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Abstract: Recycling of products has a great impact on contemporary sustainable business strategies.
In this study, a sustainable recycling process in a production-inventory model for an imperfect produc-
tion system with a fixed ratio of recyclable defective products is introduced. The piecewise constant
demand rates of the non-defective items are considered under production run-time, production
off-time with positive stock, and production off-time with shortages under varying conditions. Based
on the production process, two cases are studied using this model. The first case does not consider
recycling processes, while the second case picks up all defective items before sending these items to
recycling during the production off-time; the recycled items are added to the main inventory. The aim
of this study is to minimize the total cost and identify the optimal order quantity. The manufacturing
process with the recycling process provides a better result compared to without recycling in the
first case. Some theoretical derivations are developed to enunciate the objective function using the
classical optimization technique. To validate the proposed study, sensitivity analysis is performed,
and numerical examples are given. Finally, some managerial insights and the scope of future research
are provided.

Keywords: economic recycle quantity (ERQ); imperfect production; inventory; sustainable recycling;
shortages

1. Introduction and Literature Review

Inventory management control monitors and determines the optimal inventory order
to minimize the total inventory cost. In every business, retailers often implement numerous
strategies to intensify the profitability and sustainability of the system (Mashud et al. 2021c;
Popescu and Popescu 2019). The familiar economic order quantity (EOQ) model was first
initiated by Harris (1915). Later, Alharkan et al. (2020) worked on a two-echelon supply
chain model with lot-size-dependent lead-time, and Taft (1918) extended the EOQ model to
consider incremental orders during the production process. Inventory of goods is essential
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to the production processes to meet customer demand. The standard economic production
quantity (EPQ) models typically assume perfect product quality and perfect production
processes. In reality, however, ideal production processes are rare, and defective items will
occur. Many industries recycle these faulty items. Some examples of recyclable materials
are jute, paper, glass, and cotton and other fabrics.

During the last two decades, many researchers have studied inventory models with
imperfect production systems. Defective items are mainly generated due to faulty pro-
duction process (Rosenblatt and Lee 1986; Hsu and Hsu 2014). Salameh and Jaber (2000)
attempted to modify the traditional EPQ model to consider poor-quality items, while Chiu
et al. (2014) investigated lot-sizing problems with arbitrary defective rates in finite manu-
facture systems under rework processes and shortages. Defective items also deteriorate in
some cases and emit carbon into the environment (Daryanto and Wee 2019; Mashud et al.
2020a). Despite deterioration, some products are wasted during the production process in
the whole supply chain. Oh and Hwang (2006) anticipated an inventory model considering
recycled raw materials without shortage. They assumed unequal holding costs for the
raw materials and serviceable objects. Benkherouf and Omar (2017) investigated optimal
production batch sizing with rework procedures, while Mokhtari (2018) outlined an order
lot size combination between producers’ and suppliers’ defective manufacturing systems
considering production rework processes. Al-Salamah (2019) designed an EPQ model for
defective manufacturing procedures using synchronous and asynchronous elastic rework
rates. A model for a long-run single-stage manufacturing system with imperfect items
was developed by Kang et al. (2018) who incorporated rework operation, the inspection
process, and planned backordering. In that model, the unfulfilled customer demands
during the production phase due to process imperfections were satisfied either at the end
of the inspection process or after reworking the imperfect products. Hasan et al. (2020)
provided a model for agricultural products where to prevent product deterioration, they
used product separation and offered different discount policies, while Nobil et al. (2020)
presented a model for imperfect production process with reorder point in an EOQ model.
An imperfect multi-stage production system considering defective proportions in the pro-
duction process and uncertain product demand, and incorporating lean philosophy, was
introduced by Tayyab et al. (2019b) who tried to reduce system costs. Onwude et al. (2020)
analyzed a food wastage supply chain for fresh agricultural products. However, none
of these models reworked defective items at each production stage. This model assumes
the reworking of defective items at each production stage to bridge the aforementioned
gap, and consequently the defective items (scraped) are perfect after reworking. Very few
studies have been carried out with consideration of the recycling process with shortages,
so the mentioned model also tries to incorporate shortages in the proposed ERQ model.

Demand is a fundamental key factor in inventory models because it determines the
perplexity of optimal results. Sometimes demand becomes uncertain (Mashud et al.
2020b) and sometimes it depends on the price of the products (Mashud et al. 2021a,
2021c). Fuzzy demand is also very popular among the practitioners of inventory research
(Tayyab et al. 2019a). Bai and Varanasi (1996) formulated an optimal control problem
with indefinite piecewise constant demand and developed an algorithm to determine
the optimal production strategy using Pontryagin’s minimum principle. Hsu and Hsu
(2016) considered a model for defective items with stock-reliant demand with inflation for
a Weibull distribution deterioration. Palanivel and Uthayakumar (2016) modified their
model by adding payment delays. Viji and Karthikeyan (2016) developed a model for a
three-level production process for Weibull distribution deterioration. Recently, Manna et al.
(2017) offered an EPQ model for a production rate-reliant defective rate of items under
advertisement with demand dependent on a defective production system.
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In the collected works of imperfect production systems, most models were developed
considering reworks, repair, remanufacture, and different production and supply policies.
Some researchers considered two-level and three-level production rates, but production
inventory models of three-level constant demand patterns are not available in the literature
survey. The main contributions of the proposed model are:

(i) The proposed model is developed focusing on the recycling of defective items col-
lected from regular production after the proper screening with 100% recovery of raw
materials used for production in the corresponding item category.

(ii) An inventory model is developed for three-level piecewise constant demand, which
varies under three different production time parts, from production run-time to
production off-time with positive stock and production off-time with shortages.

The remainder of the paper is organized as follows: Notation and assumptions of
the model are described in Section 2. Section 3 presents the mathematical formulation
of the models. Theoretical results along with optimal solution uniqueness are shown in
Section 4. Section 5 comprises numerical examples and convexity graphs. Sensitivity
with cost–benefit is analyzed in Section 6. Managerial implementations are delivered in
Section 7. Lastly, the conclusion and future research are discussed in Section 8.

2. Assumptions and Notation

In this section, some assumptions and notation necessary to the development of the
paper are presented.

2.1. Assumptions

The following assumptions are worthy of mention in formulating the models dis-
cussed.

(i) The production rate is finite and fixed.
(ii) The defective rate is known, and constant and defective items are produced randomly

alongside the perfect product.
(iii) The demand rate of the perfect product is a piecewise constant function (motivated

from Bai and Varanasi (1996)): The demand during production-run and production
off-times and stock-out period is as follows:

D; during production− run time
xD; during production− off time with positive stock

yD; during production− off time with shortages

(iv) The sum of the demand rate and defective rate is less than the rate of production.
(v) Lead-time is negligible, and the number of shortages is acceptable while the model is

considered for a single items production system.
(vi) Defective items are recyclable with 100% recovery of raw material usable for the

production of same product in the next cycle time, and the value of the recycled
materials is higher than that of purchased materials.

(vii) The holding cost per defective item is same as that of fresh items, while the recycle
cost per defective item is equal irrespective of its number.

2.2. Notation

The following notations (Table 1) are used in the development of the model:



J. Risk Financial Manag. 2021, 14, 173 4 of 21

Table 1. Notation used in the model.

Notation Unit Description

P Constant Production rate
D Constant Rate of demand of non-defective items during production run-time
d Constant Production rate defective items
Co $/Cycle Setup cost
Ch $/Units Inventory holding cost
Cp $/Units Per unit production cost
Cs $/Units Shortage cost
CR $/Units Raw material cost per unit item
Cr $/Units Recycle cost per unit item of defective items
TCD $/Unit time Total cost of inventory (for case 1)
TCR $/Unit time Total cost of inventory (for case 2)
t1 Time units Production run-time with positive stock
t2 Time units Production off-time with positive stock
t3 Time units Production off-time with negative stock
t4 Time units Production run-time with negative stock
x Constant Ratio of demand rates of production off-time with positive stock and production run-time
y Constant Ratio of demand rates of production off-time with negative stock and production run-time
m Constant Shape parameter of the accurate average demand

Decision variables
W Units Quantity of defective items produced per cycle time
Q Units Volume of lot
Qs Units Maximum shortage level
Qd Units Maximum on-hand stock of non-defective items
T Time units Production cycle time. Therefore, T = t1 + t2 + t3 + t4

3. Model Formulation

During the production run-time of cycle time T, a lot size of Q units is produced at
a production rate P, and with it, W units of defective items are produced at a defective
rate d. The production process runs during [0, K], and during the production-off time, the
stock depletes due to customer demand. At time C, the stock becomes zero, and shortages
start until G. Current demand is expressed at the demand rate “D” during production
run-time, which is calculated again using a ratio coefficient to obtain a rate “xD” during
production off-time while the stock is positive. Shortages also occur at the demand rate
“yD” during the time t3 while the stock is negative. Thus, several inventory flow situations
exist for different values of the ratios “x” and “y”, for which two examples are depicted in
the following Figures 1 and 2.
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The stock is positive during the replenishment period, which increases by “(P − D −
d)” units of non-defective items over time through the line OA of Figure 2 during the time
period t1. Replenishment ends at point A with a maximum number of Qd (non-defective)
units. Therefore,

t1 =
Qd

P− D− d
(1)

Production stops at the end of the time period t1 at point K, and the inventory decreases
at another demand rate of xD units per unit time, expressed in Figure 2 as line AC during
t2. At the end of time period t2, the inventory reaches point C with zero on-hand stock.
In this case, if the demand rate remains the same as “D”, then the inventory decreases as
indicated by the dashed line AB. Therefore,

t2 =
Qd
xD

(2)

Therefore,

t1 + t2 =
{P− (1− x)D− d}Qd

xD(P− D− d)
(3)

At the end of time t2, thestock is 0 and then decreases at the demand rate yD units per
unit time. During time t3, shortages reach a total of Qs units.

t3 =
Qs

yD
(4)

As soon as the shortage level reaches Qs at point E, production starts. The shortage
amount Qs is served at the rate of (P − D − d) units with the current demand, which is
fulfilled at the rate of D during timet4. After this period, the stock becomes zero again at
the point F. Therefore,

t4 =
Qs

P− D− d
(5)

Hence,

t3 + t4 =
{P− (1− y)D− d}Qs

yD(P− D− d)
(6)

A total of Q units is produced in t1 + t4 time where W units are defective. Therefore,

t1 + t4 =
W
d

=
Q
P

(7)

The following relation is obtained using Equation (7) in addition to Equations (1) and (5).

Qd + Qs = (P− D− d)
W
d

(8)
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If there are no defective items (i.e., d = 0) and no demand (i.e., D = 0), then the inventory
is replenished through the line OH.

Given that the ratios of demand rates x and y modify the total demand D during
production off-time with positive and negative stock respectively. The average demand
rate in a cycle becomes

(
2+x+y

4m D
)

and requires a total of (Q −W) units of fresh items for
the cycle time T. Therefore,

T =
4m(Q−W)

(2 + x + y)D
=

4m(P− d)W
(2 + x + y)dD

(9)

Thus
t1 + t2

T
=

(2 + x + y)d{P− (1− x)D− d}Qd
4mx(P− D− d)(P− d)W

(10)

and
t3 + t4

T
=

(2 + x + y)d{P− (1− y)D− d}Qs

4my(P− D− d)(P− d)W
(11)

“m” is an arbitrary constant that has a single value for every set of system parameter values.
The theoretical value “m” is explained in Section 4.3.

The foremost target of this work is to minimize the probable total cost of inventory
where defective items are formed with perfect goods, but defective items are recyclable,
and recycled raw materials are reusable for the production of the same category of new
product. Firstly, the manufacturer must define all costs, production features, all abilities of
the production procedure, and their position on recycling. The inventory holding cost of
the inventory depends on average inventory. Average inventory also increases if defective
items are stored properly during production run-time before they are sent to recycling.
Recycling processes also incur a cost per defective item.

The following two cases are discussed regarding recycling of defective items.

Case 1: EPQ model for defective items with three levels of piecewise constant demand
under shortages

Case 2: ERQ model for defective items with three levels of piecewise constant demand
under shortages

3.1. Case 1 (EPQ Model for Defective Items with Three Levels of Piecewise Constant Demand
under Shortages)

The total cost function of the inventory has the following components.

(1) Average setup cost or fixed cost (FC):

FC =
1
T

Co =
(2 + x + y)dD
4m(P− d)W

× Co

(2) Average production cost (PC):

PC =
1
T

QCp =
(2 + x + y)PD

4m(P− d)
CP

(3) Average raw material cost (RMC): Each production lot size is a quantity for which
raw materials are purchased for exact production in each time cycle. Therefore,

RMC =
1
T

QCR =
(2 + x + y)PD

4m(P− d)
CR

(4) Average holding cost (HC):
Defective items have no holding cost in this case. Therefore,
Total inventory = 1

2 Qd(t1 + t2)
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And average inventory = 1
2 Qd

(
t1+t2

T

)
= d(2+x+y){P−(1−x)D−d}

4mx(P−D−d)(P−d) ·Qd
2

2W
Therefore,

HC =
d(2 + x + y){P− (1− x)D− d}

8xm(P− d)(P− D− d)W

{
(P− D− d)

W
d
− Qs

}2
Ch

(5) Average shortage cost (SC):

SC =
Qs

2
× Cs ×

t3 + t4

T
=

(2 + x + y)d{P− (1− y)D− d}
4my(P− D− d)(P− d)

(
Qs

2

2W

)
× Cs

Hereafter, the total cost function is TCD = FC + PC + RMC + HC + SC

TCD =
(2 + x + y)
4m(P− d)

 dD
W Co + PDCP + PDCR + d{P−(1−y)D−d}

2y(P−D−d)W Qs
2Cs

+ d{P−(1−x)D−d}
2x(P−D−d)W

{
(P− D− d)W

d − Qs

}2
Ch

 (12)

The objective is to discover the optimal number of defective items and the shortage
level in order to minimize total cost of the inventory per unit time. The corresponding
optimal production lot size (EPQ) is also consequently determined.

3.2. Case 2 (ERQ Model for Defective Items with Three Levels of Piecewise Constant Demand
under Shortages)

The producer receives a fixed portion of recyclable defective items during regular
production, and defective items are sent to be recycled during production off-time. Recy-
clable materials become raw materials again for the new production cycle, yet to meet the
demand, supplementary raw materials must be purchased from the suppliers. The target
of the study is to control raw material procurement and the recycle size and production
procedure to fulfill demand while minimizing the total inventory cost. The recycling
system is shown in Figure 3.
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Figure 3. Framework of recycling.

In this case, the production cycle starts with a shortage of amount Qs in the inventory,
which accumulates at the rate (P− D− d) over the time t4. During this time, the current
demand is also fulfilled at the demand rate D. The inventory accumulates at the rate
(P− D− d) over time t1, and production stops at the end of t1. After that, the inventory
level starts to decrease due to the demand rate xD over the time t2 and due to the third
level of demand rate yD, while shortages reach Qs overtime t3. In the production-runtime
(t1 + t4), W units of defective items are produced and are recycled during production
off-time (t2 + t3) and added to the raw material of the next production cycle. Consequently,
the inventory of the ERQ model procures raw materials for (Q−W) units of items in each
cycle time, and the process repeats.

The total cost function of the inventory system comprises the following cost components:
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(1) Average production cost (PC) is:

PC =
1
T

QCp =
(2 + x + y)PD

4m(P− d)
CP

(2) Average raw material cost (RMC): Each production lot size is Q, but raw materials for
(Q−W) units of items in each time cycle are purchased. Therefore,

RMC =
1
T
(Q−W)CR =

(2 + x + y)D
4m

CR

(3) Average holding cost (HC): Holding cost of defective items is included during time
(t1 + t4) before the items are sent for recycling. Therefore, Total inventory

=
1
2

Qd × t1 +
1
2

Qd × t2 +
1
2

d(t1 + t4)× (t1 + t4)

=
1
2

Qd(t1 + t2) +
1
2

d(t1 + t4)
2

Average inventory

=
1
2

Qd

(
t1 + t2

T

)
+

1
2

d
(t1 + t4)

2

T

=
(2 + x + y)
4m(P− d)

·
[

d{P− (1− x)D− d}
2x(P− D− d)W

{
(P− D− d)

W
d
−Qs

}2
+

DW
2

]
Hence,

HC =
(2 + x + y)
4m(P− d)

[
d{P− (1− x)D− d}

2x(P− D− d)W

{
(P− D− d)

W
d
−Qs

}2
+

DW
2

]
Ch

(4) Average shortage cost (SC):

SC =
Qs

2
× Cs ×

t3 + t4

T
=

(2 + x + y)d{P− (1− y)D− d}
4my(P− D− d)(P− d)

Qs
2

2W
× Cs

(5) Average recycle cost (RC):

RC =
1
T

WCr =
(2 + x + y)dD

4m(P− d)
Cr

Hence, the total cost function is
TCR = FC + PC + RMC + HC + SC + RC

TCR =
(2 + x + y)
4m(P− d)

[
dD
W

Co + PDCP + (P− d)DCR +
d{P− (1− x)D− d}

2x(P− D− d)W

{
(P− D− d)

W
d
−Qs

}2
Ch+

DW
2

Ch +
d{P− (1− y)D− d}

y(P− D− d)
Qs

2

2W
× Cs + dDCr

] (13)

The objective is to find out the optimal number of defective items (ERQ) to be recycled
and the optimal shortage level so as to minimize the total cost of the inventory per unit time.
The corresponding optimal production lot size (EPQ) is also consequently determined.

In the next section, the uniqueness of optimal solution of the total cost functions TCD
and TCR are explained and justified.
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4. Theoretical Derivations

Convexity of total cost functions TCD and TCR relating to the decision variables
was established using the Hessian matrix, allowing for the unique optimal solution to be
derived. Special cases of the optimal values are also deliberated.

4.1. Case 1 (EPQ Model for Defective Items with Three Levels of Piecewise Constant Demand
under Shortages)

The convexity of TCD and uniqueness of optimal solution regarding the decision
variables are established to prove the following theorem.

Theorem 1. The total cost function TCD gives minimum value regarding W and Qs simultaneously
when (1− x)D + d > 0, P− (1− y)D− d > 0, and hence TCD emits a unique optimal solution
W* and Qs

∗.

Proof. TCD is a function of W and Qs, and therefore the first order partial derivatives of
TCD with regard to W and Qs are

∂(TCD)

∂W
=

(2 + x + y)
4m(P− d)

[
−dDCo

W2 −
(P− D− d){P− (1− x)D− d}Ch

2xd
+

d{P− (1− x)D− d}ChQs
2

2x(P− D− d)W2

−d{P− (1− y)D− d}CsQs
2

2y(P− D− d)W2

] (14)

And

∂(TCD)

∂Qs
=

(2 + x + y)
4m(P− d)

[
− d{P− (1− x)D− d}

x(P− D− d)W

{
(P− D− d)

W
d
− Qs

}
Ch +

d{P− (1− y)D− d}Cs

y(P− D− d)W
Qs

]
(15)

The second order partial derivatives of TCD are

∂2(TCD)

∂W2 =
dD(2 + x + y)
2m(P− d)W3 Co +

d(2 + x + y)[y{P− (1− x)D− d}Ch + x{P− (1− y)D− d}Cs]Qs
2

4mxy(P− d)(P− D− d)W3 (16)

∂2(TCD)

∂Qs2 =
d(2 + x + y)[y{P− (1− x)D− d}Ch + x{P− (1− y)D− d}Cs]

4mxy(P− d)(P− D− d)W
(17)

Also

∂2(TCD)

∂W∂Qs
= −d(2 + x + y)[y{P− (1− x)D− d}Ch + x{P− (1− y)D− d}Cs]Qs

4mxy(P− d)(P− D− d)W2 (18)

And

∂2(TCD)

∂Qs∂W
= −d(2 + x + y)[y{P− (1− x)D− d}Ch + x{P− (1− y)D− d}Cs]Qs

4mxy(P− d)(P− D− d)W2 (19)

The Hessian matrix of TCD is

Hij =

 ∂2(TCD)
∂W2

∂2(TCD)
∂W∂Qs

∂2(TCD)
∂Qs∂W

∂2(TCD)
∂Qs2


Hence, the first principal minor

|H11| =
∂2(TCD)

∂W2 =
(2 + x + y)
4m(P− d)

[
2dD
W3 × Co +

d{P− (1− x)D− d}Ch
x(P− D− d)W3 Qs

2 +
d{P− (1− y)D− d}Cs

y(P− D− d)W3 Qs
2
]
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It is assumed that,P− D− d > 0. Therefore,

P− (1− x)D− d > 0, P− (1− y)D− d > 0and P− d > 0. Consequently, |H11| > 0.

Once more the second principal minor

|H22| =
∂2(TCD)

∂W2 × ∂2(TCD)

∂Qs2 − ∂2(TCD)

∂Qs∂W
× ∂2(TCD)

∂W∂Qs

=
d2D(2 + x + y)2[y{P− (1− x)D− d}Ch + x{P− (1− y)D− d}Cs]Co

8m2xy(P− d)2(P− D− d)W4
> 0.

Since the first and second principal minors of the Hessian matrix for TCD are positive,
the Hessian matrix is positive definite. Hence TCD is a nonnegative, differentiable, and
strictly convex function regarding the decision variables W and Qs simultaneously, and TCD
is minimum at the unique optimal values W∗ and Qs

∗. Solving the necessary conditions
∂(TCD)

∂W = 0 and ∂(TCD)
∂Qs

= 0 from Equations (14) and (15) the following results are obtained.

Qs

W
=

y(P− D− d){P− (1− x)D− d}Ch
d[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]

(20)

And

W = d

√
2DCO

Ch

√
x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch

(P− D− d){P− (1− x)D− d}{P− (1− y)D− d}Cs
(21)

Therefore, the optimal solution is given by

W∗ = d

√
2DCO

Ch

√
x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch

(P− D− d){P− (1− x)D− d}{P− (1− y)D− d}Cs
(22)

And

Qs
∗ = y

√
2DCO

√
(P− D− d){P− (1− x)D− d}

{P− (1− y)D− d}

√
Ch

[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]Cs
(23)

Then the corresponding optimal production lot size is

Q∗ = P
√

2DCO

√
1

(P− D− d){P− (1− x)D− d}{P− (1− y)D− d}

√
x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch

ChCs
(24)

And the optimal cycle time is

T∗=

√
2CO

D
.

√
{P− (1− x)D− d}{P− (1− y)D− d}

(P− D− d)[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]
·Cs + Ch√

ChCs
(25)

Also the maximum on-hand stock is

Qd
∗ = x

√
2DCO

√
(P− D− d){P− (1− y)D− d}

{P− (1− x)D− d}

√
Cs

[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]Ch
(26)

�
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Special Cases

(i) If d = 0, then W*= 0.

Therefore, no defective items will be produced in the inventory if the defective rate
is zero.

(ii) If x = y = 1 and d = 0, then we get

Q∗ =

√
2DCO

Ch

√
P

(P− D)
·

√
Cs + Ch

Cs

This is the lot size in the standard EPQ model. Therefore, the optimal solution of the
total cost function of this model conforms to the standard EPQ model.

(iii) If x = y, then,

W∗ = d

√
2DCO

Ch

√
x(Cs + Ch)

(P− D− d){P− (1− x)D− d}Cs

and Q* = P
√

2DCO
Ch

√
x(Cs+Ch)

(P−D−d){P−(1−x)D−d}Cs

These are the results of the inventory model for two levels of piecewise constant
demand.

(iv) If x = y = 1, then,

W∗ = d

√
2DCO

Ch

√
(Cs + Ch)

(P− D− d)(P− d)Cs

And Q* = P
√

2DCO
Ch

√
(Cs+Ch)

(P−D−d)(P−d)Cs

These are the results of the inventory model of defective items for constant demand.

4.2. Case 2 (ERQ Model for Defective Items with Three Levels of Piecewise Constant Demand
under Shortages)

The convexity of TCR and hence the uniqueness of optimal values of the decision
variables are determined to prove the following theorem.

Theorem 2. The total cost function TCR gives a minimum value regarding the decision variables
W and Qs and hence a unique solution exists for W* and Qs

∗.

Proof. TCR is a function of W and Qs, and the relation between TCR and TCD is obtained
as

TCR = TCD− (2 + x + y)D
4m(P− d)

[
d(CR − Cr)−

W
2

Ch

]
(27)

From the first order and second order partial derivatives, the following results are
obtained from Equation (27).

∂2(TCR)
∂W2 =

∂2(TCD)

∂W2 ;
∂2(TCR)

∂Qs2 =
∂2(TCD)

∂Qs2 ;
∂2(TCR)
∂W∂Qs

=
∂2(TCD)

∂W∂Qs
and

∂2(TCR)
∂Qs∂W

=
∂2(TCD)

∂Qs∂W

The Hessian matrix of TCR is

Hij =

 ∂2(TCR)
∂W2

∂2(TCR)
∂W∂Qs

∂2(TCR)
∂Qs∂W

∂2(TCR)
∂Qs2

 =

 ∂2(TCD)
∂W2

∂2(TCD)
∂W∂Qs

∂2(TCD)
∂Qs∂W

∂2(TCD)
∂Qs2
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Therefore, from Theorem 1, it can be concluded that the first principal minor

|H11| =
∂2(TCR)

∂W2 =
∂2(TCD)

∂W2 > 0

And the second principal minor

|H22| =
∂2(TCR)

∂W2 × ∂2(TCR)
∂Qs2 − ∂2(TCR)

∂Qs∂W
× ∂2(TCR)

∂W∂Qs
=

∂2(TCD)

∂W2 × ∂2(TCD)

∂Qs2 − ∂2(TCD)

∂Qs∂W
× ∂2(TCD)

∂W∂Qs
> 0.

Since the first and second principal minor of Hessian matrix for TCR are positive, the
Hessian matrix is positive definite. Hence TCR is a nonnegative, differentiable, and strictly
convex function regarding W and Qs concurrently and then TCR is minimum at the unique
optimal solution W∗ and Qs

∗.
The necessary conditions of minimization of TCR are the first order partial derivatives

of TCR with respect to W and Qs are equivalent to zero, and hence the following results
are obtained.

Qs

W
=

y(P− D− d){P− (1− x)D− d}Ch
d[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]

(28)

And

W = d

√
2DCO

Ch

√√√√√ x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch

(P− D− d){P− (1− x)D− d}{P− (1− y)D− d}Cs
+dD[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]

(29)

Therefore, the required economic recycle quantity (ERQ) is

W∗ = d

√
2DCO

Ch

√√√√√ x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch

(P− D− d){P− (1− x)D− d}{P− (1− y)D− d}Cs
+dD[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]

(30)

And shortage level is

Qs
∗ =

y(P− D− d){P− (1− x)D− d}Ch√[
x{P− (1− y)D− d}Cs
+y{P− (1− x)D− d}Ch

]
Ch

√√√√√ 2DCO

(P− D− d){P− (1− x)D− d}{P− (1− y)D− d}Cs
+dD[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]

(31)

The corresponding production lot size of the inventory is

Q∗ = P

√
2DCO

Ch

√√√√√ x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch

(P− D− d){P− (1− x)D− d}{P− (1− y)D− d}Cs
+dD[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]

(32)

And the optimal cycle time is

T∗ =

√
2CO

D
.

{P− (1− x)D− d}{P− (1− y)D− d}√
(P− D− d){P− (1− x)D− d}{P− (1− y)D− d}Cs

+dD[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]

× Ch + Cs√√√√[ x{P− (1− y)D− d}Cs

+y{P− (1− x)D− d}Ch

]
Ch

(33)

Also, the maximum on-hand inventory is
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Qd
∗ =

x(P− D− d){P− (1− y)D− d}Cs√[
x{P− (1− y)D− d}Cs
+y{P− (1− x)D− d}Ch

]
Ch

√√√√√ 2DCO

(P− D− d){P− (1− x)D− d}{P− (1− y)D− d}Cs
+dD[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]

(34)

�

Special Cases

(i) If d = 0, then W* = 0.

Therefore, no defective items will be produced in the inventory if the defective rate is
zero.

(ii) If x = y = 1 and d = 0, then,

Q∗ =

√
2DCO

Ch

√
P

(P− D)
·

√
Cs + Ch

Cs

This is the lot size in the standard EPQ model.
Therefore, the optimal outcomes are conformable with the standard EPQ model.

(iii) If x = y then,

W∗ = d

√
2DCO

Ch

√
x(Cs + Ch)

(P− D− d){P− (1− x)D− d}Cs + xdD(Cs + Ch)

Q∗ = P

√
2DCO

Ch

√
x(Cs + Ch)

(P− D− d){P− (1− x)D− d}Cs + xdD(Cs + Ch)

These are the results of the ERQ model for two levels of piecewise constant demand.

(iv) If x = y = 1, then,

W∗ = d

√
2DCO

Ch

√
(Cs + Ch)

(P− D− d)(P− d)Cs + dD(Cs + Ch)

Q∗ = P

√
2DCO

Ch

√
(Cs + Ch)

(P− D− d)(P− d)Cs + dD(Cs + Ch)

These are the results of the ERQ model of defective items for constant demand.

4.3. Value of “m”

It is assumed that the arbitrary constant “m” determines the accurate average demand
as well as total inventory cost but has no significance on the optimal solution. It is intro-
duced to avoid the complexity of the theoretical results. The assumption is justified by the
obtained optimal solutions of TCD and TCR and their special cases. The value of “m” is
calculated in the following manner.

Addition of Equations (3) and (6) gives the cycle time

T =
x{P− (1− y)D− d}Qs + y{P− (1− x)D− d}Qd

xyD(P− D− d)
(35)

Then, Equation (9) implies

m =
d(2 + x + y)[x{P− (1− y)D− d}Qs + y{P− (1− x)D− d}Qd]

4xy(P− d)(P− D− d)W
(36)
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Putting the optimal values of Qs and Qd of both of the total cost function TCD and
TCR, the same value of “m” is obtained as follows:

m =
(2 + x + y){P− (1− x)D− d}{P− (1− y)D− d}(Cs + Ch)

4(P− d)[x{P− (1− y)D− d}Cs + y{P− (1− x)D− d}Ch]
(37)

5. Numerical Illustrations and Case Study

The inventory model is analyzed considering a piecewise constant demand rate that
may vary from one level to another. Certain products, for instance, such as bricks, mustard
oil, and shopping mall products, have different demands during their production-run
periods than during production-off shortage periods. The practical implications of the
proposed model can be observed in a brick production company. For the production time
of brick raw materials, some imperfect bricks are made before firing, for instance, during
the setting and drying periods. These defective bricks are collected and stored properly
in stock before they are sent for recycling during production off-time and added to the
inventory for the next production cycle. Furthermore, the demand for bricks during the
production off-time and shortage time may increase or decrease from the demand during
their production run-time.

In order to study the applicability of the model, numerical illustrations are provided
below considering the following static input values of parameters taken from MJB brick
production company in Bangladesh where: P = 5000, D = 4500, d = 100, Co = 1000, Cp = 50,
Ch= 10, CR = 50, Cr = 5, Cs = 3, x = 0.75, and y = 0.5.

5.1. For Case 1

Optimal decision variable values:
W* = 136, Q* = 6822, Qs

* = 414, Qd
* = 131, and T∗= 1.5877

Optimal cycle time level values:
t1
∗ = 0.3275, t2

∗ = 0.0388, t3
∗ = 0.1843, t4

∗ = 1.0370
Optimal costs and the total inventory cost:
FC = 630, PC = 214,859, SC = 478, RMC = 214,859, HC = 151, and TCD = 430,978
Cycle time verification for TCD:
t1
∗ + t2

∗ + t3
∗ + t4

∗ = 0.3275 + 0.0388+ 0.1843+ 1.0370 = 1.5876 = T∗

Hence, the model is consistent.
For the values of independent variables in the range 120 < W < 150 and 400 < Qs <

430, Figure 4 depicts the convexity of the total cost function TCD with respect to W and Qs.
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For Qs = 414 and 120 < W < 150, Figure 5 depicts the convexity of the total cost function
TCD vs. W.
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Fixing W = 136 and 250 < Qs < 350, the following Figure 6 shows that TCD is convex
with respect to Qs, and the total inventory cost reaches minimum at “Qs = 414”.
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5.2. For Case 2

Optimal decision variable values: W* = 98, Q* = 4910, Qs
* = 298, Qd

* = 94, T∗ = 1.1426
Optimal cycle time level values: t1

∗ = 0.2357, t2
∗ = 0.0279, t3

∗ = 0.1326, t4
∗ = 0.7462

Optimal costs and total inventory cost: FC = 875, PC = 214,859, SC = 344, RC = 430,
RMC = 210,562, HC = 530 and TCR = 427,602

Cycle time verification:t1
∗ + t2

∗ + t3
∗ + t4

∗ = 0.2357 + 0.0279 + 0.1326 + 0.7462 =
1.1425 = T∗. Hence, the model is consistent.

For the values of independent variables in the range 80 < W < 120 and 250 < Qs < 350,
the following Figure 7 depicts the convexity of the total cost function TCR for W and Qs.

For Qs = 300 and 80 < W < 120, the following figure (Figure 8) depicts the convexity of
the total cost function with respect to “W”.

For W = 98 and 250 < Qs < 350, Figure 9 shows that TCR is convex with respect to Qs
and the total cost of the inventory is minimum at “Qs = 300”.
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6. Sensitivity Analysis

In this section, a sensitivity analysis of the anticipated model of various system
parameters is examined. When the sensitivity of a parameter is analyzed, only changes to
a parameter are considered keeping other parameters as fixed. The sensitivity analyses of
the key parameters are given in Tables 2–9.

Table 2. Sensitivity of “x” to different decision variables and costs. The static input values of the
parameters are: P = 5000, D = 4500, d = 100, Co = 1000, Cp = 50, Ch = 10, CR = 50, Cr = 5, Cs = 3, y = 1.

x 0.5 0.75 1.75 5 Observations

W* 98 98 99 99 Increase
Q* 4894 4909 4929 4940 Increase
Qs

* 301 299 295 293 Decrease
Qd

* 90 94 99 102 Increase
t1
∗ 0.225 0.235 0.248 0.254 Increase

t2
∗ 0.0410 0.027 0.012 0.004 Decrease

t3
∗ 0.133 0.132 0.131 0.130 Decrease

t4
∗ 0.752 0.746 0.737 0.733 Decrease

T* 1.152 1.142 1.129 1.122 Decrease
FC 867 875 885 890 Increase

RMC 208,019 210,562 213,820 215,565 Increase
PC 212,264 214,859 218,184 219,965 Increase
HC 519 530 545 552 Increase
SC 347 344 340 338 Increase
RC 424 430 436 440 Increase

TCR 422,442 427,602 434,210 437,755 Increase

Table 3. Sensitivity of “y” to different decision variables and costs. The static input values of the
parameters are: P = 5000, D = 4500, d = 100, Co = 1000, Cp = 50, Ch = 10, CR = 50, Cr = 5, Cs = 3, x = 1.

y 0.5 0.8 1.50 2 5 Observations

W* 98.36 99.36 100.4 100.84 101.2 Increase
Q* 4918 4968 5020 5042 5058 Increase
Qs

* 297 305 309 313 316 Increase
Qd

* 96 91.72 90.72 89.5 88 Decrease
t1

* 0.24098 0.2293 0.22682 0.22383 0.22157 Decrease
t2

* 0.02142 0.02547 0.02016 0.01989 0.01969 Decrease
t3

* 0.13202 0.084992 0.04605 0.02789 0.01404 Decrease
t4

* 0.74265 0.7643 0.77721 0.78455 0.79016 Increase
T* 1.13709 1.10406 1.07025 1.05619 1.04548 Decrease
FC 879 905 934 947 956 Increase

RMC 211,938 220,500 229,841 233,914 237,093 Increase
PC 216,263 225,000 234,532 238,688 241,931 Increase
HC 536 552 575 584 591 Increase
SC 342 352 359 362 364 Increase
RC 432 450 469 477 483 Increase

TCR 430,392 447,762 466,711 474,972 481,421 Increase

Table 4. Sensitivity of defective rate to cost–benefit. The static input values of the parameters are:
P = 5000, D = 4500, Co = 1000, Cp = 50, Ch = 10, CR = 50, Cr = 5, Cs = 3, x = 1.5, y = 1.5.

d 100 110 120 130 140

PCB 0.797% 0.878% 0.96% 1.042% 1.125%
Remarks Cost–benefit increases with the increase in “d”.
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Table 5. Sensitivity of “recycle cost” to cost–benefit. The static input values of the parameters are:
P = 5000, D = 4500, d = 100, Co = 1000, Cp = 50, Ch = 10, CR = 50, Cs = 3, x = 1.5, y = 1.5.

Cr 5 10 15 20 25

PCB 0.797% 0.697% 0.59% 0.497% 0.398%
Remarks Cost–benefit decreases with increase in recycle cost.

Table 6. Sensitivity of “holding cost” to cost–benefit. The static input values of the parameters are:
P = 5000, D = 4500, d = 100, Co = 1000, Cp = 50, CR = 50, Cr = 5, Cs = 3, x = 1.5, y = 1.5.

Ch 10 20 30 40 50

PCB 0.797% 0.737% 0.689% 0.648% 0.613%
Remarks Cost–benefit decreases with increase in holding cost.

Table 7. Sensitivity of “x” to cost–benefit. The static input values of the parameters are: P = 5000,
D = 4500, d = 100, Co = 1000, Cp = 50, Ch = 10, CR = 50, Cr = 5, Cs = 3, y = 1.5.

x 0.5 1 1.5 2 2.5

PCB 0.7976% 0.7972% 0.7970% 0.7969% 0.7969%
Remarks “x” is not sensitive to cost–benefit.

Table 8. Sensitivity of “y” to cost–benefit. The static input values of the parameters are: P = 5000,
D = 4500, d = 100, Co = 1000, Cp = 50, Ch = 10, CR = 50, Cr = 5, Cs = 3, x = 1.5.

y 0.5 1 1.5 2 2.5

Percentage of cost–benefit 0.7990% 0.7975% 0.7970% 0.7968% 0.7966%
Remarks “y” is not sensitive to cost–benefit.

Table 9. Sensitivity of raw material cost to cost–benefit. The static input values of the parameters are:
P = 5000, D = 4500, d = 100, Co = 1000, Cp = 50, Ch= 10, Cr = 5, Cs = 3, x = 1.5, y = 1.5.

CR 50 55 60 65 70

PCB 0.797% 0.854% 0.906% 0.954% 0.997%
Remarks Cost–benefit increases with the increase in raw material cost.

From Table 2, it is observed that total cost increases with increasing values of “x”,
and as a result, total order quantity upsurges. In contrast, the total cycle length “T”
decreases. The significant increases in all the associated costs, e.g., PC, HC, RC are also
noted. However, the maximum shortage Qs is notably reduced.

Explanations: From Table 3, it is clear that with the rise of “y”, the total cost is
amplified, while the total order quantity is also increased. In contrast, the total cycle length
“T” declines. A noteworthy intensification in all the related costs, e.g., PC, HC, RC, can also
be observed. Moreover, the maximum shortage Qs notably rises.

Cost–Benefitof ERQ Model

Cost–benefit is a tool used to gain insights into the decision-making process. In the
cost–benefit analysis, we considered the comparative total cost of two inventory systems:
the system without recycling and system with recycling of defective items. Thus,

Average cost–benefit ACB is

ACB = TCD − TCR =
(2 + x + y)D

4m(P− d)

[
d(CR − Cr)−

W
2

Ch

]
(38)
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Percentage of cost–benefit (PCB) is

PCB =

(
ACB
TCD

× 100
)

% (39)

Therefore, from Equation (38), we see that the cost–benefit increases when the cost of
raw materials increases and the cost–benefit decreases when holding cost, recycling cost,
or both costs increase.

While the effect of a parameter is analyzed, only changes to one parameter is consid-
ered while other parameters remain static.

7. Managerial Insights

The proposed model helps to control inventories and to determine the economic recy-
cle quantity (ERQ), optimal production lot size, cycle time, total inventory cost, maximum
on-hand stock, and maximum backlogs. From the numerical analysis, sensitivity analysis
(Tables 2–9), and cost–benefit analysis, the following findings provide managerial insights
to inventory managers.

â Recycling larger or smaller quantities of defective items than the ERQ will increase
the total inventory cost. Therefore, inventory managers must evaluate the ERQ of the
item before recycling.

â When the company decides to recycle, production lot sizes should be set up in favor
of the ERQ, and this strategy will provide greater facility to the manager to decline
the total cost.

â If raw material costs increase significantly, recycling will benefit the company because
it will diminish the load on raw-materials and use the wastage items.

â The total cost is more sensitive to demand increases during shortage time than it is to
increases during production time with positive stock.

â If the defective rate is high, companies will receive better cost–benefit from recycling
because it produces more defective items, which are usually treated as rejected, but
the recycling process converts them to useable, which provides huge revenue for the
managers.

8. Conclusions

In this study, we developed an imperfect production model with and without the
recycling of defective items. The model is a generalization of models considering recycled
raw materials. It is worth mentioning that recycled materials can be an alternative source of
raw materials in the event of any uncertainties. Moreover, recycling defective production
reduces waste and hence is also environmentally friendly. The study can be applied to
bricks, textile, glass, paper, and jute production. It is demonstrated that the total cost
function is strictly convex with a unique optimal solution. While this model considers
a single item production system, multi-item inventory systems of the same recyclable
raw material can be developed for further research. This paper outlines when to stop the
production process and when to start it. Proper management of the recycling process is
also illustrated in the model with some insights for managers.

Furthermore, the model can be extended to consider time-dependent defective rates
and selling prices (Mashud et al. 2020a). Considering the environmental emissions
(Mashud et al. 2021b; Mishra et al. 2021) would be another interesting extension of this
study. As the recycling process is shown in the model, a proper waste management
(Tsai et al. 2021) could be another important discussion that is missing in this study. Some
marketing strategies, for instance, discount on imperfect items (Mashud et al. 2020a), trade
credit financing (Liao et al. 2018, 2020; Srivastava et al. 2018; Mashud et al. 2021a, 2021d)
can be implemented in the proposed model to make it more lucrative to the practitioners.
Other imperfect process in both the EOQ and EPQ models (Lin and Srivastava 2015;
Srivastava et al. 2021) can also be consider as an interesting extension.
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