Inflation Co-Movement Dynamics: A Cross-Country Investigation Using a Continuous Wavelet Approach
Abstract
:1. Introduction
2. Data Source and Empirical Methodology
2.1. Data Source
2.2. Empirical Methodology
2.2.1. The Continuous Wavelet Methodology
2.2.2. Wavelet Power Spectrum, Wavelet Coherency, and Phase Difference
2.2.3. Spillover analysis
3. Data Analysis and Empirical Findings
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | The wavelet power spectrum is computed by taking a discrete Fourier transform of the time series. Then, for each scale, the wavelet’s frequency response is analytically computed, and it is multiplied by the data’s transform in the frequency domain. |
2 | The thick black contour designates the 5% significance level against red noise and the cone of influence (COI), where edge effects that might distort the picture are shown in a lighter shade. The color code for power ranges from blue (low power) to red. |
3 | These edge effects arise due to periodicity assumptions in data and the response function of the wavelet. The artificial increase in the length of the time series to the next-higher power of two, by adding zero-value samples creates artificial discontinuities at the border of the data. As the wavelet gets closer to the edge of the time series, the values of the wavelet transform are affected by the zeros introduced, which creates the edge effect. |
4 | The thick black contour designates the 5% significance level against red noise which is estimated from Monte Carlo simulations using phase randomized surrogate series. The cone of influence, which indicates the region affected by edge effects, is shown with a lighter shade black line. The color code for power ranges from blue (low power) to red (high power). The phase difference between the two series is indicated by arrows. Arrows pointing to the right mean that the variables are in phase. To the right and up, that y is leading. To the right and down, that y is lagging. Arrows pointing to the left mean that the variables are out of phase. To the left and up, that y is lagging. To the left and down, that y is leading. |
5 | We estimated DCC plots for all other country pairs, but reported only that of Nigeria and other countries. Remaining plots are available upon request. |
References
- Abakah, Emmanuel Joel Aikins, Emmanuel Addo Jr, Luis A. Gil-Alana, and Aviral Kumar Tiwari. 2021. Re-examination of international bond market dependence: Evidence from a pair copula approach. International Review of Financial Analysis 74: 101678. [Google Scholar] [CrossRef]
- Aguiar-Conraria, Luís, and Maria Joana Soares. 2011. Oil and the macroeconomy: Using wavelets to analyze old issues. Empirical Economics 40: 645–55. [Google Scholar] [CrossRef]
- Beck, Günter W., Kirstin Hubrich, and Massimiliano Marcellino. 2009. Regional inflation dynamics within and across Euro area countries and a comparison with the United States. Economic Policy 24: 141–84. [Google Scholar] [CrossRef]
- Bernanke, Ben S. 2007. Globalization and Monetary Policy. Speech at the Fourth Economic Summit. Stanford: Stanford Institute for Economic Policy Research. [Google Scholar]
- Calvo, Guillermo A., and Carmen M. Reinhart. 2002. Fear of floating. The Quarterly Journal of Economics 117: 379–408. [Google Scholar] [CrossRef]
- Canzoneri, Matthew B., and Jo Anna Gray. 1985. Monetary policy games and the consequences of non-cooperative behavior. International Economic Review, 547–64. [Google Scholar] [CrossRef]
- Ciccarelli, Matteo, and Benoit Mojon. 2010. Global inflation. The Review of Economics and Statistics 92: 524–35. [Google Scholar] [CrossRef]
- Crowley, Patrick M., and David G. Mayes. 2009. How fused is the euro area core? OECD Journal: Journal of Business Cycle Measurement and Analysis 2008: 63–95. [Google Scholar] [CrossRef]
- Dar, Arif Billah, Amaresh Samantaraya, and Firdous Ahmad Shah. 2013. The predictive power of yield spread: Evidence fromwavelet analysis. Empirical Economics. [Google Scholar] [CrossRef]
- Daubechies, Ingrid. 1992. Ten Lectures on Wavelets. Philadelphia: SIAM Monographs. [Google Scholar]
- Diebold, Francis X., and Kamil Yilmaz. 2012. Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of forecasting 28: 57–66. [Google Scholar]
- Devereux, Michael B., and Charles Engel. 2007. Expenditure switching versus real exchange rate stabilization: Competing objectives for exchange rate policy. Journal of Monetary Economics 54: 2346–74. [Google Scholar] [CrossRef]
- Eickmeier, Sandra, and Katharina Moll. 2009. The Global Dimension of Inflation: Evidence from Factor-Augmented Phillips Curves. European Central Bank Working Paper No. 1011. Frankfurt: Johann Wolfgang Goethe University. [Google Scholar]
- Gabor, Dennis. 1946. Theory of communications. Journal Institute of Electrical Engineers 93: 429–457. [Google Scholar] [CrossRef]
- Gil-Alana, Luis Alberiko, Emmanuel Joel Aikins Abakah, and María Fátima Romero Rojo. 2020a. Cryptocurrencies and stock market indices. Are they related? Research in International Business and Finance 51: 101063. [Google Scholar] [CrossRef]
- Gil-Alana, Luis Alberiko, Robert Mudida, and Emmanuel Joel Aikins Abakah. 2020b. Are central bank policy rates in Africa cointegrated? Evidence from a fractional cointegration approach. Applied Economics 52: 6171–82. [Google Scholar] [CrossRef]
- Gil-Alana, Luis A., Emmanuel Joel Aikins Abakah, and Moses Kenneth Abakah. 2021. Financial stress spillover across Asian Countries. Review of Financial Economics 39: 146–62. [Google Scholar] [CrossRef]
- Henriksen, Espen, Finn E. Kydland, and Roman Šustek. 2013. Globally correlated nominal fluctuations. Journal of Monetary Economics 60: 613–31. [Google Scholar] [CrossRef] [Green Version]
- Jena, Sangram Keshari, Aviral Kumar Tiwari, Emmanuel Joel Aikins Abakah, and Shawkat Hammoudeh. 2021. The connectedness in the world petroleum futures markets using a Quantile VAR approach. Journal of Commodity Markets, 100222. [Google Scholar] [CrossRef]
- Kose, M. Ayhan, Christopher Otrok, and Charles H. Whiteman. 2003. International business cycles: World, region, and country-specific factors. American Economic Review 93: 1216–39. [Google Scholar] [CrossRef] [Green Version]
- Kose, M. Ayhan, Christopher Otrok, and Charles H. Whiteman. 2008. Understanding the evolution of world business cycles. Journal of International Economics 75: 110–30. [Google Scholar] [CrossRef]
- Le, TN-Lan, Emmanuel Joel Aikins Abakah, and Aviral Kumar Tiwari. 2021. Time and frequency domain connectedness and spill-over among fintech, green bonds and cryptocurrencies in the age of the fourth industrial revolution. Technological Forecasting and Social Change 162: 120382. [Google Scholar] [CrossRef]
- Liu, Paul C. 1994. Wavelet spectrum analysis and ocean wind waves. In Wavelets in Geophysics. Edited by E. Foufoula-Georgiou and P. Kumar. New York: Academic Press, pp. 123–51. [Google Scholar]
- Madaleno, Mara, and Carlos Pinho. 2012. International stock market indices comovements: A new look. International Journal of Finance & Economics 17: 89–102. [Google Scholar]
- Mallat, Stéphane. 1998. A Wavelet Tour of Signal Processing. San Diego: Academic Press. [Google Scholar]
- Monacelli, Tommaso, and Luca Sala. 2009. The international dimension of inflation: Evidence from disaggregated consumer price data. Journal of Money, Credit and Banking 41: 101–20. [Google Scholar] [CrossRef]
- Mumtaz, Haroon, Saverio Simonelli, and Paolo Surico. 2011. International comovements, business cycle and inflation: A historical perspective. Review of Economic Dynamics 14: 176–98. [Google Scholar] [CrossRef] [Green Version]
- Neely, Christopher J., and David E. Rapach. 2008. Real interest rate persistence: Evidence and implications. Federal Reserve Bank of St. Louis Review 90: 609–41. [Google Scholar]
- Raihan, Sharif Md, Yi Wen, and Bing Zeng. 2005. Wavelet: A New Tool for Business Cycle Analysis. Working Paper Series 2005-050. St. Louis: Federal Reserve Bank of St. Louis. [Google Scholar]
- Rua, António, and Luís C. Nunes. 2009. International comovement of stock market returns: A wavelet analysis. Journal of Empirical Finance 16: 632–39. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, Muhammad, Nader Trabelsi, Aviral Kumar Tiwari, Emmanuel Joel Aikins Abakah, and Zhilun Jiao. 2021. Relationship between green investments, energy markets, and stock markets in the aftermath of the global financial crisis. Energy Economics, 105655. [Google Scholar] [CrossRef]
- Tiwari, Aviral Kumar. 2012. Decomposing Time-Frequency Relationship between Interest Rates and Share Prices in India through Wavelets. MPRA Paper 39693. Munich: University Library of Munich. [Google Scholar]
- Tiwari, Aviral Kumar. 2013. Oil prices and the macroeconomy reconsideration for Germany: Using continuous wavelet. Economic Modelling 30: 636–42. [Google Scholar] [CrossRef]
- Tiwari, Aviral Kumar, Arif Billah Dar, and Niyati Bhanja. 2013a. Oil price and exchange rates: A wavelet based analysis for India. Economic Modelling 31: 414–22. [Google Scholar] [CrossRef]
- Tiwari, Aviral Kumar, Mihai Mutascu, and Alin Marius Andries. 2013b. Decomposing time-frequency relationship between producer price and consumer price indices in Romania through wavelet analysis. Economic Modelling 31: 151–59. [Google Scholar] [CrossRef]
- Tiwari, Aviral Kumar, Arif Billah Dar, Niyati Bhanja, and Aasif Shah. 2013c. Stock market integration in Asian countries: Evidence from wavelet multiple correlations. Journal of Economic Integration 28: 441–56. [Google Scholar] [CrossRef]
- Tiwari, Aviral Kumar, Niyati Bhanja, Arif Billah Dar, and Olaolu Richard Olayeni. 2015. Analyzing time–frequency based co-movement in inflation: evidence from G-7 countries. Computational Economics 45: 91–109. [Google Scholar] [CrossRef]
- Tiwari, Aviral Kumar, Emmanuel Joel Aikins Abakah, TN-Lan Le, and Dante I. Leyva-de la Hiz. 2021. Markov-switching dependence between artificial intelligence and carbon price: The role of policy uncertainty in the era of the 4th industrial revolution and the effect of COVID-19 pandemic. Technological Forecasting and Social Change 163: 120434. [Google Scholar] [CrossRef]
- Torrence, Christopher, and Gilbert P. Compo. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79: 61–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, Pengfei, and Yi Wen. 2007. Inflation dynamics: A cross-country investigation. Journal of Monetary Economics 54: 2004–31. [Google Scholar] [CrossRef] [Green Version]
- Yang, Jian, and Hui Guo. 2006. International transmission of inflation among G-7 countries: A data-determined VAR analysis. Journal of Banking & Finance 30: 2681–700. [Google Scholar]
Botswana | Egypt | Ghana | Kenya | Mauritius | Namibia | Nigeria | South Arica | Tunisia | Canada | China | Japan | UK | USA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.5719 | 0.7908 | 1.2855 | 0.6598 | 0.4050 | 0.5199 | 0.9981 | 0.4763 | 0.3293 | 0.1624 | 0.0108 | 0.0061 | 0.1762 | 0.1788 |
Median | 0.4022 | 0.5813 | 1.1510 | 0.5604 | 0.3300 | 0.4169 | 0.8044 | 0.4073 | 0.3398 | 0.1808 | - | - | 0.2345 | 0.1867 |
Maximum | 3.2053 | 4.8519 | 10.8711 | 5.1881 | 3.0337 | 3.2263 | 7.3906 | 1.8779 | 1.1403 | 1.1542 | 2.0608 | 1.7418 | 0.9996 | 1.3768 |
Minimum | −0.6650 | −1.5903 | −2.5743 | −2.4209 | −2.4623 | −1.3739 | −3.3632 | −0.8264 | −0.5914 | −1.0372 | −2.5743 | −0.6122 | −0.8839 | −1.7705 |
Std. Dev. | 0.5279 | 0.9495 | 1.5438 | 1.0033 | 0.6884 | 0.5579 | 1.4091 | 0.4490 | 0.3191 | 0.3735 | 0.6030 | 0.2230 | 0.3490 | 0.3011 |
Skewness | 1.4802 | 1.0154 | 1.5385 | 0.7136 | 0.5604 | 1.1847 | 0.6407 | 0.5495 | −0.0146 | −0.1629 | −0.3104 | 2.1615 | −0.7784 | −1.2863 |
Kurtosis | 6.6503 | 5.1324 | 10.4073 | 5.9709 | 6.5047 | 6.6079 | 6.7021 | 3.4375 | 3.0989 | 3.3158 | 4.7271 | 18.8088 | 3.8397 | 12.0504 |
Jarque–Bera | 202.4852 | 79.4900 | 589.7443 | 99.5739 | 124.1102 | 170.7852 | 140.6847 | 12.8266 | 0.0974 | 1.8872 | 30.8744 | 2462.2160 | 28.6823 | 811.5060 |
Probability | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0016 | 0.9525 | 0.3892 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Observations | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 |
Botswana | Egypt | Ghana | Kenya | Mauritius | Namibia | Nigeria | South-Africa | Tunisia | Canada | China | Japan | UK | USA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Botswana | 1 | |||||||||||||
Egypt | −0.0205 | 1 | ||||||||||||
Ghana | 0.1712 | −0.1206 | 1 | |||||||||||
Kenya | 0.1718 | 0.0731 | 0.1714 | 1 | ||||||||||
Mauritius | 0.1444 | 0.0329 | 0.0073 | 0.0516 | 1 | |||||||||
Namibia | 0.2531 | 0.1428 | 0.1964 | 0.0679 | 0.2310 | 1 | ||||||||
Nigeria | 0.1505 | −0.0328 | 0.0413 | 0.0215 | 0.0275 | 0.0439 | 1 | |||||||
South-Africa | 0.2384 | 0.2005 | 0.0847 | 0.0592 | 0.1963 | 0.4464 | 0.1140 | 1 | ||||||
Tunisia | −0.0276 | 0.0949 | −0.1848 | −0.0777 | −0.0923 | 0.0004 | −0.0530 | −0.2407 | 1 | |||||
Canada | 0.3073 | −0.0165 | 0.1142 | 0.0511 | −0.0690 | 0.0219 | 0.0699 | 0.3306 | −0.1081 | 1 | ||||
China | −0.0116 | 0.0199 | 0.0240 | 0.0696 | 0.0328 | −0.0618 | −0.0040 | −0.0185 | 0.0408 | 0.0976 | 1 | |||
Japan | −0.0024 | 0.0726 | −0.0766 | 0.0649 | 0.0139 | −0.0790 | −0.0876 | 0.0376 | 0.1155 | 0.1281 | 0.0270 | 1 | ||
UK | 0.2657 | 0.0298 | −0.0270 | 0.2127 | −0.0088 | 0.2100 | 0.0327 | 0.1500 | 0.2469 | 0.2599 | −0.0083 | 0.0184 | 1 | |
USA | 0.2630 | 0.0929 | −0.0097 | −0.0065 | 0.0948 | 0.1321 | −0.0046 | 0.2858 | −0.0353 | 0.5829 | 0.1143 | 0.2694 | 0.2075 | 1 |
Co-Efficient | Std. Error | t-Value | Pr(>|t|) | |
---|---|---|---|---|
Nigeria.mu | 0.768 | 0.045 | 17.012 | 0.000 |
Nigeria.ar1 | 0.348 | 0.087 | 4.009 | 0.000 |
Nigeria.omega | 0.005 | 0.004 | 1.165 | 0.244 |
Nigeria.alpha1 | 0.192 | 0.055 | 3.467 | 0.001 |
Nigeria.beta1 | 0.807 | 0.054 | 14.845 | 0.000 |
Nigeria.shape | 3.464 | 0.482 | 7.188 | 0.000 |
South.Africa.mu | 0.450 | 0.047 | 9.621 | 0.000 |
South.Africa.ar1 | 0.291 | 0.064 | 4.552 | 0.000 |
South.Africa.omega | 0.009 | 0.007 | 1.274 | 0.203 |
South.Africa.alpha | 0.047 | 0.024 | 1.945 | 0.052 |
South.Africa.beta1 | 0.900 | 0.050 | 18.110 | 0.000 |
South.Africa.shape | 15.345 | 13.563 | 1.131 | 0.258 |
Egypt.mu | 0.453 | 0.089 | 5.070 | 0.000 |
Egypt.ar1 | 0.473 | 0.073 | 6.521 | 0.000 |
Egypt.omega | 0.013 | 0.015 | 0.851 | 0.395 |
Egypt.alpha1 | 0.152 | 0.040 | 3.815 | 0.000 |
Egypt.beta1 | 0.847 | 0.064 | 13.282 | 0.000 |
Egypt.shape | 3.930 | 0.806 | 4.879 | 0.000 |
Kenya.mu | 0.585 | 0.087 | 6.692 | 0.000 |
Kenya.ar1 | 0.445 | 0.070 | 6.372 | 0.000 |
Kenya.omega | 0.010 | 0.013 | 0.764 | 0.445 |
Kenya.alpha1 | 0.056 | 0.048 | 1.171 | 0.242 |
Kenya.beta1 | 0.928 | 0.051 | 18.316 | 0.000 |
Kenya.shape | 4.414 | 1.323 | 3.336 | 0.001 |
Ghana.mu | 1.181 | 0.178 | 6.624 | 0.000 |
Ghana.ar1 | 0.516 | 0.083 | 6.205 | 0.000 |
Ghana.omega | 0.424 | 0.490 | 0.865 | 0.387 |
Ghana.alpha1 | 0.532 | 0.373 | 1.425 | 0.154 |
Ghana.beta1 | 0.367 | 0.425 | 0.862 | 0.389 |
Ghana.shape | 3.585 | 0.867 | 4.136 | 0.000 |
Tunisia.mu | 0.319 | 0.032 | 9.839 | 0.000 |
Tunisia.ar1 | 0.256 | 0.067 | 3.847 | 0.000 |
Tunisia.omega | 0.000 | 0.005 | 0.074 | 0.941 |
Tunisia.alpha1 | 0.019 | 0.015 | 1.325 | 0.185 |
Tunisia.beta1 | 0.980 | 0.056 | 17.468 | 0.000 |
Tunisia.shape | 40.921 | 112.480 | 0.364 | 0.716 |
Botswana.mu | 0.421 | 0.061 | 6.951 | 0.000 |
Botswana.ar1 | 0.327 | 0.068 | 4.800 | 0.000 |
Botswana.omega | 0.067 | 0.049 | 1.379 | 0.168 |
Botswana.alpha1 | 0.228 | 0.180 | 1.266 | 0.206 |
Botswana.beta1 | 0.586 | 0.192 | 3.053 | 0.002 |
Botswana.shape | 3.224 | 0.812 | 3.968 | 0.000 |
Mauritius.mu | 0.329 | 0.038 | 8.621 | 0.000 |
Mauritius.ar1 | 0.225 | 0.074 | 3.029 | 0.002 |
Mauritius.omega | 0.009 | 0.049 | 0.186 | 0.852 |
Mauritius.alpha1 | 0.000 | 0.175 | 0.000 | 1.000 |
Mauritius.beta1 | 0.999 | 0.034 | 29.475 | 0.000 |
Mauritius.shape | 2.238 | 0.472 | 4.743 | 0.000 |
Namibia.mu | 0.426 | 0.038 | 11.304 | 0.000 |
Namibia.ar1 | 0.081 | 0.065 | 1.247 | 0.212 |
Namibia.omega | 0.000 | 0.000 | 0.000 | 1.000 |
Namibia.alpha1 | 0.000 | 0.000 | 0.001 | 0.999 |
Namibia.beta1 | 0.998 | 0.000 | 4988.132 | 0.000 |
Namibia.shape | 4.261 | 0.796 | 5.355 | 0.000 |
Canada.mu | 0.165 | 0.086 | 1.918 | 0.055 |
Canada.ar1 | 0.211 | 0.100 | 2.105 | 0.035 |
Canada.omega | 0.000 | 0.061 | 0.001 | 0.999 |
Canada.alpha1 | 0.000 | 0.464 | 0.000 | 1.000 |
Canada.beta1 | 0.999 | 0.028 | 35.203 | 0.000 |
Canada.shape | 12.691 | 145.846 | 0.087 | 0.931 |
China.mu | 0.036 | 0.288 | 0.125 | 0.901 |
China.ar1 | 0.025 | 1.480 | 0.017 | 0.987 |
China.omega | 0.252 | 2.517 | 0.100 | 0.920 |
China.alpha1 | 0.394 | 2.190 | 0.180 | 0.857 |
China.beta1 | 0.000 | 8.108 | 0.000 | 1.000 |
China.shape | 5.115 | 6.251 | 0.818 | 0.413 |
Japan.mu | −0.007 | 0.015 | −0.450 | 0.653 |
Japan.ar1 | 0.224 | 0.056 | 3.987 | 0.000 |
Japan.omega | 0.000 | 0.000 | 0.434 | 0.664 |
Japan.alpha1 | 0.000 | 0.002 | 0.000 | 1.000 |
Japan.beta1 | 0.999 | 0.000 | 4542.099 | 0.000 |
Japan.shape | 3.598 | 0.826 | 4.355 | 0.000 |
UK.mu | 0.216 | 0.023 | 9.499 | 0.000 |
UK.ar1 | −0.076 | 0.049 | −1.568 | 0.117 |
UK.omega | 0.003 | 0.005 | 0.671 | 0.503 |
UK.alpha1 | 0.000 | 0.022 | 0.000 | 1.000 |
UK.beta1 | 0.976 | 0.019 | 52.087 | 0.000 |
UK.shape | 3.730 | 1.336 | 2.792 | 0.005 |
USA.mu | 0.193 | 0.021 | 9.046 | 0.000 |
USA.ar1 | 0.320 | 0.064 | 5.000 | 0.000 |
USA.omega | 0.013 | 0.009 | 1.415 | 0.157 |
USA.alpha1 | 0.226 | 0.118 | 1.908 | 0.056 |
USA.beta1 | 0.599 | 0.165 | 3.636 | 0.000 |
USA.shape | 4.759 | 1.460 | 3.260 | 0.001 |
Jointdcca1 | 0.000 | 0.000 | 0.204 | 0.839 |
Jointdccb1 | 0.956 | 0.021 | 46.115 | 0.000 |
Jointmshape | 10.193 | 1.020 | 9.998 | 0.000 |
Information Criteria | ||||
Akaike | 20.606 | |||
Bayes | 23.343 | |||
Shibata | 19.954 | |||
Hannan-Quinn | 21.711 | |||
Log-Likelihood | −2099 | |||
No. Obs. | 221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, A.K.; Abakah, E.J.A.; Gil-Alana, L.A.; Abakah, M.K. Inflation Co-Movement Dynamics: A Cross-Country Investigation Using a Continuous Wavelet Approach. J. Risk Financial Manag. 2021, 14, 613. https://doi.org/10.3390/jrfm14120613
Tiwari AK, Abakah EJA, Gil-Alana LA, Abakah MK. Inflation Co-Movement Dynamics: A Cross-Country Investigation Using a Continuous Wavelet Approach. Journal of Risk and Financial Management. 2021; 14(12):613. https://doi.org/10.3390/jrfm14120613
Chicago/Turabian StyleTiwari, Aviral Kumar, Emmanuel Joel Aikins Abakah, Luis A. Gil-Alana, and Moses Kenneth Abakah. 2021. "Inflation Co-Movement Dynamics: A Cross-Country Investigation Using a Continuous Wavelet Approach" Journal of Risk and Financial Management 14, no. 12: 613. https://doi.org/10.3390/jrfm14120613
APA StyleTiwari, A. K., Abakah, E. J. A., Gil-Alana, L. A., & Abakah, M. K. (2021). Inflation Co-Movement Dynamics: A Cross-Country Investigation Using a Continuous Wavelet Approach. Journal of Risk and Financial Management, 14(12), 613. https://doi.org/10.3390/jrfm14120613