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Abstract: In this paper, we analysed the heavy-tailed behaviour in the dynamics of housing-price
returns in the United States. We investigated the sources of heavy tails by estimating autoregressive
models in which innovations can be subject to GARCH effects and/or non-Gaussianity. Using
monthly data from January 1954 to September 2019, the properties of the models were assessed both
within- and out-of-sample. We found strong evidence in favour of modelling both GARCH effects
and non-Gaussianity. Accounting for these properties improves within-sample performance as well
as point and density forecasts.

Keywords: non-Gaussianity; GARCH; probability integral transform; Kullback–Leibler informa-
tion criterion

JEL Classification: C22; C52; E44; E47; G17

1. Introduction

In less than fifteen years, the world has experienced both a global financial crisis and a
virus pandemic—both of which have had dire economic consequences. These events have
confirmed the fact that large swings in economic variables happen more frequently than
what is implied by models based on the traditional assumption of normally distributed
disturbances. Put differently, the distributions of many variables are characterised by fat
tails (Fagiolo et al. 2008; Ascari et al. 2015), that is, they have a higher probability mass in
the tails of the distribution than a normal distribution does.

The purpose of this paper is to study the topic of fat tails related to a key US variable,
namely, housing-price returns, an important macro-finance variable. Our analysis focuses
on the dynamic properties of the process. We primarily aimed to assess what the appro-
priate distributional features of the innovations are if one aims to model the dynamics
of the returns. We studied this issue using different autoregressive (AR) models, where
we allowed for different sources of non-Gaussianity. We first conducted within-sample
analysis and then validated our findings through an out-of-sample forecast exercise.

Our analysis was performed by employing monthly data on US housing-price returns
from January 1954 to September 2019. We confirmed that the return series was characterised
by fat tails and accordingly investigated its sources. We assessed the relevance of time-
varying volatility—which can be a source of fat tails in the unconditional distribution
of the variable—by estimating GARCH models. Whether error terms are drawn from
distributions with fat tails was addressed by abandoning the assumption of a normal
distribution for that of a Laplace distribution or a Student-t distribution. Finally, since
the unconditional distribution of the data also appeared to be somewhat skewed, we also
estimated the model under the assumption that error terms are drawn from a Skew-t
distribution (defined as in Hansen 1994). After summarising our results, we found strong
in-sample evidence for highly persistent, time-varying volatility and heavier-than-Gaussian
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tails. This translates into improved short-term point and density forecasts, with GARCH
effects being the most important feature. Skewness, on the other hand, appears to be a less
relevant aspect to consider in modelling.

We contribute to the literature in two distinct ways. First, we provide further evidence
on non-Gaussianity of housing returns; see, for example, Myer and Webb (1994); Young
and Graff (1995); Maurer et al. (2004) and Pontines (2010). In our analysis we focus on the
dynamic and forecasting properties of the housing returns and our results suggest that
deviations from the normal distribution do matter for forecasting purposes, that is, for the
distribution of the innovations hitting housing returns. Second, we add to the literature
analysing non-Gaussian behaviour in macroeconomic variables (e.g., Fagiolo et al. 2008;
Ascari et al. 2015) by adding evidence on housing returns. Related to this issue, our findings
echo the need to incorporate non-Gaussian behaviour when modelling and forecasting
macroeconomic variables.

The rest of this paper is organised as follows: Section 2 includes a brief review of
the related academic literature. In Section 3, we present the data. The methodological
framework is discussed in Section 4 and our empirical findings are shown in Section 5.
Finally, Section 6 concludes the paper.

2. Related Literature

Housing prices are not only important as asset prices, but they are also highly relevant
from a macroeconomic perspective since they have a close relation to the real economy.
Several studies have documented their connection with the business cycle in general.
Iacoviello (2005) used a general equilibrium monetary policy model with nominal loans
and housing used as collateral. His main conclusion was that the collateral effect improves
aggregate demand response to housing prices. In a similar spirit, Iacoviello and Neri (2010)
showed—also using a general equilibrium framework—that housing-market spillovers
are non-negligible and that these effects are concentrated on consumption rather than
aggregate investment. Klarl (2016) employed wavelet (frequency) analysis to find that
housing prices only lead the economic cycle during recessions, and shocks associated with
the housing market are relatively short-lived.

The relationship between housing wealth and consumption has received particular
attention. Catte et al. (2004) focused on factors of housing-price variability. By estimating
error correction models for OECD countries, they found that both macroeconomic and
structural factors contribute to housing-price variability and that the propensity to consume
depends on how developed the mortgage market is in a given country. Campbell and Cocco
(2007) analysed household data from the United Kingdom and found heterogeneity in the
propensity of consumption to housing wealth. In particular, older households are more
sensitive to housing-price changes and regional housing-price variation is more important
than national variation. A similar conclusion was reached by Martín-Legendre et al. (2019)
using Spanish household survey data, who also looked at other asset classes and found
that the propensity to consume is highest for housing equity. Acolin (2020) found time
variation in the relationship between housing prices and consumption based on survey
data from the United States. In particular, the propensity to consume increases right before
the financial crisis and decreases afterwards. He argues that these changes are associated
with the availability of tools to extract wealth from home equity. The importance of wealth
extraction is also pointed out by Pan and Wu (2021), who analysed a panel of Chinese
homeowners and found that the propensity to consume from housing wealth concentrates
on second houses, and not on primary residences.

There are a number of studies that document non-Gaussian behaviour in real estate-
price changes. These papers mostly document the presence of skewness and kurtosis in
the unconditional distribution of both nominal and real (adjusted for inflation) housing-
price returns, which is important from a portfolio risk-management perspective where
housing equity is considered as a financial asset; see, for example, Foster and Van Order
(1984) who used stable distribution in prices to model volatility and default risk. Myer
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and Webb (1994) considered both real and nominal returns at a monthly, quarterly and
annual frequency. They found that non-Gaussianity is stronger in nominal returns and at
a quarterly (rather than monthly or annual) frequency. Young and Graff (1995) applied
stable distributions for commercial real estate indices in the United States and found that
models with infinite variance (very heavy tails) are better suited than models based on the
Gaussian distribution. A similar analysis was performed by Graff et al. (1997) for Aus-
tralian data and Young et al. (2006) for data from the United Kingdom, with the conclusion
that infinite variance models fit the data in the respective countries better. For Germany,
Maurer et al. (2004) analysed returns on real estate fund indices and found relatively less
kurtosis and skewness than in the United States. Leung et al. (2006) analysed the macroe-
conomic factors affecting the second moment and skewness of housing returns and found
relatively weak support for macroeconomic factors to drive housing-price dispersion and
skewness. Pontines (2010) found evidence for fat tails in 16 OECD countries and showed
that the Student t-distribution is adequate to fit almost all data. Chiang et al. (2012) argue
that value-at-risk based on the Gaussian distribution is inappropriate since the downside
risk of housing prices is larger than implied by the Gaussian distribution; it is actually
described well by a so-called generalised Pareto distribution for both real and nominal
returns in the United States and the United Kingdom.

Our analysis with respect to non-Gaussianity focuses on the dynamic properties of
the housing-price process; in that sense, it is related to Dufitinema (2021), who assessed
Bayesian stochastic volatility models and found that the model with heavy tails performs
the best in terms of out-of-sample forecasts for several Finnish housing-price series. Dy-
namic interactions were also the focus of McMillan (2012), who considered the long-run
relationship between stock prices and housing prices in the Unites States and the United
Kingdom with an error correction model. He found that the adjustment to equilibrium is
non-linear; large deviations must occur before stock prices revert, while housing prices
hardly adjust at all. Musso et al. (2011) estimated a structural VAR for housing prices and
business-cycle variables and argue that housing-price shocks are not identified using the
standard Cholesky decomposition in a model with Gaussian disturbances. Ahamada and
Sanchez (2013) assessed the role of housing-price dynamics in a small-scale macroeconomic
VAR model and found evidence that the effect of housing-prices on economic activity
intensified during the 1980s.

Housing-price dynamics are also affected by market efficiency and potential non-
rational behaviour. Case and Shiller (1989) were pioneers in documenting that when
housing markets are inefficient, there is a positive autocorrelation in housing returns and
real interest rate information does not seem to be fully incorporated in house prices.
Granziera and Kozicki (2015) solved an asset pricing model for housing prices with bubbles
created by waves of over-optimism, and they calibrated the model to data in the United
States. Their results show that this model captures housing-price dynamics better than
the rational expectations model. Analysing household survey data, Ma (2020) found
support for non-rational behavior. In particular, households’ housing-price expectations
tend to exhibit momentum (positive serial correlation), and no significant reversion to
fundamentals.

Lastly, our paper contributes to the literature on non-Gaussianity in macroeconomic
variables. This issue has received increasing attention in the aftermath of the financial crisis
and the recent economic downturn associated with the coronavirus pandemic. Fitting
exponential-power distributions, Fagiolo et al. (2008) found that the output-growth in
several OECD countries has heavier than normal tails, even after controlling for autocor-
relation, heteroscedasticity and outliers. Related to that, Ascari et al. (2015) simulated
standard new-Keynesian and real business cycle models, and they suggest that these mod-
els may prove to be unable to generate the heavy tails in the unconditional distribution
documented in output growth. Skewness—that is, asymmetry—has also been discussed
for macroeconomic variables. Neftci (1984) has documented that the unemployment rate
is asymmetric by estimating a finite state Markov process. Time series evidence based on
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aggregate data in Acemoglu and Scott (1997) also suggests that output in the United States
is best captured by non-linear, asymmetric models where sharper downturns (a heavier left
tail) are allowed for. Lastly, Bekaert and Popov (2019) used panel data from 110 countries
to document a positive cross-sectional correlation between the volatility and skewness of
output growth.

3. Data

We based our analysis on Shiller’s (2015) housing-price index. In our main analysis,
we used nominal housing prices, in line with several previous studies, including Young
and Graff (1995); Young et al. (2006); Pontines (2010) and Ma (2020). Nominal returns are
also the focus of some important surveys related to housing prices, such as the University
of Michigan’s Survey of Consumers; for analysis based on this survey, see, for example,
Piazzesi and Schneider (2009) and Hjalmarsson and Österholm (2020). However, since
real housing returns (adjusted for inflation) are also of interest and have been analysed
in the literature, we also consider real returns in Appendix B;1 both nominal and real
returns are considered in, for example, Case and Shiller (1989); Myer and Webb (1994);
Maurer et al. (2004); Chiang et al. (2012) and Jordá et al. (2019).

Data are monthly and span the period from January 1953 to September 2019. Nominal
returns are calculated as rt =

Pt−Pt−12
Pt−12

, where Pt is the price index at time t. A time-series
plot of the return data is given in Figure 1 and a histogram showing the unconditional
distribution is provided in Figure 2. Some key descriptive statistics are given in Table 1.
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Figure 1. Housing–price return data. Note: Twelve–month change in percent on vertical axis.

Table 1. Descriptive statistics of the returns, Jarque–Bera and unit root test statistic.

Mean Variance Skewness Kurtosis Jarque–Bera ADF KPSS N
4.278 24.390 −0.150 3.813 24.464 −3.505 0.166 789

Note: N is the number of observations. The critical value at the five percent level of the Jarque–Bera test is 5.99.
The Augmented Dickey–Fuller (ADF) test is performed with four lagged differences in the test equation (to be
consistent with the selected lag length for the empirical model considered in Section 5). Both unit-root tests are
performed under the assumption that there is no deterministic trend in the data (the test equation has an intercept
but no time trend). The critical value at the five percent level for the ADF and KPSS test is −2.866 and 0.463,
respectively.
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As both the histogram in Figure 2 and the descriptive statistics in Table 1 suggest,
the tails of the distribution appear heavier than what is implied by a normal distribution;
the kurtosis of the unconditional distribution is around 3.8. There is also a slight negative
skewness. Taken together, this means that the Jarque–Bera test strongly rejects an assump-
tion of normality. Furthermore, both the Augmented Dickey–Fuller test and the KPSS test
strongly suggest that the return series does not contain a unit root.

In Table 2, we compare the unconditional housing-price returns and a normally
distributed variable using the kurtosis (Kα,τ), peakedness (Pη,τ) and tailness (Tα,η) measures
proposed by Liu (2019). These measures are based on the ratio of interquantile ranges
of the variables, using various quantiles of the distribution denoted by α, η, and τ (for
example, α = 0.05 means that we use the 5th percentile of the distribution when calculating
kurtosis and tailness).2 Of particular importance are the tails of the return distribution,
which are heavier than those of the normal distribution at all levels. There is also some
evidence for asymmetry in the unconditional distribution further out in the tails (α = 0.01),
but skewness is not a robust feature if we use different quantiles (α).

Table 2. Comparison of quantile–based kurtosis, peakedness and tailness.

α Kα,τ Pη,τ Tη,τ RTη,τ LTη,τ
Normal distribution 0.010 3.449 1.706 2.022 1.011 1.011

0.025 2.906 1.706 1.704 0.852 0.852
0.050 2.439 1.706 1.430 0.715 0.715

Unconditional returns 0.010 3.979 1.404 2.834 1.256 1.579
0.025 3.317 1.404 2.363 1.141 1.222
0.050 2.615 1.404 1.862 1.013 0.850

Note: Comparison of the quantile–based kurtosis, peakedness and tailness among a normal random variable
and the unconditional housing–price returns. The measurements are calculated based on ratios of interquantile
ranges with α = (0.01, 0.025, 0.05) and η = 0.125, τ = 0.25 quantile levels (see Footnote 2 and Liu 2019).

4. Methodological Framework

Since the focus of our analysis was to model the properties of the housing-return series,
we used univariate time series to capture the dynamics of the returns. We used AR models be-
cause they typically perform well in macroeconomic forecasting (e.g., Faust and Wright 2009),
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despite their simplicity and parsimony. Our baseline model is the homoscedastic univariate
AR(p) model:

rt = γ0 +
p

∑
j=1

γjrt−j + σννt (1)

where νt is assumed to be an iid normal error term, νt ∼ N(0, 1). The number of lags is
determined using the Schwarz (1978) information criterion, which suggests a lag length of
p = 5; for comparability we employed the same number of lags across all model specifications.

We then allowed for a more flexible error term in the model. First, we let the sec-
ond moment vary over time. Doing that, we choose a robust approach and rely on the
GARCH(1,1) specification (Bollerslev 1986), with a normally distributed error term. This
is a common modelling choice—see Chung et al. (2012) and Clark and Ravazzolo (2015)
among others for macroeconomic variables—and for financial data, a GARCH(1,1) model
is fairly difficult to outperform (Hansen and Lunde 2005). Hence, the second model was
the AR(p)-GARCH(1,1):

rt = γ0 +
p

∑
j=1

γjrt−j + εt (2)

εt = σtvt (3)

σ2
t = ω + α1ε2

t−1 + α2σ2
t−1 (4)

where vt, as above, is assumed to be an iid, normal error term. In the third and fourth mod-
els, we relax the assumption of normality of the error term, while maintaining symmetry.
This is done by using νt ∼ Laplace and νt ∼ Student − t(κ), where κ is the degrees of
freedom. Of specific interest here is the fact that both the Laplace distribution and the
Student-t distribution allow for heavier-than-Gaussian tails.3 Finally, in the fifth model, we
assume that the error terms are drawn from the Skew-t distribution (Hansen 1994)—that is,
νt ∼ Skew − t(λ, κ), where κ is the degrees of freedom and λ is the skewness parameter.
This means that we allowed for both heavy tails and asymmetry in the error term.4

Our primary focus was to evaluate which distributional properties are important for
modelling the dynamics of the housing-price return series. We evaluated this based on both
within-sample estimates (using maximum likelihood) and an out-of-sample forecasting
exercise; in the latter, we considered both point and density forecasts. The point forecasts
were evaluated based on the root mean square error (RMSE) of the forecast, accompanied
by the Diebold–Mariano test (Diebold and Mariano 1995). We formulated the test such that
a positive test value implies that the given model outperforms the benchmark.5

In terms of density forecast evaluation, we made use of the probability integral
transform (PIT) proposed by Diebold et al. (1998). We looked at the histograms of the PIT
and visually assessed how close they are to the uniform distribution. We also employed
more rigorous statistical techniques such as the Kullbach–Leibler (KL) divergence (Kullback
and Leibler 1951) of the PIT series from an iid uniform distribution and formal statistical
tests of uniformity, namely, the Kolmogorov–Smirnov (KS) and the Anderson–Darling
(AD) test (Anderson and Darling 1952).6 For all these measures, a lower value implies that
the given model produces a better density forecast.

5. Empirical Analysis

We start by presenting within-sample estimation results for all five specifications.7,8

After that, we turn to an out-of-sample forecast exercise. In the forecast exercise, we
focus on the one-period-ahead horizon. The main reason for this is that results for that
horizon theoretically are most closely related to within-sample findings and can hence be
considered a validation tool.
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5.1. Within-Sample Estimation Results

Table 3 presents the estimation results for the five specifications. Note that the housing-
price return series is fairly persistent (the sum of the autoregressive coefficients are close to
unity). Engle’s (1982) ARCH test shows the strong presence of conditional heteroscedastic-
ity for the residuals in the baseline model in column 1. Also, the Jarque–Bera test suggests
that residuals are non-Gaussian in this specification. This is further supported by Figure 3,
where it is clear that a t-distribution fits the residuals of the baseline specification better
than a normal distribution.

Table 3. Within–sample estimation results.

(1) (2) (3) (4) (5)
Mean equation [AR(5)] γ0 0.038 0.033 0.035 0.033 0.032

(0.023) (0.185) (0.000) (0.467) (0.013)
γ1 1.564 1.816 1.823 1.820 1.819

(0.000) (0.000) (0.000) (0.000) (0.000)
γ2 −0.509 −0.756 −0.743 −0.741 −0.740

(0.000) (0.000) (0.000) (0.023) (0.000)
γ3 −0.115 −0.271 −0.321 −0.307 −0.303

(0.103) (0.011) (0.000) (0.147) (0.020)
γ4 0.203 0.396 0.415 0.400 0.397

(0.003) (0.209) (0.000) (0.000) (0.006)
γ5 −0.152 −0.189 −0.180 −0.178 −0.178

(0.000) (0.263) (0.000) (0.001) (0.003)
GARCH equation ω 0.000 0.000 0.001 0.001

(0.745) (0.260) (0.895) (0.702)
α1 0.172 0.123 0.175 0.175

(0.459) (0.001) (0.824) (0.671)
α2 0.828 0.804 0.825 0.825

(0.000) (0.000) (0.000) (0.001)
Degrees of freedom κ 7.870 7.941

[26.854] [3.297]
Skewness parameter λ −0.031

(0.854)
ARCH-test 131.592 13.661 14.431 13.440 13.494

(0.000) (0.322) (0.274) (0.338) (0.334)
JB-test 295.989 51.528 15.288 a 0.616 a 0.070 a

(0.000) (0.000) (0.000) (0.735) (0.966)

N 789 789 789 789 789
Note: Model (1) is a homoscedastic model with Gaussian error terms. Model (2) employs a GARCH(1,1)
specification with Gaussian error terms. Models (3), (4) and (5) employ a GARCH(1,1) specification together
with Laplace, t–, and Skew–t–distributed error terms, respectively. The ARCH-test is Engle’s test for conditional
heteroscedasticity (Engle 1982) conducted with twelve lags. The JB–test is the Jarque–Bera test for conditional
heteroscedasticity. “a” indicates that the test is based on the probability integral transform of the (standardised)
residuals (see footnote 10). p–values are in parentheses (); standard errors for the degrees of freedom of the
t-distribution are in brackets []. “N” is the number of observations.

The GARCH(1,1) specification (column 2) seems to take care of conditional het-
eroscedasticity quite well. However, the variance is very persistent and its parameters are
not precisely estimated.9 For the specification with Laplace distribution, where no extra
parameter is added to capture heavy-tails, the persistence of the variance is somewhat
lower. However, it seems that the Laplace distribution is not flexible enough to capture
the behaviour of the standardised residuals, as their transformation by imposing a normal
distribution still shows signs of non-Gaussianity according to the Jarque–Bera test.10 In
contrast, the more flexible approaches, the t and the Skew-t distribution, seem appropriate
to capture non-Gaussianity. However, the skewness parameter is low and non-significant
(column 5).
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Figure 4 shows the estimated conditional volatility of the return series. All GARCH
specifications look quite similar; the biggest discrepancy is found for the Laplace, which
due to its excessively heavy tails allows for a generally lower variance. Volatility also
clusters; the series starts out with a higher general level of volatility, is considerably lower
between 1980 and 2005, and peaks again during the financial crisis.
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Having assessed the different specifications within-sample, we next conducted an
out-of-sample forecast exercise to validate our results. If we can establish with this exercise
that a more complex specification also generates better out-of-sample forecasts, we can
conclude that our results are not due to over-fitting the data within-sample.
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5.2. Out-of-Sample Analysis

We evaluated the one-period-ahead forecasting performance of the models using an
expanding window technique starting in January 1974; this yielded F = 548 forecasts to
evaluate.11 The results are collected in Table 4 for both point and density forecast measures.

Table 4. Forecast evaluation results.

RMSE DM KS AD KL
Normal—Homoscedastic 0.279 - 0.151 25.498 0.179

Normal—GARCH 0.259 3.491 0.044 1.743 0.013
Laplace—GARCH 0.258 3.394 0.101 13.141 0.066

Student-t—GARCH 0.258 3.495 0.036 0.590 0.008
Skew-t—GARCH 0.258 3.468 0.035 0.521 0.006

Note: “RMSE” is the root mean squared error of the point forecasts. “DM” is the Diebold–Mariano test statistic
where the model with homoscedastic, normally distributed errors is chosen to be the benchmark. The critical value
at the five percent level for the Diebold–Mariano test is 1.65. “KS” is the Kolmogorov–Smirnov test statistic. “AD”
is the Anderson–Darling test statistic. “KL” is the Kullback–Leibler divergence of the PIT of the residuals from the
uniform distribution on the [0, 1] interval. All three density forecast measures are based on the PIT of the density
forecasts produced by each model. The results are based on F = 548 out-of-sample forecasts and an expanding
window for parameter estimation. The critical value at the five percent level for the Kolmogorov–Smirnov test is
0.058 and for the Anderson–Darling test it is 2.492.

For point forecasts, the homoscedastic model clearly performs worst. Accounting
for time-varying volatility statistically significantly improves the forecast, as can be seen
from the Diebold–Mariano test. However, allowing for non-Gaussian error terms does not
provide additional improvement in point forecasts over the Gaussian GARCH specification.

For density forecasts, the homoscedastic benchmark model again appears to have the
weakest performance. Not only are all three evaluation measures largest for this model, the
KS and AD tests reject uniformity of the PIT series at the five percent level. Comparing the
results in Table 4, allowing for GARCH effects (coupled with normally distributed error
terms) improves quite a lot on the density forecasts such that the formal tests no longer
reject the null of uniformity. Additional improvements are generated by allowing for
heavier tails in the error distribution using a t-distributed error term. Further generalising
the error distribution to a Skew-t distribution appears to be less important, although all
three density forecast measures are lowest in case of the specification with skewed error
terms. Using the Laplace distribution to capture non-Gaussianity seems to produce the
least favourable results (with the KS and AD tests rejecting uniformity), which is consistent
with the within-sample findings.

To gain further insight into the out-of-sample results, the histograms of the PIT for each
specification are presented in Figure A1 in Appendix A. The graph of the homoscedastic
model (top left panel in Figure A1) is peaked, implying that the homoscedastic, Gaussian
model’s predictive density is too wide.12 Allowing for GARCH effects—while still assum-
ing a Gaussian error term—eliminates this problem and produces PITs whose distribution
is fairly close to uniform (top right panel in Figure A1). The Laplace distribution is less
successful at capturing the tail observations (second row, left panel in Figure A1), while the
Student-t, and Skew-t distributed error terms appear most successful in bringing PITs close
to uniformity (bottom left and right panels in Figure A1, respectively).

5.3. Discussion of the Results

Our aim with the current study was to assess whether non-Gaussianity in housing
returns is important when it comes to modelling the dynamics of the series (which is also
related to point and density forecasting). Our results clearly point to the conclusion that non-
Gaussianity does matter. The in-sample evidence shows that we need to use distributions
that are different from the Gaussian to capture the behaviour of the innovations; the model
with conditionally heteroscedastic, but Gaussian error terms has standardised innovations
that are non-normal, as evidenced by the Jarque–Bera test. Furthermore, we found a need
for flexible modelling of the distribution: either a t-distribution or a Skew-t distribution
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(both of which parametrise the degree of non-Gaussianity) can capture the shape of the
innovation distributions appropriately.

Point forecasts are mostly unaffected by flexible modelling of innovations. This is
unsurprising since these additional features introduce more parameters (and hence po-
tentially lower precision) without any changes in the structure of the mean equation. In
contrast, the best density forecasts are produced by the models with t- or skew-t inno-
vations (although GARCH effects seem to be most relevant for density forecasts). This
underlines the importance of non-Gaussianity in situations where the forecaster is inter-
ested not only in the first moment, but the entire predictive distribution. A prime example
is fan charts used in monetary policy decision making and communication; see, for exam-
ple, Cogley et al. (2005). Another example is “growth-at-risk”, which is a framework for
providing statements concerning the probability of poor outcomes for GDP growth; see, for
example, Adrian et al. (2018); Adrian et al. (2019) and Prasad et al. (2019). Growth-at-risk
is getting increasing attention from institutions such as the IMF and central banks.

Our results further strengthen the message of the literature (Myer and Webb 1994;
Maurer et al. 2004; Young et al. 2006 and Chiang et al. 2012 among others) that non-
Gaussianity is a relevant feature of housing returns. These papers, analysing the uncondi-
tional distribution of the variables, provide a very important foundation for our analysis,
to which we make additions. By modelling the dynamics and allowing for heteroscedas-
ticity, we established whether unconditional non-Gaussianity is caused by conditional
heteroscedasticity alone or if innovations are also non-Gaussian. After finding evidence for
the latter, we concluded that allowing for time varying second moments is not sufficient;
one should also allow for non-Gaussian innovations.13 The importance of non-Gaussian
innovations for out-of-sample forecasting is a finding in line with Dufitinema (2021). How-
ever, in this paper we go further, as we document the importance of non-Gaussianity for
density forecasts as well.

6. Conclusions

Fat tails in housing-price returns have been established in several studies. We con-
tribute to this literature by analysing heavy-tailed behaviour in the context of modelling
and forecasting the return series. We found evidence of both conditional heteroscedasticity
and non-Gaussian behaviour. Non-Gaussianity mostly takes the form of excess kurtosis,
while the support for skewed behaviour is weaker. We also found that accounting for these
features helps to improve both point and density forecasts.

Our results highlight the importance of underlying distributional assumptions when
modelling housing-price returns. In addition, our findings point to the relevance of
considering time-varying volatility when modelling macroeconomic time series; after all,
housing-price returns are not only a financial variable but also an important macroeconomic
variable. While this aspect of macroeconomic and macro-finance modelling has grown
in popularity over the last fifteen years—after having been made popular by Cogley and
Sargent (2005) and Primiceri (2005)—we nevertheless believe that it has not been given
sufficient attention.
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Table A1. Within–sample estimation results, January 1975 to September 2019.

(1) (2) (3) (4) (5)
Mean equation [AR(5)] γ0 0.028 0.031 0.033 0.028 0.026

(0.032) (0.003) (0.000) (0.004) (0.010)
γ1 1.909 1.970 1.937 1.970 1.970

(0.000) (0.000) (0.000) (0.000) (0.000)
γ2 −0.919 −0.897 −0.838 −0.909 −0.915

(0.000) (0.000) (0.000) (0.000) (0.000)
γ3 −0.234 −0.469 −0.538 −0.454 −0.438

(0.018) (0.000) (0.000) (0.000) (0.000)
γ4 0.430 0.640 0.717 0.638 0.627

(0.000) (0.000) (0.000) (0.000) (0.000)
γ5 −0.192 −0.249 −0.284 −0.250 −0.248

(0.000) (0.000) (0.000) (0.000) (0.000)
GARCH equation ω 0.001 0.001 0.001 0.001

(0.003) (0.010) (0.008) (0.006)
α1 0.215 0.124 0.192 0.188

(0.000) (0.001) (0.000) (0.000)
α2 0.742 0.724 0.759 0.762

(0.000) (0.000) (0.000) (0.000)
Degrees of freedom κ 6.734 6.958

[1.948] [2.020]
Skewness parameter λ −0.065

(0.283)
ARCH-test 115.610 8.634 8.082 8.094 8.032

(0.000) (0.734) (0.778) (0.777) (0.783)
JB-test 1817.200 49.303 9.748 a 1.758 a 0.201 a

(0.000) (0.000) (0.008) (0.415) (0.904)

N 537 537 537 537 537
Note: Model (1) is a homoscedastic model with Gaussian error terms. Model (2) employs a GARCH(1,1)
specification with Gaussian error terms. Models (3), (4) and (5) employ a GARCH(1,1) specification together
with Laplace, t–, and Skew–t–distributed error terms, respectively. The ARCH–test is Engle’s test for conditional
heteroscedasticity (Engle 1982) conducted with twelve lags. The JB–test is the Jarque–Bera test for conditional
heteroscedasticity. “a” indicates that the test is based on the probability integral transform of the (standardised)
residuals (see footnote 10). p–values are in parentheses (); standard errors for the degrees of freedom of the
t-distribution are in brackets [].“N” is the number of observations.

Appendix B

Table A2. Descriptive statistics, Jarque–Bera and unit–root test statistic—real returns.

Mean Variance Skewness Kurtosis Jarque–Bera ADF KPSS N
0.739 18.405 −0.246 3.757 26.785 −3.322 0.149 789

Note: N is the number of observations. The critical value at the five percent level of the Jarque–Bera test is
5.99. The Augmented–Dickey Fuller (ADF) test is performed with four lagged differences in the test equation.
Both unit-root tests are performed under the assumption that there is no deterministic trend in the data (the test
equation has an intercept but no time trend). The critical value at the five percent level for the ADF and KPSS test
is −2.866 and 0.463, respectively.

Table A3. Comparison of quantile–based kurtosis, peakedness and tailness—real returns.

α Kα,τ Pη,τ Tη,τ RTη,τ LTη,τ
Normal distribution 0.010 3.449 1.706 2.022 1.011 1.011

0.025 2.906 1.706 1.704 0.852 0.852
0.050 2.439 1.706 1.430 0.715 0.715

Unconditional returns 0.010 4.423 1.784 2.479 1.103 1.375
0.025 3.413 1.784 1.913 1.003 0.910
0.050 2.795 1.784 1.566 0.815 0.751

Note: Comparison of the quantile–based kurtosis, peakedness and tailness among a normal random variable
and the unconditional housing–price returns. The measurements are calculated based on ratios of interquantile
ranges with α = (0.01, 0.025, 0.05) and η = 0.125, τ = 0.25 quantile levels (see footnote 2 and Liu 2019).
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Table A4. Within–sample estimation results—real returns.

(1) (2) (3) (4) (5)
Mean equation [AR(5)] γ0 0.010 0.022 0.023 0.023 0.023

(0.524) (0.134) (0.000) (0.092) (0.106)
γ1 1.392 1.407 1.409 1.419 1.419

(0.000) (0.000) (0.000) (0.000) (0.000)
γ2 −0.328 −0.352 −0.316 −0.364 −0.364

(0.000) (0.000) (0.000) (0.000) (0.000)
γ3 −0.078 −0.069 −0.097 −0.070 −0.069

(0.231) (0.283) (0.000) (0.294) (0.297)
γ4 0.103 0.102 0.069 0.106 0.105

(0.100) (0.098) (0.001) (0.094) (0.085)
γ5 −0.101 −0.100 −0.077 −0.102 −0.102

(0.005) (0.005) (0.000) (0.005) (0.004)
GARCH equation ω 0.003 0.002 0.003 0.003

(0.078) (0.180) (0.158) (0.158)
α1 0.087 0.077 0.105 0.105

(0.000) (0.001) (0.000) (0.000)
α2 0.898 0.859 0.886 0.886

(0.000) (0.000) (0.000) (0.000)
Degrees of freedom κ 9.672 9.676

[2.882] [3.810]
Skewness parameter λ 0.004

(0.080)
ARCH-test 96.036 29.762 28.187 28.455 28.439

(0.000) (0.003) (0.005) (0.005) (0.005)
JB-test 11.867 20.310 17.761 a 0.105 a 0.067 a

(0.006) (0.000) (0.000) (0.949) (0.967)
N 789 789 789 789 789

Note: Model (1) is a homoscedastic model with Gaussian error terms. Model (2) employs a GARCH(1,1)
specification with Gaussian error terms. Models (3), (4) and (5) employ a GARCH(1,1) specification together
with Laplace, t–, and Skew–t–distributed error terms, respectively. The ARCH-test is Engle’s test for conditional
heteroscedasticity (Engle 1982) conducted with twelve lags. The JB-test is the Jarque–Bera test for conditional
heteroscedasticity. “a” indicates that the test is based on the probability integral transform of the (standardised)
residuals (see footnote 10). p–values are in parentheses (); standard errors for the degrees of freedom of the
t–distribution are in brackets []. “N” is the number of observations.

Table A5. Forecast evaluation results—real returns.

RMSE DM KS AD KL
Normal—Homoscedastic 0.435 - 0.093 5.419 0.038

Normal—GARCH 0.432 1.864 0.065 2.501 0.021
Laplace—GARCH 0.434 0.183 0.112 14.240 0.068

Student-t—GARCH 0.431 2.003 0.058 2.152 0.015
Skew-t—GARCH 0.431 2.007 0.060 2.070 0.016

Note: “RMSE” is the root mean squared error of the point forecasts. “DM” is the Diebold–Mariano test statistic
where the model with homoscedastic, normally distributed errors is chosen to be the benchmark. The critical value
at the five percent level for the Diebold–Mariano test is 1.65. “KS” is the Kolmogorov–Smirnov test statistic. “AD”
is the Anderson-Darling test statistic. “KL” is the Kullback–Leibler divergence of the PIT of the residuals from the
uniform distribution on the [0, 1] interval. All three density forecast measures are based on the probability integral
transform of the density forecasts produced by each model. The results are based on F = 548 out–of–sample
forecasts and an expanding window for parameter estimation. The critical value at the five percent level for the
Kolmogorov–Smirnov test is 0.058 and for the Anderson–Darling test it is 2.492.
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Notes
1 The real prices are Shiller’s (2015); the CPI has been used as the deflator. As can be seen when comparing our main results

to those in Appendix B, the results using real returns are qualitatively similar. Most importantly, we found that the Student-t
GARCH and Skew-t GARCH specifications are the only ones whose residuals pass the Jarque–Bera test for normality. These two
models also have the best out-of-sample forecast performance.



J. Risk Financial Manag. 2021, 14, 506 15 of 17

2 The measures are related to each other and the quantiles of the distribution by the formula

Kα,τ = Pη,τTα,η =
Q1−η − Qη

Q1−τ − Qτ

Q1−α − Qα

Q1−η − Qη
,

where Qi is the i-th quantile of the distribution and the quantiles used satisfy 0 < α < η < τ < 0.5. Further, the tail (T) can be
decomposed to right (RT) and left (LT) tails according to

Tα,η = RTα,η + LTα,η =
Q1−α − Q0.5
Q1−η − Qη

+
Q0.5 − Qα

Q1−η − Qη
.

3 Fagiolo et al. (2008) found the Laplace distribution useful when modelling the fat tails of GDP growth rates. The Student-t distri-
bution has been used more widely in the empirical literature; see, for example, Cúrdia et al. (2014); Clark and Ravazzolo (2015);
Cross and Poon (2016); and Kiss and Österholm (2020).

4 All distributions are parameterised to have a unit variance. The density function of the Skew-t distribution can be found in
Hansen (1994).

5 As pointed out by Diebold (2015), the Diebold and Mariano (1995) test in its standard form is a reasonable choice even if we
employ nested models, for which the original assumptions of the test do not formally hold. This is further supported by the fact
that the test performs relatively well in such larger training and evaluation samples as the one we use in our analysis (Clark and
McCracken 2013).

6 The KL divergence has been used in a number of applications in the context of density forecasts—typically though with a
somewhat different focus; see, for example, Cogley et al. (2005); Robertson et al. (2005); Hall and Mitchell (2007); Diks et al. (2010)
and Mitchell and Wallis (2011).

7 Figure 1 suggests that the time-series behaviour of the return series may have changed around 1975. In fact, the Shiller (2015)
dataset changes source in January 1975. Therefore, we also estimate the model on the shorter subsample, namely, January 1975 to
September 2019. The results collected in Table A1 in Appendix A are qualitatively very similar to full sample estimates.

8 We also assessed the robustness of our results to the presence of different regimes, in particular the boom and bust cycle between
2002 and 2009. We did this by allowing for a different constant and dynamics in the mean equation during this period, using a
time dummy and interactions. Unreported results (available upon request from the authors) show very similar results to our
baseline. Capturing non-Gaussianity in the innovations remains a salient and important feature of the model.

9 In fact, the parameters α1 and α2 sum up to unity for the normal-GARCH, Student-t-GARCH and Skew-t-GARCH specifications.
However, looking at the results using the Laplace distribution and the shorter sample, integrated volatility does not seem to be a
robust feature of the data, therefore we do not impose it in any of the specifications with conditional heteroscedasticity.

10 The Jarque–Bera tests are based on zt, the PIT series of the standardised residuals, for which Φ−1(zt) is standard normally
distributed (where Φ−1 is the inverse cumulative distribution function of the standard normal distribution). We test this by
applying the Jarque–Bera test on Φ−1(zt).

11 That is, we first estimate the models on the sample January 1953 to January 1974 and make predictions for February 1974. We
then expand the sample to January 1953 to February 1974, re-estimate the models and predict March 1974. We continue in this
manner until we reach the end of the sample, where we estimate the models using data from January 1953 to August 2019 and
make predictions for September 2019.

12 This finding is concordant with the fact that our within-sample analysis indicates that the unconditional volatility overestimates
the conditional one in the larger part of the out-of-sample evaluation period; see Figure 4.

13 Non-Gaussianity is also important for identifying a housing-price shock in a VAR model. Lanne et al. (2017) show that it is
possible to identify an otherwise unidentified structural VAR model by deviating from the Gaussian assumption. That helps
solve the problem discussed in Musso et al. (2011), namely, that housing-price shocks are not identified in a VAR model with
Gaussian error terms.
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