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Abstract

:

This paper proposes the sample path generation method for the stochastic volatility version of the CGMY process. We present the Monte-Carlo method for European and American option pricing with the sample path generation and calibrate model parameters to the American style S&P 100 index options market, using the least square regression method. Moreover, we discuss path-dependent options, such as Asian and Barrier options.
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1. Introduction


Lévy process models have played a role as the standard framework for option pricing, since these models allow for stochastic volatility and the volatility smile effect observed for the Black Scholes model (Black and Scholes (1973)). For instance, Hurst et al. (1999) applied an  α -stable process, Carr et al. (2002) used the Carr, Geman, Madan, and Yor (CGMY) process, which is a subclass of the tempered stable process (Rosiński 2007), and Bianchi et al. (2010) presented the tempered, infinitely divisible model. Moreover, Lévy process models with time-varying volatility have been used for option pricing in discrete time models, since empirical studies show that Brownian motion is often rejected (see Rachev and Mittnik (2000), Kim et al. (2010), Kim et al. (2011)). Carr et al. (2003) defined the class of continuous time stochastic volatility models on Lévy processes (SVLP) using the time-changed Lévy process. The SVLP model has been successfully applied in European option pricing, but the absence of an efficient sample path generation method makes the SVLP model hard to apply to path-dependent options, such as American, Barrier, or Asian options.



This paper proposes a sample path generation method for the stochastic volatility version, CGMYSV, of the CGMY process, which is a subclass of the SVLP model. The method is constructed by an approximation to the series representation of the CGMY process with the time-varying scale parameter. The series representations for the tempered stable and tempered infinitely divisible distributions are discussed in Rosiński (2007) and Bianchi et al. (2010), and they are applied to the Monte-Carlo simulation (MCS) of the CGMY market model with a GARCH volatility in Kim et al. (2010). We note that the CGMYSV model is a continuous-time model, different from the GARCH model with CGMY innovations. We develop an algorithm for CGMYSV sample path generation, and apply it to MCS. The algorithm is used to price European and American options and to calibrate the risk-neutral parameters to the S&P 500 index option (European style) data and S&P 100 option (American style) data. We use the least square regression method by Longstaff and Schwartz (2001) for pricing American options with MCS. We verify empirically that the new sample path generation method performs well in pricing American options. We also apply the algorithm to the pricing of Asian and Barrier options with MCS.



This paper is organized as follows. A continuous time stochastic volatility model and the CGMY process with the series representation are presented briefly in Section 2. The sample path generation method based on the series representation is constructed in Section 3. In Section 4, we calibrate the CGMYSV model to S&P 500 index option and S&P 100 index option data, and discuss Asian and Barrier option prices. Conclusions are presented in Section 5.




2. Preliminary


To construct the CGMYSV model, we take the CGMY process and employ the Cox-Ingersoll-Ross (CIR) process (Cox et al. 1985) for the stochastic volatility, which, as in Heston (1993), enhances the Black Scholes model. In this section, we briefly discuss the CIR model and the CGMY process. The CGMYSV model is presented in the next section.



2.1. CIR Model


The CIR model is given by


  d  v t  = κ  ( η −  v t  )  d t + ζ   v t   d  W t   and   v 0  > 0 ,  



(1)




for   κ , η , ζ > 0   and Brownian motion    {  W t  }   t ≥ 0   . Let   F t v   be a smallest  σ -algebra generated by the process    {  v s  }   0 ≤ s ≤ t   , then    v  t +  Δ t      |   F t v    = d  ξ /  ( 2 c )    where   c =   2 κ    ( 1 −  e  − κ  Δ t    )   ζ 2      and the random variable  ξ  is a noncentral   χ 2  -distributed random variable with   4 κ η /  ζ 2    degrees of freedom and noncentrality parameter   2 c  v t   e  − κ  Δ t     .



Let    V t  =  ∫ 0 t   v s  d s  . Then, the joint distribution of    v t  ,  V t    has the characteristic function (Ch.F)    Φ t   ( a , b , x )  = E  exp  ( a  V t  + i b  v t  )   |   v 0  = x    given by (Proposition 6.2.5 in Lamberton and Lapeyre (1996)):


   Φ t   ( a , b , x )  = A  ( t , a , b )  exp  B ( t , a , b ) x  ,  



(2)




with


     A ( t , a , b )     =   exp     κ 2  η t   ζ 2       cosh    γ t  2   +   κ − i b  ζ 2   γ  sinh    γ t  2     2 κ η /  ζ 2           B ( t , a , b )     =   i b  γ cosh    γ t  2   − κ sinh    γ t  2    + 2 i a sinh    γ t  2     γ cosh    γ t  2   +  κ − i b  ζ 2   sinh    γ t  2          γ    =    κ 2  − 2  ζ 2  i a   .     












2.2. CGMY Process


Let   α ∈ ( 0 , 2 )  ,   C ,  λ +  ,  λ −  > 0  , and   μ ∈ R  . Suppose X is an infinitely divisible random variable with Ch.F


         ϕ X   ( u )  = E  [  e  i u X   ]  =  ϕ C  G M Y  ( u ; α , C ,  λ +  ,  λ −  , μ )           = exp   ( μ − C Γ  ( 1 − α )   (  λ +  α − 1   −  λ −  α − 1   )  )  i u − C Γ  ( − α )     (  λ +  − i u )  α  −  λ + α  +   (  λ −  + i u )  α  −  λ − α    .     








We refer to X as a CGMY-distributed random variable with parameters   ( α  , C,   λ +  ,   λ −  ,   μ )  1, which we denote as   X ∼ CGMY ( α  , C,   λ +  ,   λ −  ,   μ )  .



Let   C =   ( Γ  ( 2 − α )   (  λ +  α − 2   +  λ −  α − 2   )  )   − 1     and   μ = 0  . Then, a CGMY random variable   Z ∼ CGMY ( α  , C,   λ +  ,   λ −  ,   μ )   has zero mean (  E [ Z ] = 0  ) and unit variance (  var ( Z ) = 1  ). In this case, we say that Z is standard CGMY-distributed, and denote this by   Z ∼ stdCGMY ( α  ,   λ +  ,    λ −   )   . Moreover, the Ch.F of Z is given by


         ϕ stdCGMY   ( u ; α ,  λ +  ,  λ −  )  =  ϕ Z   ( u )  = E  [  e  i u Z   ]           = exp     λ +  α − 1   −  λ −  α − 1      ( α − 1 )   (  λ +  α − 2   +  λ −  α − 2   )    i u +     (  λ +  − i u )  α  −  λ + α  +   (  λ −  + i u )  α  −  λ − α    α  ( α − 1 )   (  λ +  α − 2   +  λ −  α − 2   )     .     



(3)







Since the CGMY distribution is non-Gaussian and infinitely divisible, it generates a pure jump Lévy process    {  X t  }   t ≥ 0   , such that   X 1  ∼  CGMY ( α  , C,   λ +  ,   λ −  ,   μ )  . In this case, we say that    {  X t  }   t ≥ 0    is a CGMY process with parameters   ( α  , C,   λ +  ,   λ −  ,   μ )  . The Ch.F of   X t   is equal to


         ϕ  X t    ( u )  = exp  ( t log  (  ϕ CGMY   ( u ; α , C ,  λ +  ,  λ −  , μ )  )  )  .     








Following the same argument, a pure jump Lévy process    {  Z t  }   t ≥ 0    is generated by the standard CGMY distribution, such that   Z 1  ∼  stdCGMY ( α  ,   λ +  ,    λ −   )    is referred to as the standard CGMY process with parameters   ( α  ,   λ +  ,    λ −   )   . The CGMY and standard CGMY processes are characterized by their Lévy symbols


   ψ CGMY   ( u ; α , C ,  λ +  ,  λ −  , μ )  = log  ϕ CGMY   ( u ; α , C ,  λ +  ,  λ −  , μ )  ,  








and


   ψ stdCGMY   ( u ; α ,  λ +  ,  λ −  )  = log  ϕ stdCGMY   ( u ; α ,  λ +  ,  λ −  )  ,  



(4)




respectively.




2.3. Series Representation of the CGMY Process


Rosiński (2007) introduced the series representation form for the tempered stable random variable and process. The series representation form has been used for CGMY sample path generation by Kim et al. (2010) and Rachev et al. (2011). Assume that   X ∼ CGMY ( α  , C,   λ +  ,   λ −  ,   0 )  . Let    {  U j  }   j = 1 , 2 , ⋯    be an independent and identically distributed (i.i.d.) sequence of uniform random variables on   ( 0 , 1 )  . Let    {  E j  }   j = 1 , 2 , ⋯    be i.i.d. sequences of exponential random variables with parameters 1, and let    {  Γ j  }   j = 1 , 2 , ⋯    be a Poisson point process with parameter 1. Let    {  V j  }   j = 1 , 2 , ⋯    be an i.i.d. sequence of random variables in   {  λ +  ,  λ −  }   with   P  (  V j  =  λ +  )  = P  (  V j  =  λ −  )  = 1 / 2  . Suppose that    {  U j  }   j = 1 , 2 , ⋯   ,    {  V j  }   j = 1 , 2 , ⋯   ,    {  E j  }   j = 1 , 2 , ⋯   , and    {  Γ j  }   j = 1 , 2 , ⋯    are independent. Then, X is represented by the following series form:


  X =  ∑  j = 1  ∞       α  Γ j    2 C     − 1 / α   ∧  E j   U j  1 / α     |  V j  |   − 1      V j    |   V j   |    + b ,  








where   b = − C Γ  ( 1 − α )    λ +  α − 1   −  λ −  α − 1     . Let    {  τ j  }   j = 1 , 2 , ⋯    be an i.i.d. sequence of uniform random variables on   ( 0 , T )   independent of    {  U j  }   j = 1 , 2 , ⋯   ,    {  V j  }   j = 1 , 2 , ⋯   ,    {  E j  }   j = 1 , 2 , ⋯   , and    {  Γ j  }   j = 1 , 2 , ⋯   . Suppose


   X t  =  ∑  j = 1  ∞       α  Γ j    2 C T     − 1 / α   ∧  E j   U j  1 / α     |  V j  |   − 1      V j    |   V j   |     1   τ j  ≤ t   + t  b T  ,    t ∈  [ 0 , T ]  ,  








where    b T  = − C Γ  ( 1 − α )    λ +  α − 1   −  λ −  α − 1     . Then, the process    {  X t  }   t ∈ [ 0 , T ]    is the CGMY process with parameters   ( α  , C,   λ +  ,   λ −  ,   0 )   for the time horizon   T > 0  .





3. Stochastic Volatility Version of the CGMY Process


Suppose    {  Z t  }   t ≥ 0    is the standard CGMY process with parameters   ( α  ,   λ +  ,    λ −   )    and   {  v t  }   is the stochastic volatility process given by the CIR model in (1). We define a process    {  L t  }   t ≥ 0    by


   L t  =  Z  V t   + ρ  v t  ,  



(5)




where    V t  =  ∫ 0 t   v s  d s  , and    {  Z t  }   t ≥ 0    is independent of the process    {  v t  }   t ≥ 0   . The process    {  L t  }   t ≥ 0    is referred to as the stochastic volatility version of the CGMY process, or simply the CGMYSV process2, with parameters   ( α  ,   λ +  ,   λ −  ,  κ ,  η ,  ζ ,  ρ ,    v 0   )   . By (2), the characteristic function of   L t   is


   ϕ  L t    ( u )  =  Φ t   ( − i  ψ stdCGMY   ( u ; α ,  λ +  ,  λ −  )  , ρ u ,  v 0  )  ,  



(6)




where    ψ stdCGMY   ( u ; α ,  λ +  ,  λ −  )    is the Lévy symbol of    {  Z t  }   t ≥ 0    defined in (4).



3.1. Discrete Time Approximation of the CGMYSV Process


Suppose that we have: a CIR process    {  v t  }   t ≥ 0    with parameters   κ , η ,   and  ζ , as defined in (1);    V t  =  ∫ 0 t   v s  d s   for   t > 0  ; and suppose that    {  F t v  }   t ≥ 0    is natural filtration generated by    {  v t  }   t ≥ 0   . Let   P = { 0 =  t 0  <  t 1  < ⋯ <  t m  < ⋯ < M = T }   be the time partition,     Δ t  m  =  t m  −  t  m − 1     for   m ∈ { 1 , 2 , ⋯ , M }  , and let   | | P | | = max {   Δ t  m   |  m = 1 , 2 , ⋯ , M }  . Suppose that    {  v  t m   }    t m  ∈ P    and    {  L  t m   }    t m  ∈ P    are discrete sub-sequences of the CIR process and the CGMYSV process, respectively. Let   Δ  L  t m   =  L  t m   −  L  t  m − 1     ,   Δ  V  t m   =  V  t m   −  V  t  m − 1     , and   Δ  v  t m   =  v  t m   −  v  t  m − 1     . Then we have


  Δ  L  t m     |   F  t  m − 1   v    = d   (  Z   V  t m   −  V  t  m − 1      )    |   F  t  m − 1   v   + ρ  (  v  t m   −  v  t  m − 1    )     |  F  t  m − 1   v   =  Z  Δ  V  t m     |   F  t  m − 1   v   + ρ  ( Δ  v  t m    |  F  t  m − 1   v   )  ,  








where


   Z  Δ  V  t m       |   F  t  m − 1   v   ∼ CGMY  α , C  ( Δ  V  t m    |  F  t  m − 1   v   )  ,  λ +  ,  λ −  , 0  ,  








and   C =   Γ  ( 2 − α )   (  λ +  α − 2   +  λ −  α − 2   )    − 1    . Since we approximate


  Δ  V  t m     |   F  t  m − 1   v   =  ∫   t  m − 1     t m    v t   d t ≈  v  t  m − 1      Δ t  m  ,  








we have


   Z  Δ  V  t m        |  F  t  m − 1   v   ≈  Z   v  t  m − 1      Δ t  m    |   F  t  m − 1   v   ∼ CGMY  α , C  v  t  m − 1      Δ t  m  ,  λ +  ,  λ −  , 0  .  











Suppose    {  Y  t m   }    t m  ∈ P    is a process defined by


   Y  t m   =  Y  t  m − 1    +  Z   v  t  m − 1      Δ t  m      |   F  t  m − 1   v   ,    m = 1 , 2 , ⋯ , M ,  



(7)




with    Y 0  = 0  , then    Y  t m   ≈  Z  V  t m      |   F  t  m − 1   v     and    {  Y  t m   }    t m  ∈ P    is an approximation of the process     Z  V  t m      |   F  t  m − 1   v      t m  ∈ P   .



By the series representation, we have


   Z   v  t  m − 1      Δ t  m      |   F  t  m − 1   v    = d   ∑  j = 1  ∞       α  Γ j    2  c m    Δ t  m      − 1 / α   ∧  E j   U j  1 / α     |  V j  |   − 1      V j    |   V j   |    +  b m    Δ t  m  ,  








where    b m  = −  c m  Γ  ( 1 − α )    λ +  α − 1   −  λ −  α − 1     ,    c m  =  v  t  m − 1    C  , and    {  U j  }   j = 1 , 2 , ⋯   ,    {  V j  }   j = 1 , 2 , ⋯   ,    {  E j  }   j = 1 , 2 , ⋯   , and    {  Γ j  }   j = 1 , 2 , ⋯    are given in Section 2.3. Following the same argument as the series representation of the CGMY process presented in Section 2.3, we can define a series representation of   Y  t m    as follows:


   Y  t m   =  ∑  j = 1  ∞       α  Γ j    2 c (  τ j  ) T     − 1 / α   ∧  E j   U j  1 / α     |  V j  |   − 1      V j    |   V j   |     1   τ j  ≤  t m    +  ∑  k = 1  m   b k    Δ t  k  ,  



(8)




where


   b k  = −    v  t  k − 1      λ +  α − 1   −  λ −  α − 1       ( 1 − α )   (  λ +  α − 2   +  λ −  α − 2   )    ,  










  c  (  τ j  )  = C  ∑  m = 1  M   v  t  m − 1     1   t  m − 1   <  τ j  ≤  t m    ,  








and    {  τ j  }   j = 1 , 2 , ⋯    is an i.i.d. sequence of uniform random variables on   ( 0 , T )   independent of    {  U j  }   j = 1 , 2 , ⋯   ,    {  V j  }   j = 1 , 2 , ⋯   ,    {  E j  }   j = 1 , 2 , ⋯   , and    {  Γ j  }   j = 1 , 2 , ⋯   .



Since we have


      L  t m        =  ∑  k = 1  m  Δ  L  t k     |   F  t  k − 1   v            ≈  ∑  k = 1  m    Z   v  t  k − 1      Δ t  k       |  F  t  k − 1   v   + ρ Δ  v  t k   |   F  t  k − 1   v             =  ∑  k = 1  m    Y  t k   −  Y  t  k − 1    + ρ Δ  v  t k     |   F  t  k − 1   v        by   ( 7 )  ,     








we obtain


   L  t m   ≈  Y  t m   + ρ  v  t m   ,  



(9)




as   | | P | | → 0  . Let


    L ^   t m   =  Y  t m   + ρ  v  t m   ,    t m  ∈ P \  { 0 }   








and     L ^  0  =  L 0   . Then, the discrete process    {   L ^   t m   }    t m  ∈ P    is an approximation of    {  L  t m   }    t m  ∈ P   . In this case, the process    {   L ^   t m   }    t m  ∈ P    is referred to as the discrete time approximation of the CGMYSV process, or simply the    C G M Y S V  ^   process. Combining Equations (8) and (9), we can generate a    C G M Y S V  ^   sample path, as illustrated in Algorithm 1.




3.2. Simulation of the CGMYSV Process


In order to verify the performance of Algorithm 1, we generate a set of example sample paths of the    C G M Y S V  ^   process    {   L ^   t m   }    t m  ∈ P    and compare it to the distribution of the CGMYSV process    {  L t  }   t ≥ 0    with parameters   α = 0.52  ,    λ +  = 25.46  ,    λ −  = 4.604  ,   κ = 1.003  ,   η = 0.0711  ,   ζ = 0.3443  ,    v 0  = 0.0064  , and   ρ = − 2.0280  . We set   M = 100  ,   J = 1024  ,   N = 10 , 000  , and    Δ t  = 1 / 252  , which is the annual fraction represented by one trading day. For example, 20 sample paths are presented in the first plate of Figure 1. The second plate of the figure is for 20 sample paths of the CIR process. For the goodness-of-fit test for the generated path, we perform the Kolmogorov–Smirnov (KS) test. We compare the distribution    L ^   10  Δ t     to the distribution of   L  10  Δ t    . That is, we compare the distribution of 10-day simulated random numbers   {  L  n , 10   | n = 1 , 2 , ⋯ , N }   with the distribution of   L  10  Δ t    . The cumulative distribution function of   L  10  Δ t     can be obtained by the Ch.F of the CGMYSV using the inverse Fourier-Transform method (See Rachev et al. (2011) for more details). Table 1 presents the results of the KS test. The p-value for the KS statistic for 10 days is 70.29%, which is not rejected at the 5% significance level. Using the same argument, we perform KS tests for 25 days, 50 days, and 100 days of simulated random numbers. They are not rejected at the 5% significance level, either. We graphically compare the empirical probability density function (pdf) of the simulated sample path and the CGMYSV pdfs for those four cases. We draw empirical pdfs using gray bar charts and draw solid lines for CGMYSV pdfs in four plates in Figure 2.



	Algorithm 1: CGMYSV sample path generation.
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4. The CGMYSV Option Pricing Model


In this section, we discuss the option pricing model using the CGMYSV model. We define the model and calibrate its parameters using the European style, S&P 500 index option (SPX option) data, and the American style S&P 100 index option (OEX option) data.



Let r and q be the risk-free rate of return and the continuous dividend rate of a given underlying asset, respectively. The risk-neutral price process    {  S t  }   t ≥ 0    of the underlying asset is assumed to be


   S t  =    S 0  exp  (  ( r − q )  t +  L t  )    E  exp (  L t  )    ,  



(10)




where    {  L t  }   t ≥ 0    is the CGMYSV process with parameters   ( α  ,   λ +  ,   λ −  ,  κ ,  η ,  ζ ,  ρ ,    v 0   )   . By (6), we also have


   S t  =    S 0  exp  (  ( r − q )  t +  L t  )     Φ t   ( − i log  ϕ  s t d C T S    ( − i ; α ,  λ +  ,  λ −  )  , − ρ i ,  v 0  )    .  











4.1. Calibration to European Options


For the risk-neutral price process    {  S t  }   t ≥ 0    defined by (10), the European call and put prices, with strike price K and time to maturity T, are given by   C  ( K , T )  =  e  − r T   E  [   (  S t  − K )  +  ]    and   C  ( K , T )  =  e  − r T   E  [   ( K −  S t  )  +  ]   , respectively. Using the fast Fourier transform (FFT) method of Carr and Madan (1999), we can calculate European call/put prices numerically. We calibrate the CGMYSV parameters   ( α  ,   λ +  ,   λ −  ,  κ ,  η ,  ζ ,  ρ ,    v 0   )    using the SPX option prices for 11 September 2017. We observed 247 call prices and 289 put prices on that day. The S&P 500 price,   S 0  , risk-free rate of return, r, and continuous dividend rate, q, on that day were    S 0  = 2488.11  ,   r = 1.213 %  , and   q = 1.884 %  . The calibration results for SPX calls and puts are provided in Table 2. Figure 3 shows observed SPX call and put prices, and calibrated CGMYSV prices using the FFT.



We recalculate the European call and put prices using the MCS method with the calibrated parameters from Table 2. The sample paths of the MCS method are generated by Algorithm 1. We used 10,000 sample paths. To compare the MCS method with the FFT method, we use the four error estimators: the average absolute error (AAE), the average absolute error as a percentage of the mean price (APE), the average relative percentage error (ARPE), and the root mean square error (RMSE) (see Schoutens (2003)).3 The measured values for these error estimators, for the FFT method and the MCS method, are in Table 3. In all cases but one, for both the call and put cases, the MCS method has larger error values than the FFT method. This is not surprising because we calibrated the parameters using the FFT method. However, while larger, the error values for the MCS method are similar to those of the FFT method. That means the sample path generation with Algorithm 1 performs well, and prices by the MCS perform similarly to those for the FFT method.



For the option prices computed with the MCS method, we obtain standard error estimates for each 247 call and 289 put option. (Not presented due to page limitations.) Instead, in Figure 4, we plot MCS prices and the 95% confidence intervals for case   2400 < K < 2600  , and time to maturity   T = 48  d a y s  .



Finally, we perform the bootstrapping. We select an at-the-money call, and an at-the-money put of   K = 2500   and   T = 28  d a y s   as examples, and calculate call and put prices with the MCS parameters in Table 2. Table 4 shows that the MCS prices and their standard errors for 100, 1000, 5000, and 10,000 sample paths. We repeat this process 100 times. Boxplot summaries of the statistics for the resulting call and put prices for each number of sample paths are presented in Figure 5. We also show (by the symbol ’*’) the call/put prices computed using the FFT method. We observe that, as the number of sample paths increases, the interquartile distance of MCS prices narrows to that of the FFT price and dispersions are reduced.




4.2. Calibration to American Options


In Section 4.1, we have seen that the sample path generation method using the series representation works for the MCS method for European option pricing. In this section, we discuss the American option pricing with the same sample path generation method. We use the least squares regression method (LSM) of Longstaff and Schwartz (2001) for American option pricing with the MCS method. When we perform the regression for the expected value of an option, we consider   S t  ,   S t 2  ,   σ t  ,   σ t 2  , and    σ t   S t    as independent variables, following the idea in Chapter 15 of Rachev et al. (2011).



For empirical illustration, we use market prices of the American style OEX option. We calibrate the parameters of the CGMYSV model with fixed seed numbers for each random number generation. That is, we fix the seed value for the chi-square random number generator in the CIR process, and generate uniform and exponential random numbers   U j  ,   U j ′  ,   E j  ,   E j ′  , and   τ j   with the predefined seed values. Then we set the model parameters, generate    C G M Y S V  ^   sample paths using Algorithm 1 with the fixed seed number and the fixed random number sets, and then calculate American option price using LSM. We find the optimal model parameters to minimize RMSE. As a benchmark, we calibrate the parameters of the CGMY option pricing model (See Carr et al. (2002)) with the OEX option price data using LSM, with sample paths generated by the series representation explained in Section 2.3.



The calibration results are presented in Table 5. We calibrate the CGMY and the CGMYSV model parameters for 12 Wednesdays in 2015 and 2016. Values for the four error estimators, AAE, APE, ARPE, and RMSE, are provided in Table 6. As smaller error values imply better calibration performance, smaller errors are written in bold letters. Table 6 shows that the CGMYSV calibration performs better than the CGMY calibration, except for 10 February 2016, and 10 June 2015. On 9 March 2016, AAE and APE values for the CGMY model are less than those of CGMYSV, but ARPE and RMSE values for CGMY are larger than those for CGMYSV. The ARPE value for CGMY is smaller than that of CGMYSV on 10 November 2015, but the other three error values for CGMY are larger than that for CGMYSV. Therefore, we can conclude that, in this investigation, the CGMYSV option pricing model typically performs better than the CGMY option pricing model, except in a few cases. Hence, the LSM with Algorithm 1 works well for the American option calibration.



Finally, we perform bootstrapping. We selected the at-the-money, 6 April 2016 put option with strike price   K = 910   and   T = 31   days to maturity. Put prices were obtained by LSM using the parameters calibrated for that day in Table 5. On that day, the underlying S&P 100 index price was 918.21, and the market put price was 13.95. Table 7 shows the LSM prices and their standard errors for simulation using 100, 1000, 5000, and 10,000 sample paths. The LSM prices approach the market price, and the standard error decreases as the number of sample paths increases. We repeated these simulations 100 times, and present numerical summaries for the statistics for those 100 prices in Table 8. As the number of sample paths increases, means and medians approach the market put price, while the standard deviations and ranges are decreased. We present boxplot summaries in Figure 6 for those 100 prices. Market put prices are also represented (’*’ symbols) with the boxplots. We observe that the interquartile distance of LSM prices narrows to that of the market price, and dispersions are reduced as the number of sample paths increase.



Figure 7 provides a graphical illustration of the calibration for 6 April 2016. Calibrated CGMYSV prices are drawn by "×", the market observed prices are drawn by "∘", and the 95% confidence intervals are marked by a "I" shape. The days to maturities T are written on the plate.




4.3. Asian and Barrier Options


The sample path generation method for the CGMYSV model can also be used for Asian and Barrier option pricing. In this section, we briefly show examples of Asian and Barrier option pricing using the MCS, with sample paths generated by Algorithm 1. We generated 10,000 sample paths of the CGMYSV model with parameters   α = 0.52  ,    λ +  = 25.46  ,    λ −  = 4.604  ,   κ = 1.003  ,   η = 0.0711  ,   ζ = 0.3443  ,    v 0  = 0.0064  , and   ρ = − 2.0280  . Then, we generated the underlying price process    {  S t  }   t ≥ 0    using (10), where    S 0  = 2 , 488  ,   r = 0.0121  , and   d = 0.0188  .



For the Asian option, we consider the arithmetic average call and put prices for strike price   K = 2500   and a time to maturity of   T = 25  d a y s  . Table 9 shows the MCS prices for Asian call & put prices and their standard errors for simulations with 100, 1000, 5000, and 10,000 sample paths. The standard error of the MCS prices decreased as the number of sample paths increased. We repeated this process 100 times, and present boxplots for those 100 prices in Figure 8. We observe that the MCS prices converge, and dispersions are reduced as the number of sample paths increase.



Similarly, we found the MCS price for Barrier options. We considered the down-and-out call and the up-and-out put Barrier options having a strike price of   K = 2500   and time to maturity of   T = 25  d a y s  . Barriers of the down-and-out call and the up-and-out put are 2400, and 2750, respectively. Table 10 shows the MCS prices and their standard errors for simulations with 100, 1000, 5000, and 10,000 sample paths. The standard error of the MCS prices decreased as the number of sample paths increased. We repeated this process 100 times, and present boxplots for those 100 prices in Figure 9. We also observe that the MCS prices converged, and dispersions are reduced as the sample paths increase.





5. Conclusions


In this paper, we developed the CGMYSV sample path generation algorithm using the discrete-time approximation method with series representation. Performance of the discrete-time approximation of the CGMYSV process was tested by comparing the simulated distribution to the pdf calculated by the inverse Fourier transform method. We applied the sample path generation algorithm to European and American option pricing with MCS and LSM. We compared the MCS method to the FFT method in European option pricing with the SPX option market data. We calibrated the parameters of the CGMYSV model to the American style OEX option using LSM. We measured the performance of the calibration using four error estimators and the boot-strapping method. We conclude that the sample path generation method of the CGMYSV model performs well, and can successfully be applied to American option pricing with LSM. Finally, we also presented Asian and Barrier option pricing examples with the MCS method using the sample path generation algorithm.
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	1.
	
The class of tempered stable processes has been introduced under different names including: “truncated Lévy flight” (Koponen 1995), “KoBoL” process (Boyarchenko and Levendorskiĭ 2000), “CGMY” process (Carr et al. 2002), and classical tempered stable process (Rachev et al. 2011). Rosiński (2007) and Bianchi et al. (2010) have generalized the notion of tempered stable processes.





	2.
	
In Carr et al. (2003),    {  Z t  }   t ≥ 0    is assumed to a CGMY process. We assume a standard CGMY process in this paper to simplify the model. The stochastic volatility Lévy process model is not a Lévy process in general.





	3.
	
The measures are computed as follows:   A A E  =   ∑  j = 1  N     |    P ^  j  −  P j   |   N   ,   A P E  =     ∑  j = 1  N   |   P ^  j  −  P j  |  / N    ∑  j = 1  N    P ^  j  / N    ,   A R P E  =   1 N   ∑  j = 1  N     |    P ^  j  −  P j   |     P ^  j    , and   R M S E  =     1 N   ∑  j = 1  N     (   P ^  j  −  P j  )  2  N    ,   where N is the number of observations, and    P ^  j   and   P j   denote the model price and the observed market call/put prices, respectively.
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Figure 1. CGMYSV sample paths (left) and CIR sample paths (right). 
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Figure 2. CGMYSV pdfs based on the simulated sample path (gray bar-plots) vs pdf using FFT method (solid curves). Distributions of   X t   are for   t = 10 Δ t   (top-left),   t = 25 Δ t  (top-right),   t = 50 Δ t   (bottom-left), and   t = 100 Δ t   (bottom-right), where   Δ t = 1 / 252   is one day of year fraction. 
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Figure 3. Observed SPX option price and model prices calibrated to the market prices for Call (top) and put (bottom) on September 11, 2017. ‘∘’ stands for the market price and ‘+’ stands for the FFT price. 
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Figure 4. Confidence Intervals for the MCS option prices. Dots are observed market prices, dot-coves are MCS prices, and ‘I’ shape bars are 95% confidence intervals of MCS prices. The first (top) plate is for call option pricing and the second (bottom) plate is for put option pricing. 
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Figure 5. Bootstrapping for call (left) and put (right). 
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Figure 6. Bootstrapping for OEX put option with time to maturity of   T = 31  d a y s   and strike price   K = 910  . 
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Figure 7. OEX put prices on April 6, 2016 and LSM prices with their confidence intervals. Circles (‘∘’) are observed OEX put prices, ‘×’ points are LMS prices, and ‘I’ shape bars are 95% confidence intervals of LMS prices. 
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Figure 8. Bootstrapping for Asian call (left) & put (right). 
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Figure 9. Bootstrapping for Barrier options: the down-and-out call (left) and the up-and-out put (right). 
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Table 1. KS test for distributions of simulated sample paths.
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	KS Statistic
	p-Value





	10 days
	0.0070
	0.7029



	25 days
	0.0122
	0.1026



	50 days
	0.0069
	0.7296



	100 days
	0.0110
	0.1748
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Table 2. Calibrated Parameters for the SPX option on 11 September 2017.
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	Parameter
	Call
	Put





	  α  
	   0.5184   
	   0.0089   



	   λ +   
	   25.4592   
	   2.0852   



	   λ −   
	   4.6040   
	   6.2380   



	  κ  
	   1.0029   
	   1.4333   



	  η  
	   0.0711   
	   0.1961   



	  ζ  
	   0.3443   
	   1.1931   



	  ρ  
	   − 2.0283   
	   − 0.1695   



	   v 0   
	   0.006381   
	   0.0619   
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Table 3. Error estimators for the parameter calibration to the call and put option market price on 11 September 2017.
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Call

	

	
Put




	
Error

	
FFT

	
MCS

	

	
FFT

	
MCS






	
AAE

	
   0.4442   

	
   0.6220   

	

	
   0.4047   

	
   0.5512   




	
APE

	
   0.0053   

	
   0.0074   

	

	
   0.0226   

	
   0.0308   




	
ARPE

	
   0.0711   

	
   0.0813   

	

	
   0.2094   

	
   0.1672   




	
RMSE

	
   0.6016   

	
   0.8019   

	

	
   0.7006   

	
   0.8608   
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Table 4. MCS prices and standard errors for SPX call and put with the strike price   K = 2500   and time to maturity   T = 28  d a y s   using calibrated parameters on 11 September 2017.
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Call

	

	
Put




	
Number of Simulation

	
Price

	
Standard Error

	

	
Price

	
Standard Error






	
100

	
15.9651

	
2.1001

	

	
34.3371

	
7.9356




	
1000

	
17.8790

	
0.7511

	

	
32.5601

	
2.2353




	
5000

	
19.6536

	
0.3634

	

	
32.7791

	
1.0458




	
10,000

	
19.6840

	
0.2551

	

	
32.6914

	
0.7617




	
FFT Price

	
19.6590

	

	

	
32.9541

	




	
Market Price

	
19.05

	

	

	
31.50
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Table 5. Parameter Calibration Results for the OEX Option market.
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	Date
	Model
	   α   
	C
	    λ +    
	    λ −    
	   κ   
	   η   
	   ζ   
	    v 0    
	   ρ   





	Apr. 6, 2016
	CGMY
	   0.5459   
	   0.3495   
	   6.3595   
	   7.7563   
	
	
	
	
	



	
	CGMYSV
	   1.1356   
	
	   35.2115   
	   7.7883   
	   1.9322   
	   0.3550   
	   1.2211   
	   0.0100   
	   1.2237   



	Mar. 9, 2016
	CGMY
	   1.6885   
	   0.0246   
	   21.2919   
	   2.8805   
	
	
	
	
	



	
	CGMYSV
	   0.0353   
	
	   20.3911   
	   9.9256   
	   2.1262   
	   0.4570   
	   1.2665   
	   0.0236   
	   1.3434   



	Feb. 10, 2016
	CGMY
	   0.9287   
	   3.5284   
	   72.5855   
	   46.4594   
	
	
	
	
	



	
	CGMYSV
	   0.0257   
	
	   1.3491   
	   0.7503   
	   2.4301   
	   0.4185   
	   1.8126   
	   0.2711   
	   0.3567   



	Jan. 6, 20166
	CGMY
	   1.2290   
	   0.4104   
	   64.6344   
	   21.3096   
	
	
	
	
	



	
	CGMYSV
	   1.3081   
	
	   33.2233   
	   32.5605   
	   2.0656   
	   0.4237   
	   1.8947   
	   0.0810   
	   0.1172   



	Dec. 9, 2015
	CGMY
	   1.3241   
	   0.2984   
	   57.6574   
	   30.2749   
	
	
	
	
	



	
	CGMYSV
	   0.6308   
	
	   40.5190   
	   24.3874   
	   5.0247   
	   0.3299   
	   3.5989   
	   0.0593   
	   0.2334   



	Nov. 10, 2015
	CGMY
	   1.5907   
	   0.0184   
	   26.4398   
	   2.7714   
	
	
	
	
	



	
	CGMYSV
	   0.0266   
	
	   1.6365   
	   0.7506   
	   1.0354   
	   0.5658   
	   0.3936   
	   0.1111   
	   1.2914   



	Oct. 7, 2015
	CGMY
	   0.9792   
	   0.2955   
	   53.8624   
	   8.4758   
	
	
	
	
	



	
	CGMYSV
	   0.8763   
	
	   65.0630   
	   67.4571   
	   1.8555   
	   0.2794   
	   2.1050   
	   0.0422   
	   0.0080   



	Sep. 9, 2015
	CGMY
	   1.2572   
	   0.5862   
	   54.0807   
	   15.3905   
	
	
	
	
	



	
	CGMYSV
	   0.5836   
	
	   30.2731   
	   17.2115   
	   5.1193   
	   0.3569   
	   4.8231   
	   0.1189   
	   0.1158   



	Aug. 12, 2015
	CGMY
	   0.7574   
	   0.5926   
	   61.7876   
	   14.2761   
	
	
	
	
	



	
	CGMYSV
	   0.4848   
	
	   42.9235   
	   31.7027   
	   2.1644   
	   0.1964   
	   2.1032   
	   0.0283   
	   0.1639   



	Jul. 8, 2015
	CGMY
	   1.1742   
	   0.2429   
	   78.6224   
	   11.4198   
	
	
	
	
	



	
	CGMYSV
	   0.9127   
	
	   46.3671   
	   46.3013   
	   2.2125   
	   0.2173   
	   2.0394   
	   0.0547   
	   − 0.0637   



	Jun. 10, 2015
	CGMY
	   1.3849   
	   0.0407   
	   64.9276   
	   7.8355   
	
	
	
	
	



	
	CGMYSV
	   0.0391   
	
	   1.0381   
	   0.7820   
	   1.1451   
	   0.6167   
	   0.6062   
	   0.0518   
	   1.2736   



	May. 6, 2015
	CGMY
	   1.2247   
	   0.1125   
	   87.0744   
	   8.6069   
	
	
	
	
	



	
	CGMYSV
	   0.8628   
	
	   53.8182   
	   54.3726   
	   2.0949   
	   0.2023   
	   2.0731   
	   0.0352   
	   0.0647   










[image: Table] 





Table 6. Error Estimates for the calibration of the OEX option.
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	Date
	Model
	AAE
	APE
	ARPE
	RMSE





	Apr. 6, 2016
	CGMY
	0.6623
	0.1726
	0.4587
	0.8833



	
	CGMYSV
	0.1881
	0.0490
	0.1242
	0.2497



	Mar. 9, 2016
	CGMY
	0.6780
	0.1106
	0.2871
	0.8323



	
	CGMYSV
	0.6833
	0.1115
	0.2492
	0.8086



	Feb. 10, 2016
	CGMY
	0.7755
	0.0513
	0.1282
	1.1076



	
	CGMYSV
	0.9267
	0.0613
	0.2075
	1.2042



	Jan. 6, 2016
	CGMY
	0.6945
	0.0644
	0.1617
	0.9379



	
	CGMYSV
	0.4140
	0.0384
	0.0784
	0.6574



	Dec. 9, 2015
	CGMY
	0.7986
	0.0931
	0.1855
	1.1230



	
	CGMYSV
	0.5903
	0.0688
	0.0957
	0.7885



	Nov. 10, 2015
	CGMY
	0.3137
	0.0576
	0.2169
	0.4159



	
	CGMYSV
	0.2337
	0.0429
	0.2560
	0.3815



	Oct. 7, 2015
	CGMY
	0.5268
	0.1018
	0.3741
	0.6891



	
	CGMYSV
	0.2186
	0.0423
	0.1520
	0.3221



	Sep. 9, 2015
	CGMY
	0.8948
	0.0880
	0.1681
	1.2499



	
	CGMYSV
	0.5874
	0.0577
	0.1002
	0.9153



	Aug. 12, 2015
	CGMY
	0.6464
	0.0941
	0.1894
	0.9097



	
	CGMYSV
	0.4137
	0.0602
	0.1401
	0.5652



	Jul. 8, 2015
	CGMY
	0.7636
	0.0800
	0.1456
	1.0079



	
	CGMYSV
	0.2518
	0.0264
	0.1023
	0.3238



	Jun. 10, 2015
	CGMY
	0.2535
	0.0671
	0.2576
	0.3483



	
	CGMYSV
	0.3180
	0.0841
	0.3676
	0.4120



	May. 6, 2015
	CGMY
	0.7361
	0.0765
	0.1479
	0.9776



	
	CGMYSV
	0.3880
	0.0403
	0.1097
	0.5137
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Table 7. MCS prices and standard errors for the OEX put with time to maturity of   T = 31  d a y s   and strike price   K = 910   using parameters calibrated on 6 April 2016.
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Put




	
Number of Simulation

	
Price

	
Standard Error






	
100

	
15.4565

	
2.7280




	
1000

	
15.0373

	
1.0173




	
5000

	
13.9616

	
0.3990




	
10,000

	
13.8768

	
0.2856




	
Market Price

	
13.950
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Table 8. Numerical Summary of the bootstrapping. We repeat the MCS pricing 100 times for various number of simulation, and calculate basic statistics for the 100 MCS put prices.
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Number of

	

	

	

	

	

	

	




	
Simulation

	
Mean

	
Std

	
Q1

	
Median (Q2)

	
Q3

	
IQR

	
Range






	
100

	
16.6119

	
3.2399

	
14.3966

	
16.5589

	
18.6850

	
4.2885

	
21.9747




	
1000

	
14.4190

	
0.7568

	
13.9394

	
14.4343

	
14.8609

	
0.9215

	
3.9857




	
5000

	
14.0073

	
0.3258

	
13.8295

	
14.0252

	
14.1876

	
0.3581

	
1.8799




	
10,000

	
13.8599

	
0.2524

	
13.6766

	
13.8640

	
14.0410

	
0.3644

	
1.1730




	
Market Price

	
13.950

	

	

	

	

	

	








Std: Standard Deviation, Q1: the 1st quartile, Q2: the 2nd quartile, Q3: the 3rd quartile, IQR: inter quartile range.
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Table 9. MCS prices and standard errors for Asian call & put.
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Call

	

	
Put




	
Number of Simulation

	
Price

	
Standard Error

	

	
Price

	
Standard Error






	
100

	
22.0834

	
1.7485

	

	
11.7400

	
3.4463




	
1000

	
21.0078

	
0.5866

	

	
9.7009

	
1.0759




	
5000

	
21.4664

	
0.2785

	

	
10.5634

	
0.5443




	
10,000

	
21.6513

	
0.1937

	

	
9.9964

	
0.3679
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Table 10. MCS prices and standard errors for the down-and-out call and the up-and-out put.
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Down & Out Call

	

	
Up & Out Put




	
Number of Simulation

	
Price

	
Standard Error

	

	
Price

	
Standard Error






	
100

	
12.9019

	
1.4535

	

	
36.2543

	
3.6254




	
1000

	
15.3738

	
0.5165

	

	
30.0687

	
0.9509




	
5000

	
16.6097

	
0.2460

	

	
31.8030

	
0.4498




	
10,000

	
16.5518

	
0.1749

	

	
30.2590

	
0.3026
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