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Abstract: We developed a model-free Bayesian extraction procedure for the stochastic discount factor
under a yield curve prior. Previous methods in the literature directly or indirectly use some particular
parametric asset-pricing models such as with long-run risks or habits as the prior. Here, in contrast,
we used no such model, but rather, we adopted a prior that enforces external information about
the historically very low levels of U.S. short- and long-term interest rates. For clarity and simplicity,
our data were annual time series. We used the extracted stochastic discount factor to determine the
stripped cash flow risk premiums on a panel of industrial profits and consumption. Interestingly, the
results align very closely with recent limited information (bounded rationality) models of the term
structure of equity risk premiums, although nowhere did we use any theory on the discount factor
other than its implied moment restrictions.

Keywords: stochastic discount factor; discounting; cash flows; yield curve; moment functions;
bounded rationality; Bayesian

JEL Classification: C32; C36; E27

1. Introduction

Under very mild conditions, there exists a scalar stochastic discount factor (SDF)
process that generates moment restrictions on the returns (or cash flows) of traded securi-
ties. Knowledge of the SDF process allows one to check if a particular security is priced
consistently with other traded assets, and it allows the valuation of uncertain future cash
flows regarding nontraded assets as far as one is confident the pricing implications extend
appropriately. In the literature, there are a plethora of methods either to nonparametrically
extract the SDF process from historical data or to evaluate particular theories on the SDF
process such as long-run risk models or habit models.

One issue associated with such approaches concerns the ex post implied level of real
interest rates. Extant procedures use moment conditions based on asset returns, and the
return horizons typically range from monthly to annual. The returns series are like first
differenced asset prices and thus nearly white-noise processes; information on the levels of
asset prices, and bond prices in particular, is negligible, leaving interest rates ill determined.
Left on its own, an extracted SDF can give rise to somewhat implausible levels of real
interest rates. As an example, for a recent long-run risk application, Christensen (2017)
reports the long-term interest rate as a rather high at 7 percent per year; in additional
computations using this author’s code, we found that the entire yield curve from one year
on out is essentially flat at just over 7 percent. Poorly determined real yield curves were
encountered using the extraction procedure of this paper, where absent prior knowledge
implied that yield curves shifted and bent in implausible configurations. As just noted, the
moment conditions contain little, if any, level information, and external information from
other sources needs to be imposed to discipline the SDF extraction.
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An agreed upon fact is that U.S. real interest rates are very low. According to Campbell
(2003, p. 812), the average short-term U.S. real rate was 0.896 percent over the period 1947–
1998, and few would have argued for higher real short-term rates since then. As for
longer-term real rates, Figure 2 of Tesar and Obstfeld (2015, p. 8) indicates that the 10-year
real rate of interest over the period 1930–2014 was often negative, generally fluctuated
between 0 and 2.5 percent per year, and only briefly bumped 5 percent during the interwar
era and again during the disinflation period of the early 1980s. Additional information
from Treasury Inflation Protected Securities (TIPS) real yields is seen in Table 1, which are
remarkably low.

Table 1. Treasury Inflation Protected Securities (TIPS) (real) yields.

Year 5-Year 7-Year 10-Year 20-Year

2004 1.02 1.39 1.76 2.13
2005 1.50 1.63 1.81 1.97
2006 2.28 2.30 2.31 2.31
2007 2.15 2.25 2.29 2.36
2008 1.30 1.63 1.77 2.18
2009 1.06 1.32 1.66 2.21
2010 0.26 0.68 1.15 1.73
2011 −0.41 0.10 0.55 1.20
2012 −1.20 −0.88 −0.48 0.21
2013 −0.76 −0.30 0.07 0.75
2014 −0.09 0.32 0.44 0.86
2015 0.15 0.36 0.45 0.78

Displayed are annual averages of daily fixed-term Treasury Inflation Protected Securities (TIPS) yields. See
Appendix A for details.

In what follows, we implemented a Bayesian SDF extraction procedure subject to
a prior that enforces these known low values for U.S. real interest rates. The method’s
mathematical foundation requires a prior to ensure all the random variables are actually
defined on a proper probability space, and here, we elected to use the yield curve prior
in place of a specific model of the SDF. Specifically, the prior centers the one-year yield at
0.896 percent with a standard deviation of 1.00 percent, and it centers the 30-year yield at
2.00 percent with a standard deviation of 1.00 percent. The prior generally accommodates
both the levels and fluctuations in real rates suggested in the above discussion and by
Table 1. This prior was maintained throughout the entire sample period, although it would
be relatively easy to impose a time-varying prior with possibly higher yields in the earlier
parts of the sample if reliable real rates were available to inform the development of such
a prior.

Post-extraction, we used the dynamics of the SDF and related variables in a standard
log-Gaussian pricing framework to value various cash flows, with a focus on the risk
premiums on stripped cash flows, often termed dividend strips in the literature. The
concept is simple: if, from the perspective of period 0, an investment pays off the uncertain
stream {CFt}∞

t=1 into the indefinite future, then the stripped cash flow is the asset that
pays just CFt in period t > 0 and zero in all other periods. Recently, researchers have
been investigating the term structure of the equity risk premiums on stripped cash flows
to better understand the relationship between risk and reward at short- and long-term
horizons. Asset-pricing models (van Binsbergen et al. 2012; Giglio et al. 2015) suggest
that the term structure of risk premiums is upward sloping, with more distant cash flows
earning higher risk premiums due to a long-run risk (Bansal and Yaron 2004) mechanism
that makes investors fearful of volatility in the distant future. This prediction seems at
odds with common sense intuition, but theory alone is not powerful enough to make an
unambiguous prediction on the slope of the equity risk premium term structure. Backus
et al. (2016) show how a wide range of levels and shapes of the term structures of claims
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can be achieved by modifying the dynamics of the pricing kernel, the cash flow growth,
and their interaction. Empirically, discussions about the true average slope of the equity
return term structure have not yet been settled (Cochrane 2017; Bansal et al. 2017; van
Binsbergen et al. 2017), and reconciling asset-pricing models with the possible slopes of
the term structure of equity returns has recently become a very active area of research. Of
particular interest here is Croce et al. (2015), who developed a bounded rationality model
with long-run risk that appears to explain our findings below.

2. Ex Post Stochastic Discount Factor

The ex post-realized values of SDFt−1,t were extracted annually for 1930–2015 using
the methodology developed in Gallant and Hong (2007). The differences are threefold: the
dataset is longer due to the passage of time, all of the Fama–French portfolios (Fama and
French 1992, 1993) can be used because a missing data problem has been resolved, and the
prior tilts values toward a specified yield curve instead of toward long-run risk dynamics
(Bansal and Yaron 2004). In brief, the ideas are as follows.

For time t = 1, . . . , n = 86, where t = 1 corresponds to 1930 and t = n corresponds to
2015, denote the real gross returns on the 25 Fama–French 5 × 5 size and value portfolios
with the vector Rst, denote the real gross annual return on the thirty-day T-bill with Rbt,
denote the real per capita consumption growth with Ct

Ct−1
, and denote the per capita labor

income growth with Lt
Lt−1

. Let xt be a vector of length 28 containing these variables. Let
x be an array with xt as columns; x has the dimensions 28 by n = 86. Let θt denote the
stochastic discount factor SDFt−1,t and set θ = (θ1, . . . , θ86).

The vector θ is random and endogenous, so determining a likelihood p∗(x | θ) for
Bayesian analysis requires some care. The likelihood construction proceeds as follows.

We presume the existence of, but not knowledge of, a general equilibrium model with
a financial sector. The general equilibrium model determines a joint probability space on
which all the random variables that enter the model live and, hence, a marginal probability
space on which the random variables (x, θ) ∈ X ×Θ live. The marginal probability space
determines a conditional distribution of x given θ. We presume that this conditional
distribution has the density po(x | θ). Ours is a partial equilibrium analysis, so any general
equilibrium parameters that might be involved in an expression for po(x | θ), were they
known, do not affect our analysis and can be ignored or, to be pedantic, are fixed and
calibrated by nature.

Let p(θ) denote the prior we intend to use for a partial equilibrium Bayesian analysis.
The analysis will be with reference to the probability space (X ×Θ, Co, Po), where Po has
the density po(x | θ) p(θ).

Denote the vector of the (conditional) moment-equation errors with

et,t−1(θt) = 1 − θt

(
Rst
Rbt

)
, (1)

where 1 denotes a vector of 1’s of length twenty-six. Define the instruments

Vt =




Rst − 1
Rbt − 1

Ct/Ct−1 − 1
Lt/Lt−1 − 1

1




,

where Rst− 1 denotes 1 subtracted from each element of Rst. Consider the moment conditions

m(xt, xt−1, θt) = Vt−1⊗ et,t−1(θ), (2)
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where ⊗ denotes the Kronecker product, and their sample average

m̄(x, θ) =
1
n

n

∑
t=2

m(xt, xt−1, θt). (3)

The length of the vector m(xt, xt−1, θt) is K = 754, so the number of overidentifying
restrictions on θ2, . . . , θ86 is 669. Note that θ1 is not yet identified because θ1 does not appear
in (3); it is identified by the prior as discussed later in this subsection.

Following Gallant and Hong (2007), we assume that et,t−1(θ) has a factor structure.
There is one error common to all the elements of θtRst and twenty-six idiosyncratic errors,
one for each element of (θtRst, θtRbt). Denote this matrix with Σe (or with Σe,t if one
wants to allow for heterogeneity, which makes no difference in what follows). A set of
orthogonal eigenvectors Ue for Σe is easy to construct (Gallant and Hong 2007, p. 535)
and can be used to diagonalize Σe. Similarly, Uv and Σv for Vt can be determined. Let
Ht(θ) = (Uv⊗Ue) ′m(xt, xt−1θ) with elements hi,t(θ). Diagonalization implies that we can
estimate the variance of Ht(θ) by a diagonal matrix Sn(θ) with the elements

si(θ) =
1
n

n

∑
t=2

[
ht,i(θ)−

1
n

n

∑
t=2

ht,i(θ)

]2

.

Let S−1/2
n (θ) denote this matrix with the diagonal elements replaced by their square

roots.
The extraction of the ex post realization of the SDF is based on the random variable

Z(x, θ) =
√

n S−1/2
n (θ)(Uz ⊗Ue)

′m̄n(x, θ) (4)

with a range Z defined on the aforementioned probability space (X ×Θ, Co, Po). Z(x, θ)
is the normalized sum of transformed draws (xt, θt) and is asymptotically multivariate
normal with a zero mean and identity variance under plausible regularity conditions on
(X × Θ, Co, Po). Note, specifically, that θt is random and jointly distributed with xt, so
issues of uniformity in θ do not arise. Thus, it is reasonable to assume that Z follows the
standard normal distribution Φ(z) with a density of φ(z).

The assumption that Z(x, θ) has a density of φ(z) induces a probability space (X ×
Θ, C, P), where C is the σ-algebra of preimages C = {C = Z−1(B), B ⊂ Z , B Borel} and
P[C = Z−1(B)] =

∫
B dΦ(z). Define C∗ to be the smallest σ-algebra that contains all the

sets in C plus all the sets of the form RB = (X×B), where B is a Borel subset of Θ. Under
a semipivotal assumption for (4), ( Which is that {x : Z(x, θ) = z} is not empty for any
choice of (z, θ) in the parameter space Θ and range space Z ; a sufficient condition is that
each element of Z is continuous in µ when some element xit of xt is replaced by xit + µ for
all t and is unbounded from above and below in µ.) there is an extension of (X ×Θ, C, P)
to a space (X ×Θ, C∗, P∗) on which the conditional density of x given θ is

f(x | θ) = φ[Z(x, θ)] (5)

(Gallant 2016a). This density is termed the “method of moments representation” of
the likelihood and may be used for Bayesian inference in connection with the prior p(θ)
(Gallant 2016a, 2016b). (Missing in (5) is a multiplicative Jacobian term that experience
indicates has a negligible impact on computations when omitted (Gallant 2020)).

In short, the Bayesian method used in Gallant and Hong (2007) and here uses the
moment conditions z = Z(x, θ) given by (4), takes

p(x | θ) = φ(z) (6)

as the likelihood, and proceeds directly to Bayesian inference using a prior p(θ).
Next, we describe the prior.
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Let wt =
(

log(θt), log( GDPt
GDPt−1

)
)′

, where GDPt growth is observed for t = 1, 2, . . . ,
n = 86. GDP is not involved in the SDF extraction up to this point. It is now included as
prior information regarding past business-cycle conditions. Consider the recursion

wt = d0 + Dwt−1 + ut, (7)

where the ut are independent and bivariate normal with a zero mean and variance Σd.
Markov chain Monte Carlo (MCMC) (Gamerman and Lopes 2006) is used in the Gallant
and Hong (2007) method which means that the proposed θt is available to compute wt
before the prior and likelihood need to be computed. From the wt the parameters of (7) can
be determined by the least squares. With the least-squares values replacing parameters in
(7), a yield curve for maturities one year through thirty years can be computed analytically
from (7) conditional on a specified initial condition w0; see Equations (12), (13) and (15) of
Section 3. In particular, the one-year and 30-year yields, Y∗1,t and Y∗30,t, can be computed
successively for w0 = wt, t = 1, ..., n = 86. Our prior is

p(θ) =
n

∏
t=1

φ[(Y∗1,t − 0.00896)/0.01]φ[(Y∗30,t − 0.02)/0.01)] (8)

Note, in particular, that the prior identifies θ1.
With likelihood (5) and prior (8) in hand, Bayesian inference can be carried out using

MCMC in the usual way; see, for exaxmple, Gamerman and Lopes (2006). After the
transients died out, we ran an MCMC chain of length 8,000,000. The θ in the chain with
the highest value of the posterior was selected as the estimate θ̂ of the ex post SDFs for the
years 1930 through 2015. The estimate is plotted as Figure 1. The shaded areas are NBE R
recessions.
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Figure 1. Posterior valuation. Plotted is the posterior mode of θ1 = SDF1930,1931 through θ86 =

SDF2014,2015.

3. Discounted Cash Flow Estimation

We now used the extracted SDF series to value cash flows for assets outside the span of
returns used in the extraction step. For this part, we used annual data on corporate profits

Figure 1. Posterior valuation. Plotted is the posterior mode of θ1 = SDF1930,1931 through θ86 =

SDF2014,2015.

3. Discounted Cash Flow Estimation

We now used the extracted SDF series to value cash flows for assets outside the span of
returns used in the extraction step. For this part, we used annual data on corporate profits
from various large sectors of the U.S. economy. We assembled annual data for seven sectors
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but for the shorter period 1959–2015, as data limitations precluded going any farther back.
We also treated consumption as a cash flow, making a total of eight under consideration.
These data were concatenated with the extracted SDF data and various macroaggregates
for this shorter time span.

For the valuation step, consider the trivariate series

yt =




log(SDFt−1,t)
log(GDPt)− log(CFt)
log(CFt)− log(CFt−1)


 =




sd ft−1,t
gdpt − c ft
∆c ft−1,t


 (9)

where CFt denotes a cash flow payoff at time t, such as the annual corporate profits
in year t; GDPt denotes the gross domestic product; and SDFt−1,t denotes the extracted
stochastic discount factor θ̂t of Section 2. Note that the second variable in the autoregression,
log(GDPt)− log(CFt), plays no direct role in subsequent pricing, but it is included because
it conveys information on future cash flows. The specification presumes co-integration
between GDP and CF, which is discussed more fully in Section 4 below.

The time zero present value of the cash flow CFt is

PV0,t(CF) = E(SDF0,t CFt | F0) = E
[

exp

(
t

∑
s=1

∆c f s−1,s +
t

∑
s=1

sd f s−1,s

) ∣∣∣∣F0

]
(10)

where F0 denotes the time 0 information set. (Note that in (10), the time zero value
of the SDF must be unity; the time zero value of CF is irrelevant because we work in
terms of ratios—see (19) below—and therefore, we will normalize it to be unity.) (In
(10), the expectation E refers to the probability space (X ×Θ, Co, Po) defined in Section 2.
In (14)–(16) and thereafter, E refers to the VAR (11).) For a risk-free payoff of one real
dollar at time t, the time zero present value is PV0,t(1) = E(SDF0,t | F0), where SDF0,t =
exp(∑t

s=1 sd f s−1,s). The corresponding yield is Y∗t = − log[PV0,t(1))]/t.
Let

yt = b0 + Byt−1 + et, (11)

where the et are independent and trivariate normal with a zero mean and variance Σb.
The sum

t

∑
s=1

ys =

(
t

∑
s=1

(t + 1− s)Bs−1

)
b0 +

(
t

∑
s=1

Bs

)
y0 +

t

∑
s=1

(
s

∑
u=1

Bu−1

)
et+1−s

where B0 = I, B1 = B, B2 = B B, etc., has moments

E
t

∑
s=1

ys =

(
t

∑
s=1

(t + 1− s)Bs−1

)
b0 +

(
t

∑
s=1

Bs

)
y0 (12)

Var
t

∑
s=1

ys =
t

∑
s=1

(
s

∑
u=1

Bu−1

)
Σb

(
s

∑
u=1

Bu−1

)′
(13)
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One can use (12) and (13) to evaluate

PV0,t(CF) = exp

[
E
(

t

∑
s=1

∆c f s−1,s

)
+ E

(
t

∑
s=1

sd f s−1,s

)]

+ exp

[
1
2

Var

(
t

∑
s=1

∆c f s−1,s

)
+

1
2

Var

(
t

∑
s=1

sd f s−1,s

)]

+ exp

[
Cov

(
t

∑
s=1

∆c f t−1,t,
t

∑
s=1

sd f s−1,s

)]
(14)

PV0,t(1) = exp

[
E
(

t

∑
s=1

sd f s−1,s

)
+

1
2

Var

(
t

∑
s=1

sd f s−1,s

)]
(15)

EV0,t(CF) = exp

[
E
(

t

∑
s=1

∆c f s−1,s

)
+

1
2

Var

(
t

∑
s=1

∆c f s−1,s

)]
(16)

where E refers to expectation with respect to the VAR (11). Note that in the above, the time
zero value of the SDF must be unity; the time zero value of CF is irrelevant because we
work in terms of ratios—see, for example, (19)—therefore, we normalize it to be unity.

We now describe the imposition of a yield curve prior on the estimation of the b0, B,
and Σb that appear in the VAR (11). Consider a state-space representation of VAR (11)

vt =




sd ft−2,t−1
gdpt−1 − c ft−1

∆c f t−2,t−1
sd ft−1,t

gdpt − c ft
∆c ft−1,t




=

(
0
b0

)
+

(
0 I
0 B

)
vt−1 +

(
0
et

)
(17)

The estimation of (17) subject to the indicated parameter restrictions gives the same
estimates b̂0, and B̂, Σ̂b as does the unconstrained estimation of (11). Let

A =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 −1 0 0 1 0
0 0 0 0 0 1




and note that the fourth and fifth elements of Axt are sd ft−1,t and ∆gdpt−1,t = log(GDPt)−
log(GDPt−1). An implication is that we can insert the parameters b∗0 , B∗, and Σ∗b of

Avt = b∗0 + B∗Avt−1 + e∗t = A
(

0
b0

)
+ A

(
0 I
0 B

)
A−1 Avt−1 + A

(
0
et

)
(18)

into Equations (12), (13), and (15) to compute the one-year yield, Y∗1,t, and 30-year yield,
Y∗30,t, with y0 set to vt successively for t = 1, ..., n = 86, and impose the prior (8).

The computational procedure is, within an MCMC loop, for the proposed b0, B, and
Σb, to evaluate the likelihood implied by VAR (11); compute b∗0 , B∗, and Σ∗b as indicated
by expression (18) from the proposed b0, B, and Σb; evaluate the prior (8); and use the
likelihood and prior so computed to make the accept/reject decision of the MCMC loop.

Serendipitously, the state-space complications can be avoided because it turns out
that the yields Y∗1,t and Y∗30,t obtained by applying Equations (12), (13) and (15) directly to
the b0, B, and Σb of VAR (11) are identical to those computed from the b∗0 , B∗, and Σ∗b of
VAR (18). Apparently, the reason is that the only difference between the distributions of
Avt and vt is the location parameter of their fifth element, and the location parameter of
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the fifth element is not involved in Equation (12), (13) or (15). For ourselves, we are more
comfortable relying on having performed the computations using both (11) and (18) and
obtaining identical results than relying on the distributional argument.

4. Empirical Implementation
4.1. Valuation, Expectation, and Risk Premiums

Display (14) shows the valuation operator PV0,t(CF) as the economic value in period
0 of the cash flow CFt received in t; evidently, PV0,t(•) is a linear operation on random
variables realized at time t. Likewise, (16) shows the conventional statistically expected
value operator EV0,t(CF), also a linear operator on the same space of time t random
variables where PV0,t(•) operates. As usual, two linear operators on a space are connected
via a Randon–Nikodym-style change in measure/density, which is the usual risk-neutral
change of measure, noted but not used here.

For the risk-free asset,
bond price0,t = PV0,t(1).

The (geometric) risk-free yield to maturity r f
0,t at time 0 of the t-maturity zero-coupon

bond is defined via the relationship

et r f
0,t × PV0,t(1) = 1,

because the invested amount PV0,t(1) grows at the continuously compounded rate r f
0,t up

to $1 at time t. Equivalently, the rate is defined by

r f
0,t = −

log(PV0,t(1))
t

.

Just as a coupon-bearing bond can be thought of as a portfolio of stripped payments
valued as described immediately above, finance economists have become interested in
“dividend strips”, where the dividend asset that pays the owner the infinite stream {CFs}∞

s=1
is viewed as a portfolio of stripped payments. The value of each stripped payment is given
by the pricing operation worked out above as PV0,t(CF). Only if agents are neutral to risk
would it be the case that PV0,t(•) = e−r f ,0,ttEV0,t(•).

By analogy with the pure discount bond, we can define the geometric rate r0,t at
which the amount PV0,t(CF) invested at time 0 grows continuously compounded to its
statistically expected value at time t by way of

et r0,t × PV0,t(CF) = EV0,t(CF)⇒

r0,t =
1
t

log
(

EV0,t(CF)
PV0,t(CF)

) (19)

Note that r0,t is a number known at time 0 that pertains to a cash flow received at time
t. The quantity

risk premium: r0,t − r f
0,t (20)

is the excess (geometric) return over cash of the investment (stripped cash flow) that
pays CFt. The amount (20) represents the required rate of return above cash necessary to
compensate for the economic risk embedded in the investment. To aid interpretation below,
we recall from elementary asset pricing that in the iid log-Gaussian case, the one-period
relationship is

EV0,1(r0,1) = r f
0,1 −Cov(∆c f0,1, sd f0,1), (21)

using notation defined in (9). The risk premium in (21) is −Cov(∆c f0,1, sd f0,1), the funda-
mental notion in the finance of reward for bearing covariance risk. Expression (21) extends
to cover (20) in the obvious way for the t horizon case.
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4.2. Cash Flow Data

We now apply the preceding to the valuation of eight cash flows. There are seven
industrial profit series for real per capita income and real per capita consumption of non-
durables and services, annually, for 1959–2015. (For the cash flow sources and construction,
see Appendix A.2 of the data appendix, Appendix A.) The eighth cash flow is obtained
by treating measured consumption as a cash flow; i.e., we compute the risk premium on
the (endowment) asset that pays out annual consumption. The basic statistics for the cash
flows, labeled 1–8 are shown in Table 2.

Table 2. Summary statistics.

Industry
gdpt − c ft ∆c ft−1,t

Mean Std. Dev. Mean Std. Dev.

1 Total Corporate 2.572 0.227 0.019 0.131
2 Federal Reserve Banks 5.834 0.343 0.045 0.131
3 Other Financial 4.366 0.468 0.028 0.360
4 Total Nonfinancial 2.828 0.272 0.016 0.146
5 Manufacturing 3.626 0.473 0.004 0.239
6 Wholesale Trade 5.194 0.260 0.027 0.137
7 Retail Trade 5.141 0.332 0.028 0.252
8 Consumption (NDS) 0.597 0.063 0.022 0.013

sd ft−1,t gdpt − gdpt−1

log-MRS and GDP growth −1.2231 1.8595 0.0196 0.0202
Displayed are sample means and standard deviations. See display (9) of the text for notation and the Appendix A
sources. Note that Fed Reserve Banks means commercial banks in the Federal Reserve System.

Some of the industrial cash flows are aggregates. but none is a complete aggregate of
any of the others. For example, cash flow 1, Total Corporate profits, includes items such as
transportation and utilities, which are not among the other categories because of a lack of
consistent data over the entire sample period. The bottom section of Table 2 also shows the
basic statistics for the extracted log-SDF and GDP growth processes.

These cash flows do not correspond to the payoffs of traded securities, but using the
above methods, we can compute the risk premiums on the stripped cash flows using (19)
and (20). Among other things, we can then examine issues such as the reasonableness of
the risk premiums relative to the characteristics of the industries and their term structure
at short- and long-term horizons.

The specification of (9) as a VAR presumes that log-cash flow and log-GDP processes
are co-integrated with gdpt − c ft as the stationary error correction process. As a check, the
first seven panels (excluding cash flow 8) of Figure 2 show time-series plots of the gdpt− c ft
process for the seven industrial profit series, each of which appears to be reasonably treated
as realizations of a stationary process.

We estimated autoregressions of the form

gdpt − c ft = a + ρ(gdpt−1 − c ft−1) + et, (22)

and for the seven industrial profit series, the estimates of ρ ranged between 0.71 and
0.93, with a median of 0.86, and generally, we rejected, quite strongly, H0 : ρ = 1 in
favor of H1 : ρ < 1. For the consumption cash flow series, the results are different, as
the consumption of nondurables and services grew steadily relative to GDP during the
transition from a production to a service economy over our particular sample period.
Thus, for the consumption cash flow, we cannot invoke co-integration, and we simply use
gdpt − gdpt−1 in place of gdpt − c ft as the predictor variable in the vector autoregression
(11). The log consumption growth series is displayed in the lower-right corner of Figure 2.
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(the eighth cash flow), we performed the regression as
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To verify the predictability, we estimated forecasting regressions of the form

∆c ft,t+1 = a + b1∆c ft−1,t + b2(gdpt − c ft) + ut, (23)

for each of the seven industrial cash flows, and we found very strong evidence for addi-
tional predictability coming from the error correction variable gdpt − c ft. For consumption
(the eighth cash flow), we performed the regression as

∆c ft,t+1 = a + b1∆c ft−1,t + b2(gdpt − gdpt−1) + ut, (24)

and found only mild evidence for additional predictability coming from the second right-
hand variable.

4.3. Risk Premiums

Using the methods described in Sections 3 and 4.1 above, we computed for each of
the eight cash flows the implied risk premiums (20) at horizons t = 1, 2, . . . , 50 for each
available year (1960–2015) after lags. Since the risk premiums show negligible temporal
variation, we onlyt report and discuss the full sample averages. Table 3 shows the one-
period computations, where the average Cov(∆c ft−1,t, sd ft−1,t) is the logarithmic SDF
exposure of the cash flow. To ease interpretation, the table shows the average correlations
as well. The negative of the covariance is the one-period risk premium calculated by way
of (21) in this log-Gaussian framework. As seen from the table, all the cash flows carry
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positive risk premiums except for Retail Trade, which is plausibly seen to be a hedging
cash flow. For easier interpretation, we convert the covariance exposure to beta exposure,

β = −Cov(∆c ft−1,t, sd ft−1,t)/Var(sd ft−1,t) (25)

and plot the relationship between the risk premiums and the (negative) log-SDF beta
exposure in Figure 3. The essentially exact linear relationship seen in the figure is a
mechanical consequence of the computations, but nonetheless, it is interesting to note that
the price of risk is very close to 0.05, meaning an increase in the average return of 5 percent
per year per unit exposure of the cash flow to moves in −sd ft−1,t.

Table 3. Cash flow exposures.

Industry Exposure

Cov. Corr.

1 Total Corporate −0.083 −0.37
2 Fed Reserve Banks −0.042 −0.21
3 Other Financial −0.138 −0.23
4 Total Nonfinancial −0.087 −0.36
5 Manufacturing −0.161 −0.41
6 Wholesale Trade −0.082 −0.34
7 Retail Trade 0.044 0.11
8 Consumption −0.010 −0.35

Displayed are the implied average Cov(∆c ft−1,t, sd ft−1,t) and, similarly, the correlation.

Far more interesting are the paths of the risk premiums in (20) for t forward into the
future, which are shown in Figure 4 for t = 1, 2, . . . , 50. For the industrial cash flows 1–6,
i.e., those other than the hedging cash flow, the risk premiums show some increase at short
horizons but then decrease with horizons, and they decrease by a factor of one half from
1 to 50 years out; by contrast, for the consumption cash flow, the risk premium increases
from about 1 percent per year to 4 percent per year when moving from 1 to 50 years out.

These results are exactly in line with what one would expect from Croce et al. (2015, p. 723).
In their limited information (bounded rationality) model, there is long-run risk embedded
in consumption, which under usual parameterizations thereby carry an increasing risk
premium at longer horizons, just as seen in Table 2. There is also long-run risk embedded
in individual cash flows, but it is obscured by a high level of cash flow noise that can
be correlated with short-term consumption risk. Agents following optimal filtering rules
thereby view the assets as much more covariance-risky in the short run than in the long
run, and so we expect to observe higher risk premiums for the short run than the long
run. It bears noting these findings are model free in that no a priori economic theory of the
discount factor was imposed in the estimation.

A final matter is the summability of the stripped cash flows, which relates to the issue
of whether the asset that pays the entire stream {CFs}∞

s=1 is even sensible. Using basic
computations such as those of Burnside (1998) for log-Gaussian models, in the iid case, the
convergence of ∑∞

t=1 PV0,t(CF) is assured if

E(∆c ft−1,t)− r f + Cov(∆c ft−1,t, sd ft−1,t) < 0. (26)

In a general case, such as that considered by De Groot (2015), the summability con-
ditions are more involved, as they involve interactions between conditional means and
variances, but the basic intuition of (26) remains: the covariance between the cash flow
growth has to be sufficiently negative to overcome any excess of the expected cash flows
over the risk-free rate. In our case, the cash flows grow at implied rates around 2 percent
per year, while the long-term interest rate prior centers on 2 percent, but the covariances in
Table 3 are negative, so the sums converge numerically, albeit very slowly. An exception is
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Retail Trade, the hedging cash flow where the average covariance is positive. Some numer-
ical instability of the partial sums for this cash flow was seen if the range was extended to
100+ years, which is not surprising for an extrapolation so far beyond the range of the data.
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5. Robustness

The objective of the paper was to adapt a Bayesian methodology (Gallant and Hong
2007) to a completely model-free data-only setting and then value important nontraded
cash flows for the economic analysis of risk premiums. It only considers this specific
objective and reaches interesting economic conclusions, but it is not exhaustive.

There are two issues regarding robustness that should be remarked upon: Is the
methodology sensitive to the choice of assets? Is the methodology sensitive to the choice of
prior?

As regards the assets, the methodology extracts the ex post SDF from the asset-pricing
errors on 754 dynamic portfolio returns induced by instrumenting a smaller core set of
asset returns. The core set, described in the Appendix A, is representative of those used for
evaluating asset-pricing models; see, for example, the review by Bryzgalova et al. (2020,
p. 3). The methods for the extraction of an SDF can be dependent on the assets used for the
extraction, e.g., Nieto and Rubio (2014). However, our surmise is confidence that the large
set of portfolio returns spans the factors on which all assets load, especially upon taking
into account that the portfolios are dynamic and include instrumental variables such as
consumption and labor income growth. Rather than the assets, it is the prior to which
the Gallant and Hong (2007) methodology is sensitive. This issue we have examined, as
reported above.

A referee suggests other references that a reader might consider. Lewellen et al.
(2010) and Ghosh et al. (2017) discuss other methods for the extraction of the SDF, rather
than the valuation of nontraded cash flows, though it would be interesting to extend these
studies to our application. That step is beyond the scope of this paper. Additionally,
Gormsen (2020); Bansal et al. (2019); and Giglio et al. (2020) further examine evidence
on the slope of the term structure of equity returns without consensus. Our main finding
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5. Robustness

The objective of the paper was to adapt a Bayesian methodology (Gallant and Hong
2007) to a completely model-free data-only setting and then value important nontraded
cash flows for the economic analysis of risk premiums. It only considers this specific
objective and reaches interesting economic conclusions, but it is not exhaustive.

There are two issues regarding robustness that should be remarked upon: Is the
methodology sensitive to the choice of assets? Is the methodology sensitive to the choice
of prior?

As regards the assets, the methodology extracts the ex post SDF from the asset-pricing
errors on 754 dynamic portfolio returns induced by instrumenting a smaller core set of
asset returns. The core set, described in the Appendix A, is representative of those used for
evaluating asset-pricing models; see, for example, the review by Bryzgalova et al. (2020,
p. 3). The methods for the extraction of an SDF can be dependent on the assets used for the
extraction, e.g., Nieto and Rubio (2014). However, our surmise is confidence that the large
set of portfolio returns spans the factors on which all assets load, especially upon taking
into account that the portfolios are dynamic and include instrumental variables such as
consumption and labor income growth. Rather than the assets, it is the prior to which
the Gallant and Hong (2007) methodology is sensitive. This issue we have examined, as
reported above.

A referee suggests other references that a reader might consider. Lewellen et al.
(2010) and Ghosh et al. (2017) discuss other methods for the extraction of the SDF, rather
than the valuation of nontraded cash flows, though it would be interesting to extend these
studies to our application. That step is beyond the scope of this paper. Additionally,
Gormsen (2020); Bansal et al. (2019); and Giglio et al. (2020) further examine evidence
on the slope of the term structure of equity returns without consensus. Our main finding
regards the contrast between the term structure of the risk premiums on consumption
versus that of those on the industrial cash flows we considered.

6. Conclusions

We developed a model-free Bayesian procedure to extract the SDF process using a
yield curve prior that enforces the historically-very-low U.S. short- and long-term interest
rates. The prior thereby enforces known information, but no particular theory on the SDF
process itself. Using annual data for 1959–2015, we used the extracted SDF to compute
the implied stripped cash flow risk premiums on panel corporate profits for eight major
industrial sectors and consumption. The magnitudes of the risk premiums on the stripped
cash flows are plausible, and, with one exception, the risk premiums show a decreasing
term structure for 1–50-year horizons. The exception is Retail Trade, which is found to be a
hedging asset in the short run but not the long run. By contrast, the risk premiums on the
stripped consumption cash flow are found to be positive and rather low in the short term
but increase with the horizon to about 4 percent per year 50 years out. The observed term
structures of the equity risk premiums generally confirm the limited information (bounded
rationality) model of Croce et al. (2015).
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Appendix A. Data

Appendix A.1. SDF Extraction

In the extraction step, all the data were annual for the years 1930 through 2015. The
raw data were converted from nominal to real using the annual consumer price index
obtained from Table 2.3.4 on the Bureau of Economic Analysis web site. Conversions to per
capita were performed by means of the mid-year population data from Table 7.1 on the
Bureau of Economic Analysis web site.

The raw data for stock returns were value-weighted returns including dividends for
the NYSE, AMEX, and NASDAQ from the Center for Research in Security Prices data on
the Wharton Research Data Services web site (http://wrds.wharton.upenn.edu) (accessed
on 23 February 2021). Likewise, the raw data for returns on U.S. Treasury 30-day debt were
obtained from the Center for Research in Security Prices data on the Wharton Research
Data Services web site.

Raw annual returns including dividends on the twenty-five Fama and French (1993)
portfolios were obtained from Kenneth French’s web site, http://mba.tuck.dartmouth.
edu/pages{\protect\penalty\z@}/faculty/ken.french (accessed on 23 February 2021).
The portfolios were the intersections of five portfolios formed on market equity and five
portfolios formed on the ratio of book equity to market equity. The portfolios were for
all NYSE, AMEX, and NASDAQ stocks for which equity data were not missing and book
equity data were positive. The portfolios were constructed at the end of each June with
breakpoints determined by the NYSE quintiles at the end of June. The complete details are
on Kenneth French’s web site. The advantage of the Fama–French portfolios here is that
they appeared to isolate and exhaust the risk factors for holding equities (Fama and French
1992, 1993).

The raw labor income data were the “compensation of employees received” from
Table 2.2 on the Bureau of Economic Analysis web site.

The Real Treasury Inflation Protected Securities (TIPS yields displayed in Table 1
are annual averages of daily values from https://www.treasury.gov/resource-center/
data-chart-center/interest-rates/Pages/TextView.aspx?data=realyieldAll (accessed on 23
February 2021). According to the Treasury, “These rates are commonly referred to as
“Real Constant Maturity Treasury” rates, or R-CMTs. Real yields on Treasury Inflation
Protected Securities (TIPS) at “constant maturity” are interpolated by the U.S. Treasury from
Treasury’s daily real yield curve. These real market yields are calculated from composites
of secondary market quotations obtained by the Federal Reserve Bank of New York. This
method provides a real yield for a 10 year maturity, for example, even if no outstanding
security has exactly 10 years remaining to maturity”.

Appendix A.2. Valuation

The raw data for the cash flow valuation step were annual data for 1959–2015, for 56
observations, net, after a provision for the initial lag.

The industrial cash flow data were annual corporate profits with inventory valuation
adjustments and without capital consumption allowances for major sectors. The data
were spliced together for consistency from Table B-6 of the 2017 Economic Report of the
President and Table B-91 of the 2004 Economic Report of the President. The GDP data were
from NIPA Table 1.1.5; the consumption of nondurable goods and services data were from
NIPA Table 2.3.5; nominal data were converted to real using the implicit GDP deflator
(Price Index for Gross Domestic Product) from NIPA Table 1.1.4. All the data series were
converted to per capita using the total U.S. resident population plus armed forces overseas
(annual averages of monthly estimates) obtained from FRED, https://fred.stlouisfed.org/
series/B230RC0A052NBEA (accessed on 23 February 2021).

http://wrds.wharton.upenn.edu
http://mba.tuck.dartmouth.edu/pages{\protect \penalty \z@ }/faculty/ken.french
http://mba.tuck.dartmouth.edu/pages{\protect \penalty \z@ }/faculty/ken.french
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=realyieldAll
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=realyieldAll
https://fred.stlouisfed.org/series/B230RC0A052NBEA
https://fred.stlouisfed.org/series/B230RC0A052NBEA
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