 49: 100544. [Google Scholar] [CrossRef]
- Madura, Jeff, and Nivine Richie. 2007. Global valuation of equity: One market correcting another. International Journal of Managerial Finance 3: 178–90. [Google Scholar] [CrossRef]
- Newey, Whitney K., and Kenneth D. West. 1994. Automatic Lag Selection in Covariance Matrix Estimation. Review of Economic Studies 61: 631–53. [Google Scholar] [CrossRef]
- Perez-Liston, Daniel, and Juan Pablo Gutierrez. 2018. Dynamic analysis of sin stocks and investor sentiment. International Journal of Managerial Finance 14: 558–73. [Google Scholar] [CrossRef]
- Perez-Liston, Daniel, Daniel Huerta-Sanchez, and Juan Gutierrez. 2018. Do domestic sentiment and the spillover of US investor sentiment impact Mexican stock market returns? Journal of Emerging Market Finance 17: 185–212. [Google Scholar] [CrossRef]
- Peterburgsky, Stanley, and Yini Yang. 2013. Diversification potential of ADRs, country funds and underlying stocks across economic conditions. Applied Financial Economics 23: 199–219. [Google Scholar] [CrossRef]
- Qiu, Lily, and Ivo Welch. 2004. Investor Sentiment Measures (No. w10794). Unpublished working paper. Brown University. [Google Scholar]
- Schaub, Mark. 2013. Latin American ADR performance: How do issue type and issue date affect long term excess returns? International Journal of Managerial Finance 9: 4–12. [Google Scholar] [CrossRef]
- Siganos, Antonio, Evangelos Vagenas-Nanos, and Patrick Verwijmeren. 2014. Facebook’s daily sentiment and international stock markets. Journal of Economic Behavior & Organization 107: 730–43. [Google Scholar]
- Singer, Eleanor. 2002. The use of incentives to reduce nonresponse in household surveys. Survey Nonresponse 51: 163–77. [Google Scholar]
- Suh, Jungwon. 2003. ADRs and U.S. Market Sentiment. The Journal of Investing 12: 87–95. [Google Scholar] [CrossRef]
- Tetlock, Paul. C. 2007. Giving content to investor sentiment: The role of media in the stock market. The Journal of Finance 62: 1139–68. [Google Scholar] [CrossRef]
- Tetlock, Paul C., Maytal Saar-Tsechansky, and Sofus Macskassy. 2008. More than words: Quantifying language to measure firms’ fundamentals. The Journal of Finance 63: 1437–67. [Google Scholar] [CrossRef]
- Verma, Rahul, and Gökçe Soydemir. 2006. The impact of US individual and institutional investor sentiment on foreign stock markets. The Journal of Behavioral Finance 7: 128–44. [Google Scholar] [CrossRef]
- Vozlyublennaia, Nadia. 2014. Investor attention, index performance, and return predictability. Journal of Banking & Finance 41: 17–35. [Google Scholar]
- World Bank. 2020. Individuals using the internet in the United States. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 12 October 2020).
- Wu, Qinqin, Ying Hao, and Jing Lu. 2017. Investor sentiment, idiosyncratic risk, and mispricing of American Depository Receipt. Journal of International Financial Markets, Institutions & Money 51: 1–14. [Google Scholar]
- Zhang, Wei, Xiao Li, Dehua Shen, and Andrea Teglio. 2016. Daily happiness and stock returns: Some international evidence. Physica A: Statistical Mechanics and Its Applications 460: 201–9. [Google Scholar] [CrossRef]
Search Term | |
---|---|
1 | Gold Prices |
2 | Recession |
3 | Gold Price |
4 | Depression |
5 | Great Depression |
6 | Gold |
7 | Economy |
8 | Price Of Gold |
9 | The Depression |
10 | Crisis |
11 | Frugal |
12 | GDP |
13 | Charity |
14 | Bankruptcy |
15 | Unemployment |
16 | Inflation Rate |
17 | Bankrupt |
18 | The Great Depression |
19 | Car Donate |
20 | Capitalization |
21 | Expense |
22 | Donation |
23 | Savings |
24 | Social Security Card |
25 | The Crisis |
26 | Default |
27 | Benefits |
28 | Unemployed |
29 | Poverty |
30 | Social Security Office |
Variable | Obs. | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|
BNY ADR Index Returns | 3273 | 0.0151 | 1.4410 | −11.2691 | 15.3246 |
New FEARS | 3273 | 0.0000 | 0.3906 | −2.1508 | 2.0320 |
FEARS | 1891 | 0.0000 | 0.3548 | −2.54975 | 3.1864 |
VIX | 3273 | 19.1041 | 9.0850 | 9.8900 | 80.8600 |
∆EPU | 3273 | −4.9097 | 54.4314 | −303.5500 | 393.6700 |
∆ADS | 3273 | 0.0001 | 0.0142 | −0.0708 | 0.0846 |
∆FX U.S. T-W | 3246 | 0.0033 | 0.3929 | −3.3854 | 2.3692 |
EW ADR Returns | 2707 | 0.5859 | 1.4185 | −9.3038 | 14.4993 |
VW ADR Returns | 2707 | 0.4167 | 1.4492 | −10.9089 | 15.0293 |
Independent Variables | Dependent Variable: BNY ADR Index Returns | ||||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Ret (t) | Ret (t+1) | Ret (t+2) | Ret [t+1, t+2] | Ret (t) | Ret (t) | Ret (t) | |
New FEARS | −0.3230 *** | −0.0110 | 0.0231 | 0.0120 | −0.3160 *** | −0.2590 *** | −0.2860 *** |
(0.0879) | (0.0631) | (0.0724) | (0.0843) | (0.0829) | (0.0768) | (0.0668) | |
VIX | −0.0216 *** | 0.0040 | 0.0027 | 0.0067 | −0.0217 ** | −0.0180 ** | 0.0215 *** |
(0.0070) | (0.0051) | (0.0065) | (0.0091) | (0.0084) | (0.0073) | (0.0062) | |
∆EPU | 0.00003 | −0.0011 * | 0.0012 * | 0.0001 | 0.0003 | 0.0001 | |
(0.0008) | (0.0006) | (0.0006) | (0.0008) | (0.0006) | (0.0006) | ||
∆ADS | −3.5660 | −2.8640 | −2.8280 | −5.6910 | −3.3130 | −3.6850 | |
(2.5670) | (3.1260) | (2.6710) | (4.7400) | (2.8890) | (2.4530) | ||
Ret(t) | −0.0703 ** | −0.0477 | −0.1180 ** | ||||
(0.0322) | (0.0451) | (0.0570) | |||||
Ret(t−1) | −0.0922 *** | −0.0539 * | 0.0007 | −0.0532 | −0.0913 *** | −0.1430 *** | |
(0.0314) | (0.0299) | (0.0325) | (0.0475) | (0.0325) | (0.0284) | ||
Ret(t−2) | −0.0691 | −0.0118 | −0.0035 | −0.0153 | −0.0684 * | −0.0496 | |
(0.0448) | (0.0370) | (0.0367) | (0.0463) | (0.0366) | (0.0350) | ||
Ret(t−3) | −0.0250 | −0.0115 | −0.0374 | −0.0489 | −0.0244 | −0.0171 | |
(0.0356) | (0.0345) | (0.0445) | (0.0437) | (0.0354) | (0.0302) | ||
Ret(t−4) | −0.0228 | −0.0543 | 0.0050 | −0.0492 | −0.0224 | −0.0223 | |
(0.0361) | (0.0433) | (0.0404) | (0.0456) | (0.0335) | (0.0331) | ||
Ret(t−5) | −0.0595 | −0.0155 | −0.0232 | −0.0386 | −0.0588 | −0.0391 | |
(0.0439) | (0.0396) | (0.0436) | (0.0582) | (0.0457) | (0.0396) | ||
∆FX U.S. T-W | −1.2580 *** | −1.3360 *** | |||||
(0.0957) | (0.0923) | ||||||
Constant | 0.4410 *** | −0.0652 | −0.0265 | −0.0918 | 0.4420 *** | 0.3680 *** | 0.4390 *** |
(0.1210) | (0.0937) | (0.1080) | (0.1600) | (0.1430) | (0.1310) | (0.1020) | |
Observations | 3268 | 3267 | 3266 | 3266 | 3268 | 3246 | 3241 |
R-squared | 0.035 | 0.014 | 0.007 | 0.015 | 0.033 | 0.140 | 0.162 |
Independent Variables | Dependent Variable: ADR Equally-Weighted Portfolio Returns | Dependent Variable: ADR Value-Weighted Portfolio Returns | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
Ret (t) | Ret (t+1) | Ret (t+2) | Ret [t+1, t+2] | Ret (t) | Ret (t) | Ret (t+1) | Ret (t+2) | Ret [t+1, t+2] | Ret (t) | |
New FEARS | −0.6610 *** | 0.2890 * | −0.0637 | 0.2810 | −0.6520 *** | −0.5960 *** | 0.2600 * | −0.1020 | 0.1860 | −0.5880 *** |
(0.1790) | (0.1570) | (0.1360) | (0.2009) | (0.1370) | (0.1620) | (0.1430) | (0.1260) | (0.1740) | (0.1260) | |
VIX | −0.0163 ** | 0.0048 | 0.0016 | 0.0067 | −0.0159 *** | −0.0182 ** | 0.0036 | −0.0001 | 0.0042 | −0.0182 *** |
(0.0080) | (0.0069) | (0.0080) | (0.012) | (0.0061) | (0.0076) | (0.0095) | (0.0078) | (0.0111) | (0.0060) | |
∆EPU | 0.0003 | −0.0006 | 0.0021 *** | 0.0021 * | 0.0001 | 0.0004 | −0.0009 | 0.0020 ** | 0.0016 * | 0.0001 |
(0.0008) | (0.0008) | (0.0008) | (0.0011) | (0.0007) | (0.0009) | (0.0008) | (0.0009) | (0.0009) | (0.0007) | |
∆ADS | −4.0180 | −4.1920 | −4.8930 | −8.9680 | −3.8640 | −5.0110 * | −5.2430 | −4.8770 | −10.4300 ** | −4.8020 ** |
(3.5290) | (3.7960) | (3.5750) | (5.7370) | (2.9990) | (3.0390) | (3.9030) | (3.1740) | (5.1480) | (2.3380) | |
Ret(t) | 0.02780 | −0.0026 | 0.0230 | −0.0492 | −0.0596 | −0.110 * | ||||
(0.0382) | (0.0434) | (0.0658) | (0.0397) | (0.0497) | (0.0623) | |||||
Ret(t−1) | −0.0016 | −0.0005 | 0.0022 | −0.0098 | −0.0680 ** | −0.0782 ** | −0.0584 | −0.0100 | −0.0777 | −0.1540 *** |
(0.0425) | (0.0516) | (0.0393) | (0.0702) | (0.0312) | (0.0365) | (0.0496) | (0.0414) | (0.0745) | (0.0264) | |
∆FX U.S. T-W | −1.4320 *** | −1.4940 *** | ||||||||
(0.1130) | (0.1290) | |||||||||
Constant | 0.3630 *** | −0.0447 | 0.0230 | −0.0309 | 0.3540 *** | 0.4010 *** | −0.0220 | 0.0512 | 0.0144 | 0.4020 *** |
(0.1400) | (0.1220) | (0.1340) | (0.2120) | (0.1080) | (0.1310) | (0.1590) | (0.1340) | (0.1970) | (0.1020) | |
Observations | 2233 | 2146 | 2144 | 2059 | 2211 | 2233 | 2146 | 2144 | 2059 | 2211 |
R-squared | 0.031 | 0.007 | 0.010 | 0.010 | 0.173 | 0.037 | 0.014 | 0.011 | 0.019 | 0.181 |
Independent Variables | Dependent Variable: Regional ADR Returns | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Asia | Europe | Latin America | Asia | Europe | Latin America | |
New FEARS | −0.3060 *** | −0.2880 *** | −0.5710 *** | −0.2640 *** | −0.2410 *** | −0.5090 *** |
(0.0835) | (0.0958) | (0.1100) | (0.0877) | (0.0633) | (0.1200) | |
∆FX U.S. T-W | −0.9430 *** | −1.3640 *** | −1.4500 *** | |||
(0.0887) | (0.0967) | (0.1360) | ||||
VIX | −0.0173 ** | −0.0185 *** | −0.0193 * | −0.0176 *** | −0.0182 *** | −0.0203 ** |
(0.0076) | (0.0070) | (0.0116) | (0.0067) | (0.0064) | (0.0096) | |
∆EPU | 0.0002 | 0.0001 | 0.0007 | 0.0004 | 0.0002 | 0.0010 |
(0.0008) | (0.0008) | (0.0010) | (0.0006) | (0.0006) | (0.0008) | |
∆ADS | −3.3210 | −2.7650 | −5.6640 | −3.8790 | −2.8000 | −6.1770 |
(2.6700) | (2.4970) | (3.6020) | (2.9260) | (2.3710) | (3.8430) | |
Constant | 0.3610 *** | 0.3760 *** | 0.4330 ** | 0.3670 *** | 0.3690 *** | 0.4490 *** |
(0.1340) | (0.1170) | (0.1990) | (0.1190) | (0.1090) | (0.1650) | |
Observations | 3273 | 3273 | 3273 | 3246 | 3246 | 3246 |
R-squared | 0.017 | 0.019 | 0.018 | 0.081 | 0.159 | 0.097 |
Independent Variables | Dependent Variable: BNY ADR Index Returns | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Original FEARS | New FEARS | |||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
Ret (t) | Ret (t+1) | Ret (t+2) | Ret [t+1, t+2] | Ret (t) | Ret (t) | Ret (t+1) | Ret (t+2) | Ret [t+1, t+2] | Ret (t) | |
FEARS | −0.5830 *** | 0.2500 * | 0.1700 | 0.4200 ** | −0.4780 *** | |||||
(0.1640) | (0.1320) | (0.1170) | (0.1660) | (0.1670) | ||||||
New FEARS | −0.4630 *** | 0.0927 | 0.0082 | 0.1010 | −0.4690 *** | |||||
(0.1380) | (0.1090) | (0.1090) | (0.1550) | (0.1400) | ||||||
VIX | −0.0215 *** | 0.0026 | 0.0014 | 0.0041 | −0.0198 *** | −0.0207 ** | 0.0024 | 0.0014 | 0.0039 | −0.0190 *** |
(0.0079) | (0.0089) | (0.0075) | (0.0116) | (0.0061) | (0.0084) | (0.0077) | (0.0080) | (0.0096) | (0.0060) | |
∆EPU | 0.00003 | −0.0017 * | 0.0017 ** | −0.00003 | −0.0001 | 0.0001 | −0.0018 * | 0.0017 * | −0.0001 | −0.0001 |
(0.0010) | (0.0009) | (0.0007) | (0.0011) | (0.0008) | (0.0009) | (0.0010) | (0.0010) | (0.0012) | (0.0008) | |
∆ADS | −3.6740 | −3.0260 | −3.0930 | −6.1190 | −3.5890 | −3.8580 | −3.0610 | −3.1700 | −6.2310 | −3.8400 |
(4.8040) | (4.1640) | (3.7570) | (4.9170) | (2.8700) | (3.4850) | (3.7360) | (3.1940) | (5.5000) | (3.5190) | |
∆FX U.S. T-W | −1.7370 *** | −1.751 ** | ||||||||
(0.1110) | (0.1160) | |||||||||
Ret(t) | −0.0891 ** | −0.0523 | −0.1410 ** | −0.0938 ** | −0.0565 | −0.1500 ** | ||||
(0.0372) | (0.0466) | (0.0661) | (0.0441) | (0.0500) | (0.0657) | |||||
Ret(t−1) | −0.1190 *** | −0.0656 | 0.0101 | −0.0555 | −0.2000 *** | −0.1190 *** | −0.0675 | 0.0081 | −0.0594 | −0.2010 *** |
(0.0351) | (0.0570) | (0.0321) | (0.0613) | (0.0290) | (0.0417) | (0.0565) | (0.0326) | (0.0505) | (0.0305) | |
Constant | 0.4900 *** | −0.0339 | 0.0028 | −0.0311 | 0.4330 *** | 0.4720 *** | −0.0298 | 0.0030 | −0.0267 | 0.4130 *** |
(0.1440) | (0.1690) | (0.1410) | (0.2160) | (0.1160) | (0.1540) | (0.1450) | (0.1490) | (0.1750) | (0.1050) | |
Observations | 1891 | 1891 | 1891 | 1891 | 1874 | 1891 | 1891 | 1891 | 1891 | 1874 |
R-squared | 0.049 | 0.025 | 0.011 | 0.025 | 0.213 | 0.042 | 0.022 | 0.010 | 0.021 | 0.211 |
Independent Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
Ret (t) | Ret (t) | Ret (t) | Ret (t) | Ret (t) | Ret (t) | Ret (t) | Ret (t) | |
New FEARS | −0.3230 ** | −0.3060 ** | −0.3280 ** | −0.3250 ** | −0.2860 *** | −0.2590 *** | −0.2900 *** | −0.2890 *** |
(0.1330) | (0.1320) | (0.1380) | (0.1340) | (0.1040) | (0.0977) | (0.1060) | (0.1040) | |
VIX | −0.0216 *** | −0.0180 *** | −0.0193 *** | −0.0203 *** | −0.0215 *** | −0.0180 *** | −0.0199 *** | −0.0206 *** |
(0.0064) | (0.0050) | (0.0054) | (0.0060) | (0.0058) | (0.0050) | (0.0054) | (0.0058) | |
∆EPU | 0.00003 | 0.0002 | 0.0001 | 0.00004 | 0.0001 | 0.0003 | 0.0002 | 0.0001 |
(0.0006) | (0.0005) | (0.0005) | (0.0006) | (0.0004) | (0.0004) | (0.0004) | (0.0004) | |
∆ADS | −3.5660 | −3.1130 | −3.2970 | −3.3990 | −3.6850 | −3.3130 | −3.5510 | −3.5930 |
(3.4460) | (2.8050) | (3.0160) | (3.2460) | (3.3470) | (2.8290) | (3.1160) | (3.2400) | |
Ret(t−1) | −0.0922 *** | −0.0844 *** | −0.0897 *** | −0.1430 *** | −0.1380 *** | −0.1410 *** | ||
(0.0219) | (0.0200) | (0.0221) | (0.0274) | (0.0262) | (0.0281) | |||
∆FX U.S. T-W | −1.3360 *** | −1.2580 *** | −1.3390 *** | −1.3370 *** | ||||
(0.1620) | (0.1360) | (0.1620) | (0.1600) | |||||
Constant | 0.4410 *** | 0.3710 *** | 0.3950 *** | 0.4140 *** | 0.4390 *** | 0.3680 *** | 0.4060 *** | 0.4200 *** |
(0.1050) | (0.0816) | (0.0892) | (0.0994) | (0.0947) | (0.0819) | (0.0891) | (0.0957) | |
Observations | 3268 | 3273 | 3272 | 3271 | 3241 | 3246 | 3245 | 3244 |
R-squared | 0.035 | 0.019 | 0.026 | 0.030 | 0.162 | 0.140 | 0.159 | 0.160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez Pineda, J.P.; Perez Liston, D. The Effect of U.S. Investor Sentiment on Cross-Listed Securities Returns: A High-Frequency Approach. J. Risk Financial Manag. 2021, 14, 491. https://doi.org/10.3390/jrfm14100491
Gutierrez Pineda JP, Perez Liston D. The Effect of U.S. Investor Sentiment on Cross-Listed Securities Returns: A High-Frequency Approach. Journal of Risk and Financial Management. 2021; 14(10):491. https://doi.org/10.3390/jrfm14100491
Chicago/Turabian StyleGutierrez Pineda, Juan Pablo, and Daniel Perez Liston. 2021. "The Effect of U.S. Investor Sentiment on Cross-Listed Securities Returns: A High-Frequency Approach" Journal of Risk and Financial Management 14, no. 10: 491. https://doi.org/10.3390/jrfm14100491
APA StyleGutierrez Pineda, J. P., & Perez Liston, D. (2021). The Effect of U.S. Investor Sentiment on Cross-Listed Securities Returns: A High-Frequency Approach. Journal of Risk and Financial Management, 14(10), 491. https://doi.org/10.3390/jrfm14100491