Sticky Stock Market Analysts
Abstract
:1. Introduction
- Unusual events (e.g., a sudden drop in an otherwise rising trendline) are forecasted more seldom than they occur in reality, whereas normal events (e.g., a recently rising trendline continuing to rise) are over-represented in forecasts.
- The standard deviation of the forecasts is lower than the standard deviation of the actual events.
- The extent of the forecasted changes lags behind the scale of the actual changes.
2. Literature Review
2.1. Technological Progress in Stock Market Forecasting
2.2. Ex-Ante Stock Market Forecasts
2.3. Hypotheses
3. Data Basis
4. Methods
- = forecast of the actual event;
- = actual event;
- = time;
- = forecast horizon.
- = event that actually occurred in time t (dependent variable);
- = constant;
- = coefficient of the respective forecast;
- = forecast of the actual event in time t;
- = error term in time t.
- T = number of observations;
- V = loss function;
- P1 = naïve forecast;
- P2 = expert forecast;
- = joint spread of the two loss functions.
5. Results
6. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Summary Statistics on Data Basis
Source | Subject | Year | N | Min [pts.] | Max [pts.] | Median [pts.] | Mean [pts.] | Actual [pts.] | N | Min [pts.] | Max [pts.] | Median [pts.] | Mean [pts.] | Actual [pts.] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Forecast horizon 6 months | Forecast horizon 12 months | |||||||||||||
HB | DAX | 1992 | NA | NA | NA | NA | NA | NA | 21 | 1600 | 1900 | 1780 | 1764 | 1545.05 |
1993 | NA | NA | NA | NA | NA | NA | 25 | 1550 | 1900 | 1750 | 1726 | 2266.68 | ||
1994 | NA | NA | NA | NA | NA | NA | 28 | 1840 | 2500 | 2400 | 2339 | 2106.58 | ||
1995 | NA | NA | NA | NA | NA | NA | 33 | 1950 | 2500 | 2200 | 2225 | 2253.88 | ||
1996 | NA | NA | NA | NA | NA | NA | 28 | 2250 | 2700 | 2450 | 2449 | 2888.69 | ||
1997 | NA | NA | NA | NA | NA | NA | 34 | 2600 | 3800 | 3100 | 3095 | 4249.69 | ||
1998 | NA | NA | NA | NA | NA | NA | 33 | 4000 | 4800 | 4413 | 4413 | 5002.39 | ||
1999 | NA | NA | NA | NA | NA | NA | 34 | 4580 | 6000 | 5400 | 5390 | 6958.14 | ||
2000 | NA | NA | NA | NA | NA | NA | 37 | 6200 | 7620 | 6790 | 6771 | 6433.61 | ||
2001 | NA | NA | NA | NA | NA | NA | 33 | 6100 | 9000 | 7800 | 7722 | 5160.10 | ||
2002 | NA | NA | NA | NA | NA | NA | 38 | 5100 | 6650 | 5750 | 5779 | 2892.63 | ||
2003 | NA | NA | NA | NA | NA | NA | 33 | 3300 | 5000 | 3915 | 3921 | 3965.16 | ||
2004 | NA | NA | NA | NA | NA | NA | 34 | 3500 | 5000 | 4300 | 4318 | 4256.08 | ||
2005 | NA | NA | NA | NA | NA | NA | 33 | 4100 | 5000 | 4600 | 4558 | 5408.26 | ||
2006 | NA | NA | NA | NA | NA | NA | 38 | 5000 | 6100 | 5800 | 5717 | 6596.92 | ||
2007 | NA | NA | NA | NA | NA | NA | 37 | 6000 | 7500 | 7078 | 7027 | 8067.32 | ||
2008 | NA | NA | NA | NA | NA | NA | 35 | 7700 | 9250 | 8500 | 8566 | 4810.20 | ||
2009 | NA | NA | NA | NA | NA | NA | 31 | 3600 | 6500 | 5250 | 5230 | 5957.43 | ||
2010 | NA | NA | NA | NA | NA | NA | 38 | 4500 | 7500 | 6345 | 6339 | 6914.19 | ||
2011 | NA | NA | NA | NA | NA | NA | 39 | 6200 | 8300 | 7600 | 7605 | 5898.35 | ||
2012 | NA | NA | NA | NA | NA | NA | 37 | 5500 | 7600 | 6573 | 6573 | 7612.39 | ||
2013 | NA | NA | NA | NA | NA | NA | 35 | 6900 | 8890 | 8029 | 8024 | 9552.16 | ||
2014 | NA | NA | NA | NA | NA | NA | 33 | 8900 | 11,000 | 10,200 | 10,123 | 9805.55 | ||
2015 | NA | NA | NA | NA | NA | NA | 36 | 9500 | 11,800 | 10,753 | 10,706 | 10,743.01 | ||
2016 | NA | NA | NA | NA | NA | NA | 36 | 9250 | 13,000 | 11,850 | 11,793 | 11,481.06 | ||
2017 | NA | NA | NA | NA | NA | NA | 30 | 11,000 | 12,300 | 11,800 | 11,724 | 12,917.64 | ||
2018 | NA | NA | NA | NA | NA | NA | 33 | 12,300 | 15,000 | 14,000 | 14,009 | 10,558.96 | ||
2019 | NA | NA | NA | NA | NA | NA | 31 | 10,000 | 13,400 | 12,000 | 12,053 | 13,249.01 | ||
2020 | NA | NA | NA | NA | NA | NA | 31 | 12,500 | 15,000 | 14,000 | 13,999 | 13,718.78 | ||
Forecast horizon 6 months | Forecast horizon 12 months | |||||||||||||
FAZ | DAX | 2002 | 14 | 4900 | 6000 | 5650 | 5554 | 4382.56 | 19 | 5100 | 6650 | 5750 | 5808 | 2892.63 |
2003 | NA | NA | NA | NA | NA | 3220.58 | 17 | 3000 | 4200 | 3800 | 3780 | 3965.16 | ||
2004 | 14 | 3600 | 4500 | 4200 | 4184 | 4052.73 | 15 | 3833 | 4700 | 4300 | 4299 | 4256.08 | ||
2005 | 15 | 3900 | 4600 | 4400 | 4330 | 4586.28 | 21 | 4100 | 4750 | 4570 | 4560 | 5408.26 | ||
2006 | 17 | 5000 | 5950 | 5700 | 5616 | 5683.31 | 20 | 5100 | 6100 | 5725 | 5689 | 6596.92 | ||
2007 | 14 | 6200 | 7100 | 6612 | 6623 | 8007.32 | 20 | 6000 | 7400 | 7000 | 6988 | 8067.32 | ||
2008 | 14 | 7250 | 8700 | 8066 | 8081 | 6418.32 | 18 | 7700 | 9200 | 8500 | 8503 | 4810.20 | ||
2009 | 17 | 3200 | 5700 | 4900 | 4725 | 4808.64 | 17 | 3600 | 6500 | 5400 | 5353 | 5957.43 | ||
2010 | 19 | 4800 | 6800 | 6000 | 5875 | 5965.52 | 22 | 5300 | 7100 | 6375 | 6333 | 6914.19 | ||
2011 | 19 | 6300 | 8000 | 7300 | 7289 | 7376.24 | 26 | 6200 | 8300 | 7600 | 7618 | 5898.35 | ||
2012 | 14 | 4800 | 7000 | 6105 | 6009 | 6416.28 | 22 | 5500 | 7600 | 6594 | 6588 | 7612.39 | ||
2013 | 14 | 7000 | 8200 | 7659 | 7618 | 7959.22 | 20 | 7250 | 8890 | 8035 | 8069 | 9552.16 | ||
2014 | 16 | 8500 | 10,200 | 9660 | 9620 | 9833.07 | 23 | 8900 | 11,000 | 10,150 | 10,092 | 9805.55 | ||
2015 | 18 | 8700 | 11,000 | 10,300 | 10,035 | 10,944.97 | 23 | 9500 | 11,500 | 10,900 | 10,773 | 10,743.01 | ||
2016 | 17 | 10,200 | 12,250 | 11,400 | 11,388 | 9680.09 | 23 | 10,800 | 12,600 | 11,900 | 11,859 | 11,481.06 | ||
2017 | 19 | 10,600 | 12,400 | 11,500 | 11,494 | 12,325.12 | 24 | 10,400 | 12,300 | 11,800 | 11,713 | 12,917.64 | ||
2018 | 19 | 12,500 | 15,000 | 13,700 | 13,658 | 12,306.00 | 25 | 12,300 | 14,500 | 14,000 | 13,938 | 10,558.96 | ||
2019 | NA | NA | NA | NA | NA | 12,398.80 | 24 | 10,000 | 13,400 | 12,000 | 11,986 | 13,249.01 | ||
2020 | 22 | 12,000 | 14,500 | 13,625 | 13,460 | 12,310.93 | 23 | 12,500 | 14,500 | 14,000 | 13,833 | 13,718.78 | ||
Forecast horizon 6 months | Forecast horizon 12 months | |||||||||||||
FAZ | DJI | 2004 | 10 | 9800 | 11,000 | 10,422 | 10,444 | 10,435.48 | 10 | 10,000 | 11,200 | 10,500 | 10,544 | 10,783.01 |
2005 | 10 | 10,800 | 11,200 | 11,010 | 11,020 | 10,274.97 | 14 | 11,000 | 12,000 | 11,420 | 11,440 | 10,717.50 | ||
2006 | 14 | 10,000 | 11,800 | 11,223 | 11,196 | 11,150.22 | 15 | 10,300 | 12,500 | 11,500 | 11,575 | 12,463.15 | ||
2007 | 12 | 12,200 | 14,000 | 12,800 | 12,805 | 13,408.62 | 14 | 11,440 | 14,000 | 13,400 | 13,276 | 13,264.82 | ||
2008 | 13 | 12,500 | 14,500 | 13,729 | 13,729 | 11,350.01 | 16 | 13,500 | 15,300 | 14,500 | 14,513 | 8776.39 | ||
2009 | 14 | 6900 | 10,800 | 9000 | 9000 | 8447.00 | 16 | 7000 | 12,500 | 9940 | 9880 | 10,428.05 | ||
2010 | 16 | 8900 | 12,100 | 10,600 | 10,433 | 9774.02 | 18 | 10,000 | 12,100 | 11,050 | 11,118 | 11,577.51 | ||
2011 | 14 | 10,500 | 13,900 | 11,904 | 11,808 | 12,414.34 | 16 | 10,200 | 13,500 | 12,064 | 12,127 | 12,217.56 | ||
2012 | 9 | 10,800 | 13,500 | 12,363 | 12,363 | 12,880.09 | 13 | 12,375 | 15,000 | 13,200 | 13,240 | 13,104.14 | ||
2013 | 8 | 12,100 | 14,000 | 13,487 | 13,381 | 14,909.60 | 11 | 13,000 | 15,300 | 14,150 | 14,150 | 16,576.66 | ||
2014 | 12 | 14,500 | 16,800 | 16,500 | 16,364 | 16,826.60 | 14 | 15,700 | 17,700 | 17,000 | 16,908 | 17,823.07 | ||
2015 | 14 | 14,000 | 18,800 | 18,000 | 17,586 | 17,619.51 | 17 | 16,000 | 19,400 | 18,547 | 18,547 | 17,425.03 | ||
2016 | 12 | 17,500 | 19,000 | 18,123 | 18,245 | 17,929.99 | 15 | 17,000 | 19,500 | 18,700 | 18,568 | 19,762.60 | ||
2017 | 16 | 18,700 | 21,900 | 19,949 | 19,897 | 21,349.63 | 17 | 18,200 | 21,200 | 20,103 | 20,103 | 24,719.22 | ||
2018 | 14 | 22,000 | 27,200 | 24,825 | 24,735 | 24,271.41 | 18 | 22,000 | 28,500 | 25,208 | 25,215 | 23,327.46 | ||
2019 | NA | NA | NA | NA | NA | 26,599.96 | 18 | 24,000 | 28,000 | 26,250 | 24,782 | 28,538.44 | ||
2020 | 15 | 27,250 | 29,200 | 28,500 | 28,404 | 25,812.88 | 17 | 27,100 | 30,400 | 28,909 | 28,909 | 30,606.48 | ||
Forecast horizon 6 months | Forecast horizon 12 months | |||||||||||||
FAZ | SX5E | 2002 | 14 | 3600 | 4300 | 4062 | 4023 | 3133.39 | 17 | 3710 | 4600 | 4300 | 4251 | 2386.41 |
2003 | NA | NA | NA | NA | NA | 2419.51 | 15 | 2300 | 3200 | 2900 | 2890 | 2760.66 | ||
2004 | 13 | 2500 | 3300 | 2879 | 2879 | 2811.08 | 14 | 2750 | 3300 | 3004 | 3008 | 2951.01 | ||
2005 | 15 | 2800 | 3200 | 3050 | 3030 | 3181.54 | 19 | 3000 | 3350 | 3200 | 3160 | 3578.93 | ||
2006 | 17 | 3350 | 3800 | 3700 | 3671 | 3648.92 | 18 | 3450 | 3950 | 3777 | 3754 | 4119.94 | ||
2007 | 14 | 4000 | 4750 | 4208 | 4215 | 4489.77 | 20 | 3700 | 4600 | 4400 | 4394 | 4399.72 | ||
2008 | 14 | 4200 | 4900 | 4508 | 4515 | 3352.81 | 18 | 4400 | 5100 | 4700 | 4726 | 2447.62 | ||
2009 | 15 | 1600 | 3000 | 2500 | 2469 | 2401.69 | 17 | 1950 | 3350 | 2756 | 2756 | 2964.96 | ||
2010 | 17 | 2400 | 3300 | 2910 | 2896 | 2573.32 | 20 | 2600 | 3700 | 3100 | 3124 | 2792.82 | ||
2011 | 17 | 2400 | 3400 | 2950 | 2905 | 2848.53 | 22 | 2500 | 3350 | 3009 | 3018 | 2316.55 | ||
2012 | 14 | 1700 | 2600 | 2300 | 2279 | 2264.72 | 22 | 2050 | 2850 | 2505 | 2510 | 2635.93 | ||
2013 | 15 | 2162 | 2800 | 2626 | 2626 | 2602.59 | 20 | 2590 | 3050 | 2799 | 2797 | 3109.00 | ||
2014 | 15 | 2750 | 3400 | 3250 | 3208 | 3228.25 | 23 | 3000 | 3600 | 3400 | 3344 | 3146.43 | ||
2015 | 17 | 2800 | 3550 | 3300 | 3245 | 3424.30 | 22 | 3200 | 3720 | 3444 | 3438 | 3267.52 | ||
2016 | 16 | 3145 | 3750 | 3550 | 3543 | 2864.74 | 22 | 3425 | 3800 | 3683 | 3665 | 3290.52 | ||
2017 | 18 | 3000 | 3500 | 3271 | 3261 | 3441.88 | 23 | 3100 | 3500 | 3300 | 3295 | 3503.96 | ||
2018 | 18 | 3450 | 4050 | 3748 | 3746 | 3395.60 | 23 | 3400 | 4000 | 3800 | 3793 | 3001.42 | ||
2019 | NA | NA | NA | NA | NA | 3473.69 | 23 | 2800 | 3700 | 3300 | 3305 | 3745.16 | ||
2020 | 21 | 3400 | 4000 | 3713 | 3713 | 3234.07 | 23 | 3500 | 4050 | 3850 | 3833 | 3552.64 |
Appendix B. Forecasters in the Handelsblatt Newspaper
1. | ABN Amro | 45. | Kepler Equities |
2. | Adca-Bank | 46. | Kleinwort Benson Research |
3. | B. Metzler Seel. Sohn & Co. | 47. | LB Rheinland-Pfalz |
4. | Baader Bank | 48. | LBB Landesbank Berlin |
5. | Baden-Württembergische Bank | 49. | LBBW |
6. | Bank in Liechtenstein | 50. | Lehman Brothers |
7. | Bank Julius Bär | 51. | LGT Bank in Liechtenstein |
8. | Bank of America | 52. | M.M. Warburg & Co. |
9. | Bank Sarasin | 53. | Macquarie |
10. | Bankhaus Ellwanger & Geiger | 54. | Merck Finck & Co. |
11. | Bankhaus Lampe | 55. | Merrill Lynch |
12. | Bankhaus Metzler | 56. | Morgan Stanley |
13. | Banque Nationale de Paris | 57. | National-Bank |
14. | Barclays | 58. | NATIXIS |
15. | Bayerische Landesbank | 59. | NIBC |
16. | Bayerische Vereinsbank | 60. | Nomura |
17. | Berenberg | 61. | NordLB |
18. | Bethmann Bank | 62. | Oddo BHF |
19. | BNP Paribas | 63. | Pictet & Cie. |
20. | Cheuvreux | 64. | Postbank |
21. | Citi | 65. | Royal Bank of Scotland |
22. | Commerzbank | 66. | S.G. Warburg |
23. | Crédit Lyonnais | 67. | Sal. Oppenheim |
24. | Credit Suisse | 68. | Santander |
25. | Daiwa Europe (Deutschland) | 69. | Saxo Bank |
26. | Dekabank | 70. | SBC Warburg |
27. | Deutsche Bank | 71. | Schröder Bank |
28. | Donner & Reuschel | 72. | Schröder Münchmeyer Hengst |
29. | Dresdner Bank | 73. | Schroder Salomon Smith Barney |
30. | DZ Bank | 74. | Schweizerischer Bankverein |
31. | Fürst Fugger Privatbank | 75. | SGZ-Bank |
32. | Fürstl. Castell’sche Bank | 76. | Société Générale |
33. | Goldman Sachs | 77. | SYZ & Co. |
34. | Gontard & Metallbank | 78. | Targobank |
35. | GZ-Bank | 79. | UBS |
36. | Haspa | 80. | Unicredit HypoVereinsbank |
37. | Hauck & Aufhäuser | 81. | Union Bancaire Priveé |
38. | Helaba | 82. | Union Bank of Switzerland |
39. | HSBC Trinkaus | 83. | Vereins- und Westbank |
40. | HSH Nordbank | 84. | Vontobel |
41. | IKB | 85. | VP Bank |
42. | IMI Bank | 86. | Weberbank |
43. | J. Safra Sarasin | 87. | WestLB |
44. | J.P. Morgan | 88. | WGZ Bank |
Appendix C. Forecasters in the Frankfurter Allgemeine Zeitung
1. | Adig | 27. | J.P. Morgan |
2. | Allianz SE | 28. | Julius Bär |
3. | Bankgesellschaft Berlin | 29. | Landesbank Berlin |
4. | Bankhaus Lampe | 30. | Landesbank Rheinland-Pfalz |
5. | Barclays Capital | 31. | LBBW |
6. | Bayern LB | 32. | M.M. Warburg |
7. | Berenberg | 33. | Macquarie |
8. | BNP Paribas | 34. | Merck Finck Invest |
9. | Citigroup | 35. | Merrill Lynch |
10. | Commerzbank | 36. | Morgan Stanley |
11. | CSFB | 37. | Nomura |
12. | Deka Bank | 38. | Nord LB |
13. | Deutsche Bank | 39. | Oddo BHF |
14. | Deutsche Bank/Postbank | 40. | Postbank |
15. | DIT | 41. | Raiffeisen Bank International |
16. | Dresdner Bank | 42. | Sal. Oppenheim |
17. | DWS | 43. | Santander Asset Management |
18. | DZ Bank | 44. | Société Générale |
19. | Erste Group | 45. | UBS |
20. | Goldman Sachs | 46. | Union Bancaire Privée |
21. | Helaba | 47. | Union Investment |
22. | HSBC Trinkaus & Burkhardt | 48. | Vereins- und Westbank |
23. | HSH Nordbank | 49. | Weberbank |
24. | HVB-Unicredit Bank | 50. | WestLB |
25. | IKB | 51. | WGZ Bank |
26. | ING Deutschland |
References
- Andres, Peter, and Markus Spiwoks. 1999. Forecast Quality Matrix: A Methodological Survey of Judging Forecast Quality of Capital Market Forecasts. Journal of Economics and Statistics 219: 513–42. [Google Scholar]
- Arthur, W. Brian, John H. Holland, Blake LeBaron, Richard Palmer, and Paul Tayler. 1997. Asset pricing under endogenous expectations in an artificial stock market. In The Economy as an Evolving Complex System II. Edited by W. Brian Arthur, Steven N. Durlauf and David A. Lane. Reading: Addison-Wesley. [Google Scholar]
- Atmaz, Adem, Stefano Cassella, Huseyin Gulen, and Fangcheng Ruan. 2021. Contrarians, Extrapolators, and Stock Market Momentum and Reversal. Available online: https://dx.doi.org/10.2139/ssrn.3722540 (accessed on 28 November 2021).
- Atsalakis, George S., and Kimon P. Valavanis. 2009. Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert systems with Applications 36: 10696–707. [Google Scholar] [CrossRef]
- Bacchetta, Philippe, Elmar Mertens, and Eric Van Wincoop. 2009. Predictability in financial markets: What do survey expectations tell us? Journal of International Money and Finance 28: 406–26. [Google Scholar] [CrossRef] [Green Version]
- Baghestani, Hamid, Mohammad Arzaghi, and Ilker Kaya. 2015. On the Accuracy of Blue Chip Forecasts of Interest Rates and Country Risk Premiums. Applied Economics 47: 113–22. [Google Scholar] [CrossRef]
- Bahrami, Afsaneh, Abul Shamsuddin, and Katherine Uylangco. 2018. Out-of-sample stock return predictability in emerging markets. Accounting & Finance 58: 727–50. [Google Scholar]
- Ben-Rephael, Azi, Zhi Da, and Ryan D. Israelsen. 2017. It Depends on Where You Search: Institutional Investor Attention and Underreaction to News. Review of Financial Studies 30: 3009–47. [Google Scholar] [CrossRef]
- Benke, Holger. 2006. Was leisten Kapitalmarktprognosen?, Die Sicht eines Stiftungsmanagers. Zeitschrift für das Gesamte Kreditwesen 59: 902–6. [Google Scholar]
- Bertella, Mario A., Felipe R. Pires, Ling Feng, and Harry Eugene Stanley. 2014. Confidence and the Stock Market: An Agent-Based Approach. PLoS ONE 9: e83488. [Google Scholar] [CrossRef] [Green Version]
- Cassella, Stefano, and Huseyin Gulen. 2019. Belief-based Equity Market Sentiment. Available online: https://dx.doi.org/10.2139/ssrn.3123083 (accessed on 28 November 2021).
- Cassella, Stefano, and Huseyin Gulen. 2018. Extrapolation Bias and the Predictability of Stock Returns by Price-Scaled Variables. The Review of Financial Studies 31: 4345–97. [Google Scholar] [CrossRef]
- Chen, Shu-Heng, and Ya-Chi Huang. 2008. Risk preference, forecasting accuracy and survival dynamics: Simulations based on a multi-asset agent-based artificial stock market. Journal of Economic Behavior & Organization 67: 702–17. [Google Scholar]
- Chen, Yi-ting, and Kendro Vincent. 2016. The Role of Momentum, Sentiment, and Economic Fundamentals in Forecasting Bear Stock Market. Journal of Forecasting 35: 504–27. [Google Scholar] [CrossRef]
- Cowles, Alfred. 1933. Can stock market forecasters forecast? Econometrica: Journal of the Econometric Society 1: 309–24. [Google Scholar] [CrossRef] [Green Version]
- De Bondt, Werner P. 1993. Betting on trends: Intuitive forecasts of financial risk and return. International Journal of Forecasting 9: 355–71. [Google Scholar] [CrossRef]
- Diebold, Francis X., and Robert S. Mariano. 1995. Comparing Predictive Accuracy. Journal of Business and Economic Statistics 13: 253–63. [Google Scholar]
- Dimson, Elroy, and Paul Marsh. 1984. An analysis of brokers’ and analysts’ unpublished forecasts of UK stock returns. The Journal of Finance 39: 1257–92. [Google Scholar] [CrossRef]
- Dua, Pami. 1988. Multiperiod forecasts of interest rates. Journal of Business & Economic Statistics 6: 381–84. [Google Scholar]
- Fama, Eugene. 1970. Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance 25: 383–417. [Google Scholar] [CrossRef]
- Fassas, Athanasios, Stephanos Papadamou, and Dimitrios Kenourgios. 2021. Evaluating survey-based forecasts of interest rates and macroeconomic variables. Journal of Economic Studies. [Google Scholar] [CrossRef]
- Filiz, Ibrahim, Jan René Judek, Marco Lorenz, and Markus Spiwoks. 2021. Interest rate forecasts in Latin America. Journal of Economic Studies. [Google Scholar] [CrossRef]
- Filiz, Ibrahim, Thomas Nahmer, Markus Spiwoks, and Kilian Bizer. 2019. The accuracy of interest rate forecasts in the Asia-Pacific region: Opportunities for portfolio management. Applied Economics 51: 6309–32. [Google Scholar] [CrossRef]
- Fraser, Patricia, and Ronald MacDonald. 1993. The efficiency of CAC stock price forecasts: A survey based perspective. Revue Économique 44: 991–1000. [Google Scholar]
- Friend, Irwin, and Douglas Vickers. 1965. Portfolio selection and investment performance. The Journal of Finance 20: 391–415. [Google Scholar] [CrossRef]
- Fujiwara, Ippei, Hibiki Ichiue, Yoshiyuki Nakazono, and Yosuke Shigemi. 2013. Financial markets forecasts revisited: Are they rational, stubborn or jumpy? Economics Letters 118: 526–30. [Google Scholar] [CrossRef]
- Goyal, Amit, Ivo Welch, and Athanasse Zafirov. 2021. A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II. Available online: https://dx.doi.org/10.2139/ssrn.3929119 (accessed on 28 November 2021).
- Granger, Clive W., and Paul Newbold. 1974. Spurious regressions in econometrics. Journal of Econometrics 2: 111–20. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, Robin, and Andrei Shleifer. 2014. Expectations of Returns and Expected Returns. The Review of Financial Studies 27: 714–46. [Google Scholar] [CrossRef] [Green Version]
- Guo, Hui. 2006. On the out-of-sample predictability of stock market returns. The Journal of Business 79: 645–70. [Google Scholar] [CrossRef]
- Hein, Oliver, Michael Schwind, and Markus Spiwoks. 2012. Network Centrality and Stock Market Volatility: The Impact of Communication Topologies on Prices. Journal of Finance and Investment Analysis 1: 199–232. [Google Scholar]
- Kalamara, Eleni, Arthur Turrell, Chris Redl, George Kapetanios, and Sujit Kapadia. 2020. Making Text Count: Economic Forecasting Using Newspaper Text. Bank of England Research Paper Series 865: 1–49. [Google Scholar] [CrossRef]
- Kandasamy, Narayanan, Sarah N. Garfinkel, Lionel Page, Ben Hardy, Hugo D. Critchley, Mark Gurnell, and John M. Coates. 2016. Interoceptive Ability Predicts Survival on a London Trading Floor. Scientific Reports 6: 32986. [Google Scholar] [CrossRef]
- Kazak, Ekaterina, and Winfried Pohlmeier. 2019. Testing out-of-sample portfolio performance. International Journal of Forecasting 35: 540–54. [Google Scholar] [CrossRef] [Green Version]
- Krichene, Hazem, and Mhamed-Ali El-Aroui. 2018. Artificial stock markets with different maturity levels: Simulation of information asymmetry and herd behavior using agent-based and network models. Journal of Economic Interaction and Coordination 13: 511–35. [Google Scholar] [CrossRef]
- Kunze, Frederik, Markus Spiwoks, Kilian Bizer, and Torsten Windels. 2018. The usefulness of oil price forecasts—Evidence from survey prediction. Managerial and Decision Economics 39: 427–46. [Google Scholar] [CrossRef]
- Kunze, Frederik, Christoph Wegener, Kilian Bizer, and Markus Spiwoks. 2017. Forecasting European interest rates in times of financial crisis—What insights do we get from international survey forecasts? Journal of International Financial Markets, Institutions and Money 48: 192–205. [Google Scholar] [CrossRef]
- Lakonishok, Josef. 1980. Stock market return expectations: Some general properties. The Journal of Finance 35: 921–31. [Google Scholar] [CrossRef]
- Lofthouse, Stephen. 1996. Why Active Investment Management is Popular: The Psychology of Extraordinary Beliefs. Journal of Interdisciplinary Economics 7: 41–61. [Google Scholar] [CrossRef]
- Mallikarjuna, Mejari, and R. Prabhakara Rao. 2019. Evaluation of forecasting methods from selected stock market returns. Financial Innovation 5: 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mandelbrot, Benoit. 2004. The (Mis)Behavior of Markets—A Fractal View of Risk, Ruin and Reward. New York: Basic Books, pp. 186–95. [Google Scholar]
- Maxwell, Michael, and Gary van Vuuren. 2019. Active investment strategies under tracking error constraints. International Advances in Economic Research 25: 309–22. [Google Scholar] [CrossRef]
- Miah, Fazlul, Ahmed Ali Khalifa, and Shawkat Hammoudeh. 2016. Further evidence on the rationality of interest rate expectations: A comprehensive study of developed and emerging economies. Economic Modelling 54: 574–90. [Google Scholar] [CrossRef]
- Milas, Costas, Theodore Panagiotidis, and Theologos Dergiades. 2021. Does It Matter Where You Search? Twitter versus Traditional News Media. Journal of Money, Credit and Banking 153: 1757–95. [Google Scholar] [CrossRef]
- Mincer, Jacob A., and Victor Zarnowitz. 1969. The Evaluation of Economic Forecasts. In Economic Forecasts and Expectation. Edited by Jacob Mincer. New York: Columbia University Press, pp. 3–46. [Google Scholar]
- Neely, Christopher J., David E. Rapach, Jun Tu, and Guofu Zhou. 2014. Forecasting the equity risk premium: The role of technical indicators. Management Science 60: 1772–91. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, Henri. 2013. Predicting bear and bull stock markets with dynamic binary time series models. Journal of Banking & Finance 37: 3351–63. [Google Scholar]
- Ogburn, William F. 1934. Studies in Prediction and the Distortion of Reality. Social Forces 13: 224–29. [Google Scholar] [CrossRef]
- Oliver, Nelson, and Mehmet Pasaogullari. 2015. Interest Rate Forecasts in Conventional and Unconventional Monetary Policy Periods. Economic commentary 5: 1–4. [Google Scholar] [CrossRef]
- Ortiz-Teran, Elena, Tomas Ortiz, Agustin Turrero, and Joaquin Lopez-Pascual. 2019. Neural implications of investment banking experience in decision-making under risk and ambiguity. Journal of Neuroscience, Psychology, and Economics 12: 34–44. [Google Scholar] [CrossRef]
- Pierdzioch, Christian. 2015. A note on the directional accuracy of interest-rate forecasts. Applied Economics Letters 22: 1073–77. [Google Scholar] [CrossRef]
- Ponta, Linda, and Silvano Cincotti. 2018. Traders’ Networks of Interactions and Structural Properties of Financial Markets: An Agent-Based Approach. Hindawi Complexity 2018: 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rajab, Sharifa, and Vinod Sharma. 2019. An interpretable neuro-fuzzy approach to stock price forecasting. Soft Computing 23: 921–36. [Google Scholar] [CrossRef]
- Ramnath, Sundaresh, Steve Rock, and Philip Shane. 2008. The Financial Analyst Forecasting Literature: A Taxonomy with Suggestions for Further Research. International Journal of Forecasting 24: 34–75. [Google Scholar] [CrossRef]
- Spiwoks, Markus, and Oliver Hein. 2007. Die Währungs-, Anleihen- und Aktienmarktprognosen des Zentrums für Europäische Wirtschaftsforschung. AStA Wirtschafts- und Sozialstatistisches Archiv 1: 43–52. [Google Scholar] [CrossRef]
- Spiwoks, Markus. 2004. The Usefulness of ZEW Stock Market Forecasts for Active Portfolio Management Strategies. Journal of Economics and Statistics 224: 557–78. [Google Scholar]
- Spiwoks, Markus, Zulia Gubaydullina, and Oliver Hein. 2015. Trapped in the Here and Now - New Insights into Financial Market Analyst Behavior. Journal of Applied Finance and Banking 5: 29–50. [Google Scholar]
- Theil, Henri. 1958. Economic Forecasts and Policy. Amsterdam: North Holland Publishing Company. [Google Scholar]
- Theissen, Erik. 2007. An analysis of private investors’ stock market return forecasts. Applied Financial Economics 17: 35–43. [Google Scholar] [CrossRef]
- Wald, Abraham. 1943. Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large. Transactions of the American Mathematical Society 54: 426–82. [Google Scholar] [CrossRef]
- Welch, Ivo, and Amit Goyal. 2008. A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies 21: 1455–508. [Google Scholar] [CrossRef]
- Werner, Natalie S., Katharina Jung, Stefan Duschek, and Rainer Schandry. 2009. Enhanced cardiac perception is associated with benefits in decision-making. Psychophysiology 46: 1123–29. [Google Scholar] [CrossRef] [PubMed]
- Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. Cambridge: MIT Press. [Google Scholar]
- Yang, Xinhui, Jie Zhang, and Qing Ye. 2020. Tick size and market quality: Simulations based on agent-based artificial stock markets. Intelligent Systems in Accounting, Finance and Management 27: 125–41. [Google Scholar] [CrossRef]
Study | Subject of the Forecast | Methods | Time Scale | Result |
---|---|---|---|---|
Lakonishok (1980) | S&P 425 | Unbiasedness test with Theil–Sen estimator, Theil’s U, turning point errors | 1947–1974 | − |
Dimson and Marsh (1984) | Selected British shares | Comparison of forecast and actual return via t-test, Unbiasedness test | 1980–1981 | + |
Fraser and MacDonald (1993) | CAC 40 | Unbiasedness test, root mean squared error | 1984–1987 | − |
Spiwoks (2004) | Dow Jones Industrial Index, DAX, FT-SE 100, CAC 40, MIBtel, and the Nikkei 225 | Analysis of turning point errors, Theil’s U, TOTA coefficient | 1994–2004 | − |
Benke (2006) | DAX | Comparison of absolute frequencies regarding forecasting errors, direction of error, and comparison to naïve forecasts without statistical test | 1992–2005 | − |
Spiwoks and Hein (2007) | Dow Jones Industrial Index, DAX, FT-SE 100, CAC 40, MIBtel, and the Nikkei 225 | Root mean squared relative error, mean absolute relative error | 1994–2004 | − |
Bacchetta et al. (2009) | Dow Jones Industrial Index, and Nikkei 225 | Log Regression | 1998–2005 | + |
Fujiwara et al. (2013) | TOPIX | Augmented Dickey–Fuller test, ADF-Fisher chi-square test | 1998–2010 | − |
Source | Subject | Period | N | Min (in %) | Max (in %) | Median (in %) | Mean (in %) | N | Min (in %) | Max (in %) | Median (in %) | Mean (in %) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Forecast Horizon 6 Months | Forecast Horizon 12 Months | |||||||||||
HB | DAX | 1992–2020 | NA | NA | NA | NA | NA | 964 | −25.16 | 72.85 | 8.08 | 8.76 |
FAZ | DAX | 2002–2020 | 282 | −33.47 | 18.68 | 3.38 | 2.34 | 402 | −25.16 | 45.20 | 8.14 | 8.94 |
FAZ | DJI | 2004–2020 | 203 | −21.45 | 23.06 | 1.62 | 1.39 | 259 | −20.24 | 42.43 | 6.07 | 5.95 |
FAZ | SX5E | 2002–2020 | 270 | −34.63 | 22.57 | 3.24 | 2.32 | 381 | −20.33 | 36.87 | 7.88 | 8.03 |
Σ | 755 | 2006 |
Institution | Forecasts Issued | Forecast | Actual | Normal Events over- Represented in the Forecasts | Standard Deviation | SD of the Forecasts < SD of the Actual Events | Regression Line | Slope of the Regression Lines < 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DAX Falls | DAX Rises | DAX Falls | DAX Rises | Forecast | Actual | Intercept | Slope | |||||
Bank Julius Bär | 23 | 2 | 21 | 8 | 15 | Yes | 0.062 | 0.248 | Yes | 0.088 | −0.023 | Yes |
Bank of America | 11 | 0 | 11 | 2 | 9 | Yes | 0.066 | 0.207 | Yes | 0.117 | −0.001 | Yes |
Bankhaus Lampe | 25 | 1 | 24 | 6 | 19 | Yes | 0.081 | 0.234 | Yes | 0.089 | 0.097 | Yes |
Bayerische Landesbank | 26 | 1 | 25 | 6 | 20 | Yes | 0.067 | 0.230 | Yes | 0.080 | −0.006 | Yes |
Berenberg | 27 | 1 | 26 | 7 | 20 | Yes | 0.100 | 0.228 | Yes | 0.114 | 0.011 | Yes |
Bethmann Bank | 12 | 2 | 10 | 5 | 7 | Yes | 0.095 | 0.284 | Yes | 0.101 | −0.109 | Yes |
BNP Paribas | 18 | 3 | 15 | 4 | 14 | Yes | 0.061 | 0.223 | Yes | 0.056 | 0.140 | Yes |
Commerzbank | 28 | 2 | 26 | 7 | 21 | Yes | 0.089 | 0.234 | Yes | 0.120 | −0.064 | Yes |
Credit Suisse | 13 | 2 | 11 | 5 | 8 | Yes | 0.072 | 0.290 | Yes | 0.106 | 0.059 | Yes |
Dekabank | 19 | 1 | 18 | 4 | 15 | Yes | 0.101 | 0.227 | Yes | 0.090 | 0.154 | Yes |
Deutsche Bank | 25 | 2 | 23 | 7 | 18 | Yes | 0.070 | 0.237 | Yes | 0.091 | −0.043 | Yes |
Dresdner Bank | 15 | 0 | 15 | 5 | 10 | Yes | 0.084 | 0.276 | Yes | 0.080 | 0.099 | Yes |
DZ Bank | 29 | 7 | 22 | 8 | 21 | Yes | 0.107 | 0.231 | Yes | 0.073 | 0.088 | Yes |
Haspa | 13 | 0 | 13 | 3 | 10 | Yes | 0.047 | 0.202 | Yes | 0.080 | 0.045 | Yes |
Hauck & Aufhäuser | 26 | 5 | 21 | 6 | 20 | Yes | 0.101 | 0.235 | Yes | 0.072 | −0.040 | Yes |
Helaba | 28 | 8 | 20 | 7 | 21 | No | 0.108 | 0.234 | Yes | 0.053 | 0.092 | Yes |
HSBC Trinkaus | 22 | 3 | 19 | 7 | 15 | Yes | 0.085 | 0.256 | Yes | 0.080 | −0.022 | Yes |
J.P. Morgan | 22 | 4 | 18 | 6 | 16 | Yes | 0.100 | 0.244 | Yes | 0.084 | 0.038 | Yes |
LBB Landesbank Berlin | 18 | 3 | 15 | 6 | 12 | Yes | 0.140 | 0.233 | Yes | 0.088 | 0.027 | Yes |
LBBW | 21 | 1 | 20 | 6 | 15 | Yes | 0.107 | 0.226 | Yes | 0.090 | 0.093 | Yes |
Lehman Brothers | 12 | 5 | 7 | 4 | 8 | No | 0.098 | 0.259 | Yes | 0.040 | 0.062 | Yes |
M.M. Warburg & Co. | 29 | 3 | 26 | 8 | 21 | Yes | 0.091 | 0.231 | Yes | 0.076 | −0.016 | Yes |
Morgan Stanley | 14 | 6 | 8 | 4 | 10 | No | 0.123 | 0.285 | Yes | 0.030 | 0.136 | Yes |
National-Bank | 15 | 3 | 12 | 3 | 12 | No | 0.086 | 0.202 | Yes | 0.082 | 0.028 | Yes |
NATIXIS | 17 | 1 | 16 | 3 | 14 | Yes | 0.065 | 0.231 | Yes | 0.077 | 0.057 | Yes |
NordLB | 12 | 2 | 10 | 2 | 10 | No | 0.038 | 0.153 | Yes | 0.041 | −0.089 | Yes |
Oddo BHF | 28 | 3 | 25 | 8 | 20 | Yes | 0.104 | 0.234 | Yes | 0.090 | 0.059 | Yes |
Pictet & Cie. | 13 | 3 | 10 | 5 | 8 | Yes | 0.114 | 0.279 | Yes | 0.092 | −0.074 | Yes |
Postbank | 11 | 0 | 11 | 3 | 8 | Yes | 0.069 | 0.225 | Yes | 0.098 | 0.087 | Yes |
Sal. Oppenheim | 21 | 2 | 19 | 5 | 16 | Yes | 0.093 | 0.248 | Yes | 0.067 | 0.111 | Yes |
Santander | 24 | 1 | 23 | 7 | 17 | Yes | 0.093 | 0.239 | Yes | 0.116 | 0.101 | Yes |
Société Générale | 20 | 4 | 16 | 5 | 15 | Yes | 0.096 | 0.228 | Yes | 0.065 | 0.043 | Yes |
SYZ & Co. | 10 | 0 | 10 | 2 | 8 | Yes | 0.058 | 0.235 | Yes | 0.144 | −0.042 | Yes |
UBS | 14 | 3 | 11 | 4 | 10 | Yes | 0.120 | 0.242 | Yes | 0.112 | 0.007 | Yes |
Unicredit HypoVereinsbank | 28 | 3 | 25 | 8 | 20 | Yes | 0.079 | 0.233 | Yes | 0.083 | 0.043 | Yes |
VP Bank | 11 | 1 | 10 | 2 | 9 | Yes | 0.042 | 0.155 | Yes | 0.084 | 0.034 | Yes |
WestLB | 21 | 3 | 18 | 7 | 14 | Yes | 0.106 | 0.260 | Yes | 0.081 | 0.124 | Yes |
WGZ Bank | 16 | 1 | 15 | 5 | 11 | Yes | 0.172 | 0.211 | Yes | 0.110 | 0.301 | Yes |
Consensus | 29 | 1 | 28 | 8 | 21 | Yes | 0.065 | 0.231 | Yes | 0.085 | 0.037 | Yes |
All forecasts | 964 | 117 | 847 | 264 | 700 | Yes | 0.091 | 0.230 | Yes | 0.084 | 0.034 | Yes |
Institution | Forecasts Issued | Forecast | Actual | Normal Events over- Represented in the Forecasts | Standard Deviation | SD of the Forecasts < SD of the Actual Events | Regression Line | Slope of the Regression Lines < 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DAX Falls | DAX Rises | DAX Falls | DAX Rises | Forecast | Actual | Intercept | Slope | |||||
Forecast horizon 6 months | ||||||||||||
Bayern LB | 10 | 5 | 5 | 3 | 7 | No | 0.047 | 0.094 | Yes | 0.028 | −0.286 | Yes |
Deka Bank | 16 | 3 | 13 | 5 | 11 | Yes | 0.061 | 0.096 | Yes | 0.040 | −0.002 | Yes |
DZ Bank | 16 | 6 | 10 | 5 | 11 | No | 0.065 | 0.096 | Yes | 0.009 | 0.032 | Yes |
Helaba | 14 | 6 | 8 | 5 | 9 | No | 0.075 | 0.102 | Yes | 0.025 | −0.375 | Yes |
HSH Nordbank | 10 | 7 | 3 | 4 | 6 | No | 0.095 | 0.098 | Yes | −0.030 | −0.039 | Yes |
HVB-Unicredit Bank | 16 | 4 | 12 | 6 | 10 | Yes | 0.063 | 0.104 | Yes | 0.035 | −0.035 | Yes |
LBBW | 17 | 3 | 14 | 6 | 11 | Yes | 0.048 | 0.102 | Yes | 0.019 | 0.090 | Yes |
M.M. Warburg | 17 | 3 | 14 | 6 | 11 | Yes | 0.122 | 0.102 | No | 0.030 | −0.039 | Yes |
Oddo BHF | 10 | 1 | 9 | 4 | 6 | Yes | 0.041 | 0.121 | Yes | 0.049 | −0.058 | Yes |
Postbank | 13 | 6 | 7 | 4 | 9 | No | 0.071 | 0.104 | Yes | 0.008 | −0.087 | Yes |
Santander Asset Mgmt. | 13 | 1 | 12 | 3 | 10 | Yes | 0.029 | 0.099 | Yes | 0.033 | 0.073 | Yes |
Société Générale | 10 | 6 | 4 | 3 | 7 | No | 0.087 | 0.072 | No | −0.023 | −0.431 | Yes |
Consensus | 17 | 2 | 15 | 6 | 11 | Yes | 0.028 | 0.102 | Yes | 0.024 | −0.077 | Yes |
All forecasts | 282 | 83 | 199 | 103 | 179 | Yes | 0.072 | 0.095 | Yes | 0.024 | −0.076 | Yes |
Forecast horizon 12 months | ||||||||||||
Allianz SE | 11 | 0 | 11 | 2 | 9 | Yes | 0.044 | 0.155 | Yes | 0.072 | 0.018 | Yes |
Bayern LB | 11 | 0 | 11 | 2 | 9 | Yes | 0.036 | 0.159 | Yes | 0.069 | 0.011 | Yes |
BNP Paribas | 12 | 1 | 11 | 3 | 9 | Yes | 0.055 | 0.210 | Yes | 0.066 | 0.110 | Yes |
Commerzbank | 18 | 0 | 18 | 4 | 14 | Yes | 0.081 | 0.233 | Yes | 0.119 | 0.032 | Yes |
Deka Bank | 18 | 1 | 17 | 3 | 15 | Yes | 0.104 | 0.195 | Yes | 0.082 | 0.200 | Yes |
Deutsche Bank | 10 | 0 | 10 | 2 | 8 | Yes | 0.047 | 0.212 | Yes | 0.104 | −0.017 | Yes |
DWS | 13 | 0 | 13 | 3 | 10 | Yes | 0.027 | 0.202 | Yes | 0.076 | 0.038 | Yes |
DZ Bank | 18 | 2 | 16 | 4 | 14 | Yes | 0.066 | 0.222 | Yes | 0.072 | 0.063 | Yes |
Helaba | 15 | 6 | 9 | 3 | 12 | No | 0.121 | 0.196 | Yes | 0.025 | 0.249 | Yes |
HSBC Trinkaus & Burkhardt | 13 | 2 | 11 | 3 | 10 | Yes | 0.066 | 0.262 | Yes | 0.065 | −0.102 | Yes |
HSH Nordbank | 11 | 2 | 9 | 3 | 8 | Yes | 0.080 | 0.213 | Yes | 0.055 | 0.192 | Yes |
HVB-Unicredit Bank | 18 | 1 | 17 | 4 | 14 | Yes | 0.078 | 0.228 | Yes | 0.077 | 0.077 | Yes |
J.P. Morgan | 12 | 1 | 11 | 3 | 9 | Yes | 0.064 | 0.233 | Yes | 0.095 | 0.140 | Yes |
LBBW | 19 | 0 | 19 | 4 | 15 | Yes | 0.097 | 0.227 | Yes | 0.091 | 0.093 | Yes |
M.M. Warburg | 19 | 1 | 18 | 4 | 15 | Yes | 0.097 | 0.227 | Yes | 0.078 | −0.018 | Yes |
Oddo BHF | 17 | 1 | 16 | 4 | 13 | Yes | 0.045 | 0.225 | Yes | 0.093 | −0.092 | Yes |
Postbank | 14 | 0 | 14 | 3 | 11 | Yes | 0.070 | 0.208 | Yes | 0.096 | 0.048 | Yes |
Santander Asset Mgmt. | 16 | 0 | 16 | 3 | 13 | Yes | 0.052 | 0.195 | Yes | 0.107 | 0.048 | Yes |
Société Générale | 11 | 4 | 7 | 2 | 9 | No | 0.088 | 0.155 | Yes | 0.067 | −0.347 | Yes |
UBS | 10 | 1 | 9 | 1 | 9 | No | 0.118 | 0.151 | Yes | 0.136 | 0.027 | Yes |
WestLB | 11 | 2 | 9 | 3 | 8 | Yes | 0.128 | 0.282 | Yes | 0.075 | 0.204 | Yes |
Consensus | 19 | 0 | 19 | 4 | 15 | Yes | 0.061 | 0.227 | Yes | 0.087 | 0.064 | Yes |
All forecasts | 402 | 31 | 371 | 88 | 314 | Yes | 0.083 | 0.215 | Yes | 0.085 | 0.054 | Yes |
Institution | Forecasts Issued | Forecast | Actual | Normal Events over-Represented in the Forecasts | Standard Deviation | SD of the Forecasts < SD of the Actual Events | Regression Line | Slope of the Regression Lines < 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DJI Falls | DJI Rises | DJI Falls | DJI Rises | Forecast | Actual | Intercept | Slope | |||||
Forecast horizon 6 months | ||||||||||||
Deka Bank | 15 | 5 | 10 | 8 | 7 | Yes | 0.070 | 0.066 | No | 0.018 | 0.171 | Yes |
Helaba | 14 | 6 | 8 | 6 | 8 | No | 0.081 | 0.077 | No | 0.019 | −0.406 | Yes |
LBBW | 16 | 7 | 9 | 8 | 8 | Yes | 0.052 | 0.073 | Yes | 0.010 | 0.116 | Yes |
M.M. Warburg | 15 | 3 | 12 | 7 | 8 | Yes | 0.061 | 0.075 | Yes | 0.034 | 0.233 | Yes |
Postbank | 12 | 6 | 6 | 5 | 7 | No | 0.053 | 0.079 | Yes | 0.003 | 0.035 | Yes |
Santander Asset Mgmt. | 13 | 1 | 12 | 6 | 7 | Yes | 0.019 | 0.081 | Yes | 0.026 | −0.095 | Yes |
Consensus | 16 | 4 | 12 | 8 | 8 | Yes | 0.019 | 0.073 | Yes | 0.014 | 0.036 | Yes |
All forecasts | 203 | 67 | 136 | 106 | 97 | Yes | 0.061 | 0.070 | Yes | 0.014 | 0.040 | Yes |
Forecast horizon 12 months | ||||||||||||
BNP Paribas | 10 | 0 | 10 | 3 | 7 | Yes | 0.040 | 0.183 | Yes | 0.072 | −0.059 | Yes |
Commerzbank | 10 | 0 | 10 | 3 | 7 | Yes | 0.052 | 0.169 | Yes | 0.081 | 0.120 | Yes |
Deka Bank | 16 | 6 | 10 | 4 | 12 | No | 0.099 | 0.137 | Yes | 0.051 | 0.002 | Yes |
Helaba | 15 | 7 | 8 | 3 | 12 | No | 0.107 | 0.149 | Yes | 0.008 | 0.193 | Yes |
HSH Nordbank | 11 | 5 | 6 | 3 | 8 | No | 0.067 | 0.163 | Yes | 0.022 | −0.032 | Yes |
LBBW | 17 | 4 | 13 | 4 | 13 | No | 0.058 | 0.142 | Yes | 0.053 | −0.042 | Yes |
M.M. Warburg | 17 | 1 | 16 | 4 | 13 | Yes | 0.071 | 0.142 | Yes | 0.063 | −0.107 | Yes |
Oddo BHF | 15 | 0 | 15 | 3 | 12 | Yes | 0.022 | 0.147 | Yes | 0.058 | 0.054 | Yes |
Postbank | 13 | 0 | 13 | 3 | 10 | Yes | 0.063 | 0.160 | Yes | 0.084 | 0.012 | Yes |
Santander Asset Mgmt. | 16 | 0 | 16 | 4 | 12 | Yes | 0.051 | 0.146 | Yes | 0.070 | 0.093 | Yes |
Consensus | 17 | 0 | 17 | 4 | 13 | Yes | 0.033 | 0.142 | Yes | 0.055 | 0.006 | Yes |
All forecasts | 259 | 33 | 226 | 65 | 194 | Yes | 0.066 | 0.140 | Yes | 0.057 | 0.029 | Yes |
Institution | Forecasts Issued | Forecast | Actual | Normal Events over-Represented in the Forecasts | Standard Deviation | SD of the Forecasts < SD of the Actual Events | Regression Line | Slope of the Regression Lines < 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SX5E Falls | SX5E Rises | SX5E Falls | SX5E Rises | Forecast | Actual | Intercept | Slope | |||||
Forecast horizon 6 months | ||||||||||||
Bayern LB | 10 | 4 | 6 | 5 | 5 | Yes | 0.043 | 0.078 | Yes | 0.011 | −0.244 | Yes |
Deka Bank | 16 | 3 | 13 | 8 | 8 | Yes | 0.063 | 0.093 | Yes | 0.049 | 0.022 | Yes |
DZ Bank | 16 | 3 | 13 | 8 | 8 | Yes | 0.064 | 0.093 | Yes | 0.030 | 0.186 | Yes |
Helaba | 14 | 6 | 8 | 8 | 6 | Yes | 0.079 | 0.095 | Yes | 0.019 | −0.406 | Yes |
HSH Nordbank | 10 | 6 | 4 | 6 | 4 | No | 0.085 | 0.099 | Yes | −0.030 | −0.214 | Yes |
HVB-Unicredit Bank | 16 | 3 | 13 | 8 | 8 | Yes | 0.070 | 0.101 | Yes | 0.023 | −0.085 | Yes |
LBBW | 17 | 6 | 11 | 9 | 8 | Yes | 0.053 | 0.098 | Yes | 0.028 | 0.088 | Yes |
M.M. Warburg | 16 | 2 | 14 | 8 | 8 | Yes | 0.073 | 0.101 | Yes | 0.055 | −0.014 | Yes |
Oddo BHF | 10 | 2 | 8 | 5 | 5 | Yes | 0.042 | 0.116 | Yes | 0.033 | −0.009 | Yes |
Postbank | 13 | 6 | 7 | 7 | 6 | Yes | 0.060 | 0.097 | Yes | 0.004 | −0.100 | Yes |
Santander Asset Mgmt. | 13 | 2 | 11 | 6 | 7 | Yes | 0.033 | 0.099 | Yes | 0.030 | 0.110 | Yes |
Consensus | 17 | 5 | 12 | 9 | 8 | Yes | 0.030 | 0.098 | Yes | 0.023 | −0.018 | Yes |
All forecasts | 270 | 82 | 188 | 144 | 126 | Yes | 0.073 | 0.094 | Yes | 0.023 | −0.007 | Yes |
Forecast horizon 12 months | ||||||||||||
Allianz SE | 11 | 0 | 11 | 4 | 7 | Yes | 0.042 | 0.130 | Yes | 0.071 | −0.035 | Yes |
Bayern LB | 11 | 0 | 11 | 3 | 8 | Yes | 0.039 | 0.127 | Yes | 0.058 | −0.044 | Yes |
BNP Paribas | 11 | 1 | 10 | 3 | 8 | Yes | 0.044 | 0.194 | Yes | 0.076 | −0.069 | Yes |
Commerzbank | 18 | 1 | 17 | 5 | 13 | Yes | 0.064 | 0.195 | Yes | 0.080 | 0.017 | Yes |
Deka Bank | 18 | 1 | 17 | 5 | 13 | Yes | 0.093 | 0.170 | Yes | 0.094 | 0.107 | Yes |
DWS | 12 | 0 | 12 | 5 | 7 | Yes | 0.043 | 0.175 | Yes | 0.078 | −0.019 | Yes |
DZ Bank | 18 | 1 | 17 | 6 | 12 | Yes | 0.075 | 0.193 | Yes | 0.090 | 0.096 | Yes |
Helaba | 15 | 5 | 10 | 5 | 10 | No | 0.117 | 0.177 | Yes | 0.048 | 0.292 | Yes |
HSBC Trinkaus&Burkhardt | 14 | 3 | 11 | 4 | 10 | Yes | 0.082 | 0.209 | Yes | 0.065 | −0.141 | Yes |
HSH Nordbank | 11 | 1 | 10 | 4 | 7 | Yes | 0.071 | 0.195 | Yes | 0.076 | 0.119 | Yes |
HVB-Unicredit Bank | 18 | 0 | 18 | 6 | 12 | Yes | 0.064 | 0.193 | Yes | 0.070 | 0.050 | Yes |
LBBW | 19 | 1 | 18 | 6 | 13 | Yes | 0.078 | 0.190 | Yes | 0.088 | 0.003 | Yes |
M.M. Warburg | 19 | 1 | 18 | 6 | 13 | Yes | 0.083 | 0.190 | Yes | 0.074 | −0.073 | Yes |
Oddo BHF | 17 | 1 | 16 | 6 | 11 | Yes | 0.047 | 0.192 | Yes | 0.072 | −0.074 | Yes |
Postbank | 14 | 0 | 14 | 4 | 10 | Yes | 0.054 | 0.190 | Yes | 0.086 | 0.032 | Yes |
Santander Asset Mgmt. | 16 | 0 | 16 | 5 | 11 | Yes | 0.053 | 0.178 | Yes | 0.095 | 0.078 | Yes |
WestLB | 11 | 1 | 10 | 4 | 7 | Yes | 0.088 | 0.231 | Yes | 0.073 | 0.127 | Yes |
Consensus | 19 | 0 | 19 | 6 | 13 | Yes | 0.044 | 0.190 | Yes | 0.083 | 0.020 | Yes |
All forecasts | 381 | 29 | 352 | 123 | 258 | Yes | 0.073 | 0.179 | Yes | 0.080 | 0.017 | Yes |
Stock Market Index | Source | Forecast Horizon | Number of Observations | Slope | Intercept | F Test p-Value | Wooldridge Test p-Value |
---|---|---|---|---|---|---|---|
DAX | HB | 12M | 964 | 0.034 | 0.084 | 0.000 | 0.000 |
DAX | FAZ | 6M | 282 | −0.075 | 0.024 | 0.000 | 0.000 |
DAX | FAZ | 12M | 402 | 0.054 | 0.085 | 0.000 | 0.006 |
DJI | FAZ | 6M | 203 | 0.040 | 0.014 | 0.010 | 0.098 |
DJI | FAZ | 12M | 259 | 0.029 | 0.057 | 0.000 | 0.623 |
SX5E | FAZ | 6M | 270 | −0.007 | 0.023 | 0.000 | 0.091 |
SX5E | FAZ | 12M | 381 | 0.017 | 0.080 | 0.000 | 0.042 |
Stock Market Index | Source | Forecast Horizon | Diebold–Mariano Test | |
---|---|---|---|---|
Result | p-Value | |||
DAX | HB | 12M | o | 0.8143 |
DAX | FAZ | 6M | o | 0.1221 |
DAX | FAZ | 12M | o | 0.7429 |
DJI | FAZ | 6M | o | 0.7053 |
DJI | FAZ | 12M | o | 0.3491 |
SX5E | FAZ | 6M | − | 0.0000 |
SX5E | FAZ | 12M | − | 0.0540 |
Stock Market Index | Source | Forecast Horizon | Hypothesis 1 | Hypothesis 2 | Hypothesis 3 | Hypothesis 4 | Hypothesis 5 |
---|---|---|---|---|---|---|---|
DAX | HB | 12M | + | + | + | + | + |
DAX | FAZ | 6M | + | + | + | + | + |
DAX | FAZ | 12M | + | + | + | + | + |
DJI | FAZ | 6M | + | + | + | + | + |
DJI | FAZ | 12M | + | + | + | + | + |
SX5E | FAZ | 6M | + | + | + | + | + |
SX5E | FAZ | 12M | + | + | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filiz, I.; Judek, J.R.; Lorenz, M.; Spiwoks, M. Sticky Stock Market Analysts. J. Risk Financial Manag. 2021, 14, 593. https://doi.org/10.3390/jrfm14120593
Filiz I, Judek JR, Lorenz M, Spiwoks M. Sticky Stock Market Analysts. Journal of Risk and Financial Management. 2021; 14(12):593. https://doi.org/10.3390/jrfm14120593
Chicago/Turabian StyleFiliz, Ibrahim, Jan René Judek, Marco Lorenz, and Markus Spiwoks. 2021. "Sticky Stock Market Analysts" Journal of Risk and Financial Management 14, no. 12: 593. https://doi.org/10.3390/jrfm14120593
APA StyleFiliz, I., Judek, J. R., Lorenz, M., & Spiwoks, M. (2021). Sticky Stock Market Analysts. Journal of Risk and Financial Management, 14(12), 593. https://doi.org/10.3390/jrfm14120593