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Abstract: In this paper, we focus on two-factor lattices for general diffusion processes with state-
dependent volatilities. Although it is common knowledge that branching probabilities must be
between zero and one in a lattice, few methods can guarantee lattice feasibility, referring to the
property that all branching probabilities at all nodes in all stages of a lattice are legitimate. Some
practitioners have argued that negative probabilities are not necessarily ‘bad’ and may be further
exploited. A theoretical framework of lattice feasibility is developed in this paper, which is used
to investigate how negative probabilities may impact option pricing in a lattice approach. It is
shown in this paper that lattice feasibility can be achieved by adjusting a lattice’s configuration (e.g.,
grid sizes and jump patterns). Using this framework as a benchmark, we find that the values of
out-of-the-money options are most affected by negative probabilities, followed by in-the-money
options and at-the-money options. Since legitimate branching probabilities may not be unique, we
use an optimization approach to find branching probabilities that are not only legitimate but also can
best fit the probability distribution of the underlying variables. Extensive numerical tests show that
this optimized lattice model is robust for financial option valuations.

Keywords: finance; trinomial tree; two-factor model; stochastic volatility; lattice feasibility

1. Introduction

The lattice (or tree) approach is a popular one for valuing derivative securities, as it is
normally simple to implement and has an intuitive appeal. The lattice approach involves
discrete approximation to the diffusion processes followed by the underlying variables.
It is especially useful for valuing American options where early exercise is possible. Since
its introduction by Cox et al. (1979), the lattice approach has undergone several extensions
in the past few decades to accommodate increasingly complex derivative valuations. To
name a few, those significant models include Rendleman and Bartter (1979), Boyle (1986,
1988), (H&W) Hull and White (1988, 1990, 1993, 1994), Chung and Shih (2007), Beliaeva
and Nawalkha (2010), and Akyildirim et al. (2014).

In a lattice, each link (branch) connecting two lattice nodes at two consecutive time
periods is associated with a branching probability. A legitimate branching probability
must be between zero and one. Researchers know and follow this basic rule in developing
lattice-based methods. However, to the best of our knowledge, few methods can guarantee
lattice feasibility, referring to the property that all branching probabilities at all nodes in
all stages of a lattice are legitimate. With lattice feasibility, a lattice constructs a discrete
time financial market that is arbitrage free. It is well known that lattice feasibility is easier
to achieve when there is only one underlying variable, while two-factor lattice feasibility
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is harder to meet, especially when the correlation between two underlying uncertainties
is high.

The term lattice feasibility was coined by Tseng and Lin (2007). The authors employed
the trinomial lattice proposed by H&W (Hull and White 1990) to value real options in-
volving two underlying correlated uncertainties, each with a constant volatility. They
found that each lattice configuration implies a maximum correlation of the two underlying
variables that the lattice can approximate without incurring negative probabilities, and
this maximum correlation may be enhanced by varying the size of its lattice grids. After
optimizing the lattice configuration, Tseng and Lin (2007) also showed that the trinomial
lattice proposed by H&W (Hull and White 1990) cannot accommodate a correlation beyond
4/
√

35 ≈ 0.676 without incurring negative probabilities. The authors further showed that
the popular two-factor interest rate tree proposed by H&W (Hull and White 1994) for
valuing interest rate derivatives can only guarantee lattice feasibility when the correlation
is no greater than 0.2. This means that negative probabilities may occur far more often than
we know in using lattices to value derivatives in real practice.

Since it is not unusual to encounter negative probabilities when using lattices for
option pricing, some practitioners have argued that negative probabilities may not neces-
sarily be ‘bad’ and may be further exploited (e.g., Burgin and Meissner 2012; Haug 2007).
Consider a price node in a trinomial tree, where the sum of three branching probabilities
must be equal to one. Given an abnormality where one branching probability becomes
negative or exceeds unity, the other two probabilities must be adjusted accordingly to
offset the abnormality. However, the expected payoff at this price node may reveal no sign
of abnormality. From this perspective, it is not surprising that some practitioners have
reported that some finite difference/finite element models can still produce stable and
consistent outputs even with negative probabilities (Zvan et al. 2001). How much does it
really matter if one allows negative probabilities in a lattice for option pricing?

To investigate the impact of negative probabilities in option valuations, we focus
on using a two-factor lattice to represent general diffusion processes such as the Heston
stochastic volatility (SV) model (Heston 1993). In the Heston model, the dynamics of the
volatility process is assumed to follow the CIR process (Cox et al. 1985) used to describe
the interest rate dynamics. The analytical tractability of the CIR process leads to explicit
solutions for some bond pricing problems (e.g., Kouritzin 2000; Maghsoodi 1996; among
others). When the CIR process is incorporated as the second dimension of the Heston
model, the resultant two-factor lattice is more general and is far from trivial. To observe
the impact that comes from negative probabilities, we need to develop a lattice model that
can guarantee lattice feasibility and can be used as a benchmark. Under the same lattice
framework, with every parameter fixed but branching probabilities, we can then observe
how negative probabilities influence valuations.

An important alternative to the lattice method for the options pricing under the Heston
model is the Monte Carlo (MC) method. Since the MC method generates stochastic paths,
not lattices, to model the evolution of the underlying uncertainties, there is no issue of lattice
feasibility or negative probability. However, the generations of the stochastic paths under
the Heston model are not straightforward, and there have been a number of discussions on
this issue. Examples along this line include Broadie and Kaya (2006) and Andersen (2007).
When the MC method is applied to the pricing of American options, the Least-Squares
Monte Carlo (LSMC) method is a standard approach proposed by Longstaff and Schwartz
(2001). Though a lot of progresses have been made using the MC method to price American
options, one also needs to resort to its variations, such as different techniques on resampling
or branching (e.g., see a recent paper by Kouritzin and Mackay 2020).

Researchers have proposed lattices for stochastic volatility models. Recent papers
include (Akyildirim et al. 2014; Beliaeva and Nawalkha 2010; Costabile et al. 2012; Ruck-
deschel et al. 2013). All lattice approaches consider matching two conditional marginal
moments for each underlying variable at all nodes, and the correlation is dealt with either
by matching the cross moment of the variables or using variable transformation to decorre-
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late them. Special attention must be paid to avoid negative branching probabilities that
are more likely to occur when the correlation is high. One popular approach is to truncate
branching probabilities that are negative or exceed unity to bring them to be between zero
and one. While truncating branching probabilities may not exactly match the moments,
Akyildirim et al. (2014) show that in their approach the matching error may be negligible
and prove the convergence of their approach to the underlying processes. In this paper, we
take the standard approach by matching the two marginal moments and the cross moment
of the two underlying variables. We show that branching probabilities can be guaranteed
to be between zero and one by adjusting the configuration of the lattice for a given (fixed)
time step, and no probability truncation is needed.

To manage stochastic volatilities, we extend the lattice parameters from the grid size
to include a jump size. With this change, the lattice configuration can be optimized to
guarantee lattice feasibility even if both state variables are highly correlated with the
correlation close to one. As will be shown later, this newly introduced parameter, the jump
size, has the effect of refining the grid size. As opposed to traditional lattice approaches
which perform lattice refinement on time space, our method can also perform refinement
on the state space of the underlying variables even when the time step is not especially
small. The consequence is better fitting of the underlying processes and faster convergence.

Numerical tests show that lattice feasibility has a direct impact on option pricing.
We find that the values of out-of-the-money (OTM) options are most affected by negative
probabilities, followed by in-the-money (ITM) options and at-the-money (ATM) options.
Although negative probabilities matter less in some situations, the resulted distortion of
the underlying probability distribution is in general hard to predict and exploit. Despite
the importance of lattice feasibility, our numerical tests also show that lattice feasibility
alone may not be sufficient to guarantee accurate valuation, especially when the time step
of the lattice is not especially small. Since legitimate branching probabilities may not be
unique, we propose an optimization approach to find branching probabilities that are not
only legitimate but also can best fit the probability distribution of the underlying variables.

The rest of this paper is structured as follows. To lay the foundation of lattice feasibility
for approximating two general, correlated diffusion processes, a general one-factor lattice
model is first considered in Section 2, with the CIR model used as an example to show in
detail how the lattice can be constructed. Section 3 considers the lattice for two general and
correlated diffusion processes including the Heston SV model (Heston 1993), and derives
the lattice feasibility conditions. We analyze the impact of lattice feasibility on options
valuation in Section 4 and conduct extensive numerical tests, including pricing European
options and American options in Section 5. This paper concludes in Section 6. All proofs of
propositions and theorems are given in the Appendix A of this paper.

2. General One-Factor Trinomial Lattice

We consider the following general Ito process:

dYt = µ(Yt)dt + σ(Yt)dWt, (1)

where Wt is a Wiener process and the volatility σ(·) is a state-dependent function. In this
paper, we assume that σ(·) is lower bounded by a constant σmin > 0, which is a small
number close to zero. That is,

σ(y) ≥ σmin > 0, ∀y. (2)

For any process whose volatility function does not satisfy (2), denoted as

dYt = µ(Yt)dt + α(Yt)dWt, (3a)

where α(y) ≥ 0 (e.g., α(y) = ξ
√

y in the CIR model), one can work with the
following counterpart:

dYt = µ(Yt)dt + max(α(Yt), σmin)dWt, (3b)



J. Risk Financial Manag. 2021, 14, 241 4 of 32

whose volatility function satisfies (2). In (3b), the volatility is assumed to be bounded
below by σmin for the convenience of subsequent treatments. For a sufficiently small σmin,
the effect brought about by this lower bound is insignificant and the difference between the
two models is negligible, as long as the drift µ(·) is nonzero when the volatility is close to
zero with the process on the brink of being absorbed. How to determine the lower bound
σmin in the setting of (3b) will be addressed later.

We will propose a trinomial lattice to approximate (1) based on H&W (Hull and White
1993). In their model, the time horizon is divided into intervals of equal length ∆t, and the
process can only take on values that are multiples of ∆y. At time t, a typical lattice node
Yt = y branches to nodes y + (k + h)∆y, y + k∆y, and y + (k− h)∆y at the next stage with
respective branching probabilities pu, pm, and pd, where the (text) subscripts represent
upward, middle, and downward branches, respectively. As will be shown later, the jump
size h depends on y and, therefore, the lattice may not recombine at all nodes.

The lattice size ∆y = cσs
√

∆t is predetermined using the same method as when
volatility is constant, where c and σs are constant. Since σ(y) is a function, σs is a surrogate
constant volatility, which is set to be a small number no greater than σmin:

0 < σs ≤ σmin. (4)

The branching factor k is chosen such that k∆y (middle branch) approximates the
expected price deviation µ(y)∆t. That is, k is the nearest integer of µ(y)∆t/∆y:

k(y) ≡
⌊

µ(y)∆t/∆y + 0.5
⌋

, (5)

where b·c is the floor function that maps to the nearest integer less than or equal to the
operand. Let the mismatch between µ(y)∆t/∆y and k(y) in (5) be denoted by ε, defined
as follows:

ε(y) ≡ µ(y)∆t/∆y− k(y). (6)

Apparently from (5),
|ε| ≤ 0.5, ∀y. (7)

The interpretation of (7) is that the middle branch may miss the expected price devia-
tion by no more than 0.5∆y. Note that both ε and k are functions of y and t, and may vary
from node to node.

The jump size h is determined such that hσs approximates σ(y). Likewise, let h be the
nearest integer of σ(y)/σs:

x(y) ≡ σ(y)/σs, (8)

h(y) ≡
⌊

σ(y)/σs + 0.5
⌋
=

⌊
x(y) + 0.5

⌋
. (9)

Depending on how small σs is chosen, there is a minimum value of h incurred in (9)
and is denoted by h:

h = min
y

h(y) =
⌊

σmin/σs + 0.5
⌋

. (10)

Given σmin, one can either choose a σs to determine the integer h, as in (10); or vice
versa. In our design, one determines h first, followed by σs using the following formula:

σs =
σmin

max(h− 0.5, 1)
=

{
σmin, if h = 1,
σmin/(h− 0.5), if h ≥ 2.

(11)

As h increases, ∆y decreases, thereby indicating the presence of more refined lattice grids.
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There may exist a mismatch between σ(y)/σs and h(y) in (9). This time, we measure
their difference by their ratio and see how far it is away from 1. The ratio γ is defined
as follows:

γ(y) ≡ σ(y)/σs

h(y)
=

x(y)
h(y)

. (12)

It is clear when h is high that γ is close to one. Therefore, the range of γ(y) is
determined by the lower bound of h(y), which is h. It can be shown that the following
relations hold:

1− 0.5/h ≤ γ(y) ≤ 1 + 0.5h, ∀y, if h ≥ 2, (13a)

1 ≤ γ(y) ≤ 1 + 0.5h, ∀y, if h = 1, (13b)

and
max(h− 0.5, 1) ≤ x(y) ≤ h + 0.5, ∀y. (14)

Given any arbitrary lattice node y, use (5) and (9) to determine the value of k and h,
respectively. One can then solve the branching probabilities pu, pm, and pd at y, such that
these three branches match the mean and variance of the price deviation. They can be
expressed in terms of c, ε(y), γ(y), and h(y):

pu =
1
2

(
ε2

h2 +
ε

h
+

γ2

c2

)
, (15a)

pd =
1
2

(
ε2

h2 −
ε

h
+

γ2

c2

)
, (15b)

pm = 1−
(

ε2

h2 +
γ2

c2

)
. (15c)

Proposition 1. (One-Factor Lattice Feasibility) Given c and h, for the branching probabilities
(15a)–(15c) to be legitimate for all |ε| ≤ 0.5 and γ satisfying (13a)–(13b) for all y, the following
condition must hold:

√
h + 0.5
h− 0.5

≤ c ≤ max(
√

3,
√

2h− 1). (16)

Proposition 1 states how the values of the two key parameters c and h should coordi-
nate to achieve lattice feasibility. This proposition states that, if a lattice is configured such
that its values for c and h meet (16), the lattice will not have negative probabilities in any
branches using (15a)–(15c). When h = 1, the only feasible c is

√
3, which is an interesting

number for c. When c =
√

3, each typical trinomial branch approximates the underlying
normal distribution well (matching up to the 5th moment when ε = 0). However, when
h ≥ 2, c becomes flexible and its feasible value spreads over a bigger range.

2.1. Effects of Grid Refinement

As pointed in the previous section, introducing h has an effect of grid refinement.
Basically, if σ(y) has a smaller σmin, a higher h will be required, which leads to smaller σs

and ∆y. Since |µ(y)∆t− k(y)∆y| = |ε(y)|∆y ≤ 0.5∆y, a smaller ∆y means that the mean of
the price change is better approximated. Traditionally, a discrete lattice approximates the
underlying continuous processes better and better as the time step ∆t decreases, which may
be viewed as lattice refinement on the time space. By increasing the value of h, we introduce
a refinement on the state space of the underlying variable, even when ∆t is not especially
small. Therefore, grid refinement has an effect on better convergence.
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2.2. Weak Convergence of the One-Factor Lattice

In the proposed trinomial lattice, the jump size h(y) varies from node to node due to
the state-dependent volatility. As a result, the branches may not recombine in an easily
predictable way as in the constant volatility case. Therefore, it is not immediately clear that
such a lattice would converge to the underlying process. Next, we show that our proposed
lattice indeed converges weakly to the underlying diffusion process in (1).

Proposition 2. Let Y∆t
t denote the trinomial lattice of the one-factor process Yt defined in (1) with

∆y = cσs
√

∆t, and k(y) and h(y) defined by (5) and (9), respectively. Suppose that Y∆t
0 = Y0 and

the following conditions

0 ≤ pu, pm, pd ≤ 1 (17a)

E[(Y∆t
t+∆t − y)|Y∆t

t = y] = µ(y)∆t (17b)

E[(Y∆t
t+∆t − y)2|Y∆t

t = y] = σ2(y)∆t + µ2(y)∆t2, (17c)

hold for all lattice node y and for all time interval ∆t. As ∆t → 0, Y∆t
t converges weakly to the

diffusion process Yt.

2.3. Estimating σmin for CIR Model and Feller Condition

In this section, we use the Cox et al. (1985) model as an example to illustrate the
applicability of the proposed framework. Consider

dYt = −λ(Yt −m)dt + ξ
√

YtdWt, (18)

where λ, m, and ξ are positive constants. The CIR model (18) does not meet (1) and (2),
but (3a). This is because the lower bound of the square root volatility function is zero. To
meet (3b), assume that σmin = ε > 0 is infinitesimal. In this section, we show how to find
an approximate lower bound σ̂min ≥ ε for the volatility function. Equivalently, we would
find a ymin such that σ̂min = σ(ymin) = ξ

√
ymin ≥ ε, i.e., ymin ≥ ε2/ξ2.

To do this, we must exploit the mean reverting (MR) property of the drift function
of (18). Our approach is to find a ymin, hopefully much greater than ε2/ξ2, such that ymin

is at a level where Yt would revert upward so that the whole lattice Yt+1 remains to be
capped from below by it. Since the lattice is capped from below by ymin, no other volatility
value in the lattice is smaller than σ̂min.

Note that this reverting level ymin depends on ∆t and decreases to 0 as ∆t→ 0. This
should not be a problem because, in practice, lattices yield satisfactory valuation results at
some finite ∆t where σ̂min hopefully is still much greater than ε.

As mentioned above, we would like to see the entire lattice to be well contained in the
R+ domain. With σ̂min = ξ

√
ymin and using (11), we have

∆y = ξc
√

∆t
√

ymin/ max(h− 0.5, 1). (19)

We want to find a ymin > 0 such that⌊
y

∆y

⌋
+ k(y)− h(y) ≥

⌊
ymin

∆y

⌋
, ∀y ≥ ymin (20)

holds. In (20), by/∆ycmay be viewed as the index of the lattice node of y (with the index
equal to 0 at y = 0), and from this node, (k(y)− h(y))∆y corresponds to the price change
of the downward branch. Therefore, the left-hand side of (20) represents the index of
this lattice node mapped onto from y at the next time period, which should be bounded
below by the node corresponding to ymin. Note in (20) that ymin is a continuous variable,
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which may not match the value of some discrete lattice node. If ymin ≥ ∆y, we are done;
otherwise, we check if

k(∆y)− h(∆y) ≥ 0 (21)

in order to ensure that the lattice will revert upward at y = ∆y.
An important fact is that a ymin > 0 may not necessarily exist for any arbitrary process

parameters. For example, it has been shown that 2λm ≥ ξ2 must hold for y in (18) to be
bounded below by zero, which is known as Feller condition (Feller 1951). Next, we shall
show that, if the Feller condition is met, then ymin > 0 exists and the entire lattice can be
well contained in R+.

Proposition 3. If (i) 1− λ∆t > 0, and (ii) 4λm > ξ2c2/(1− λ∆t) both hold, then ymin > 0
exists and the entire lattice can be well contained in R+.

It is clear that condition (i) of Proposition 3 can be easily satisfied by reducing ∆t, but
condition (ii) may not. Compared with the Feller condition λm ≥ 0.5ξ2, condition (ii) has a
similar form and may be viewed as the discrete version of Feller condition in our proposed
lattice approach.

For a finite ∆t > 0, if condition (ii) is violated, to rectify it, it is probably more effective
to reduce the value of c (to its lower bound by increasing h) than to reduce ∆t. This
demonstrates another application of grid refinement. As a limit, our approach requires
λm > 0.25ξ2 to hold (by setting ∆t = 0 and c = 1) so that ymin > 0 exists. This condition is
slightly looser than the Feller condition due to the fact that it is easier to bound the process
of y from below in the (approximate) discrete domain than in the continuous one. This also
means that, whenever the Feller condition is met, a Cox et al. (1985) process can always be
approximated by the proposed lattice.

Proposition 4. Given a Cox et al. (1985) process (18) that satisfies the Feller condition, there exists
a feasible lattice configuration (∆t, h, c) such that ymin > 0 and the lattice can be well contained
in R+.

3. Two-Factor Trinomial Lattice

In this section, we consider a more general two-factor model:

dY1,t = µ1(Y1,t, Y2,t)dt + σ1(Y1,t, Y2,t)dW1,t (22a)

dY2,t = µ2(Y1,t, Y2,t)dt + σ2(Y1,t, Y2,t)dW2,t, (22b)

where W1,t and W2,t are Wiener processes with an instantaneous correlation ρ. Following
the treatment described in (3a)–(3b) in Section 2, we assume that there exist σmin

l > 0,
l = 1, 2 such that

σl(y1, y2) ≥ σmin
l > 0, ∀y1, y2, l = 1, 2. (23)

When both individual one-factor lattices are integrated, we shall apply the same
convention to all relevant notations, such as σs, k, h, h, and c, by adding a subscript l = 1, 2
to reflect the index of the process that each notation represents.

Our idea of using two-factor trinomial lattices to approximate (22a)–(22b) follows the
one proposed by Hull and White (1994): obtain a one-factor trinomial lattice for each state
variable first, then integrate both lattices to one such that nine branches (3× 3) emanating
from each lattice node. Let ∆yl = clσ

s
l

√
∆t, l = 1, 2, a definition extended directly from

that in the one-factor case in Section 2. Assume the one-factor discrete price increment,
branching factor for yl , and branch jump size are ∆yl , kl , and hl , l = 1, 2, respectively, as
defined in Section 2. An example is given in Figure 1, where a node (y1,t, y2,t) at time t is
shown in the left panel. The first one calculates kl and hl using (5) and (9), respectively,
for each factor l to determine the three nodes yu

l,t+1, ym
l,t+1, and yd

l,t+1 at time t + 1 that
each factor l will map into. The nine nodes of their combinations at t + 1 are shown in the
right panel.
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Figure 1. An example of node branching of our proposed two-factor lattice.

The main task is to solve the nine branching probabilities while matching the first two
moments of each factor and their correlation. We further define klu ≡ kl + hl , klm ≡ kl ,
and kld ≡ kl − hl , l = 1, 2. At each node, to determine the nine branching probabili-
ties pij, i, j ∈ Ω, where Ω ≡ {u, m, d}, one solves the following linear system, denoted
by (Q0):(Q0)

∑
i,j∈Ω

pijk1i∆y1 = µ1∆t, (24a)

∑
i,j∈Ω

pijk2j∆y2 = µ2∆t, (24b)

∑
i,j∈Ω

pijk2
1i∆y2

1 = µ2
1∆t2 + σ2

1 ∆t, (24c)

∑
i,j∈Ω

pijk2
2j∆y2

2 = µ2
2∆t2 + σ2

2 ∆t, (24d)

∑
i,j∈Ω

pijk1ik2j∆y1∆y2 = ρσ1σ2∆t + µ1µ2∆t2, (24e)

∑
i,j∈Ω

pij = 1, (24f)

pij ≥ 0, ∀i, j ∈ Ω (24g)

At each node of the trinomial lattice, it is required to solve (Q0) to determine the
branching probabilities, which has nine variables, six linear equations, and nine nonneg-
ativity inequalities. In optimization terminology, (Q0) is said to be feasible if a (feasible)
solution exists that meets all constraints. Otherwise, (Q0) is said to be infeasible, which
means that some probabilities must be negative or greater than 1. Lattice feasibility refers
to the condition where (Q0) is feasible for all possible nodes in a lattice. In the next propo-
sition, we will show that lattice feasibility is a necessary condition for weak convergence of
the proposed two-factor lattice.

Proposition 5. Let (Y∆t
1,t , Y∆t

2,t ) denote the trinomial lattice of the two-factor process (Y1,t, Y2,t)

defined in (22a)–(22b) with ∆yl = clσ
s
l

√
∆t, and kl(y) and hl(y) defined by (5) and (9), respectively,

for l = 1, 2. Suppose that (Y∆t
1,0, Y∆t

2,0) = (Y1,0, Y2,0) and the following conditions
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0 ≤ pij ≤ 1, i, j ∈ Ω (25a)

E[(Y∆t
l,t+∆t − yl)|(Y∆t

1,t , Y∆t
2,t ) = (y1, y2)] = µl∆t, l = 1, 2 (25b)

E[(Y∆t
l,t+∆t − yl)

2|(Y∆t
1,t , Y∆t

2,t ) = (y1, y2)] = σ2
l ∆t + µ2

l ∆t2, l = 1, 2 (25c)

E[(Y∆t
1,t+∆t − y1)(Y∆t

2,t+∆t − y2)|(Y∆t
1,t , Y∆t

2,t ) = (y1, y2)] = ρσ1σ2∆t + µ1µ2∆t2 (25d)

hold for all lattice node (y1, y2) and for all time interval ∆t. As ∆t → 0, (Y∆t
1,t , Y∆t

2,t ) converges
weakly to the diffusion process (Y1,t, Y2,t).

3.1. Feasibility of the General Lattice

Consider the nine branches that emanated from a fixed node, where the one-factor
branching probabilities are assumed to be { p̃lu, p̃lm, p̃ld}, l = 1, 2. These probabilities are
denoted with a tilde to indicate that they are not variables. In addition, assume at this
node that the corresponding error factors of the branching and the jump sizes are εl and γl ,
l = 1, 2. The branching probabilities can be obtained as follows (cf. (15a)–(15c)):

p̃lu =
1
2

(
ε2

l
h2

l
+

εl
hl

+
γ2

l
c2

l

)
(26a)

p̃ld =
1
2

(
ε2

l
h2

l
− εl

hl
+

γ2
l

c2
l

)
(26b)

p̃lm = 1−
(

ε2
l

h2
l
+

γ2
l

c2
l

)
(26c)

The key step is to rewrite (Q0) to the following equivalent form (Q), in terms of { p̃li},
i ∈ Ω, and εl , γl , l = 1, 2: (Q(ε1, x1, γ1, h1, ε2, x2, γ2, h2))

∑
j∈Ω

puj = p̃1u (27a)

∑
j∈Ω

pdj = p̃1d (27b)

∑
i∈Ω

piu = p̃2u (27c)

∑
i∈Ω

pid = p̃2d (27d)

puu + pdd − pud − pdu = ρ
γ1γ2

c1c2
+

ε1ε2

h1h2
(27e)

∑
i,j∈Ω

pij = 1 (27f)

pij ≥ 0, ∀i, j ∈ Ω. (27g)

To maintain legibility, we denote θl ≡ (εl , xl , γl , hl) ∈ Θl(hl), l = 1, 2, where

Θl(hl) ≡ {θl | (7), (14), (13a)− (13b), ∀hl ≥ hl}, l = 1, 2. (28)

In (28), Θl(hl) covers all possible nodes in Yl , l = 1, 2. (Q) is denoted with (θ1, θ2)
to emphasize that it is a ‘local’ problem associated with some specific lattice node (as p̃lu
and p̃ld are functions of θl , l = 1, 2). Equations (27a)–(27d) intend to match the means
and variances of the price deviations of the two factors, which have been met by the
marginal probabilities { p̃1j} and { p̃2j}, j ∈ Ω. Equation (27e) is derived from (24e) with
some algebra.
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Consider an initial solution pij = p̃1i p̃2j, i, j ∈ Ω, which satisfies (27a)–(27f) but (27e),
unless ρ = 0. To determine the range of ρ on the right-hand side (RHS) of (27e) that (Q) is
feasible, consider the following two linear programs:

Rmin(θ1, θ2) ≡ min
pij , i,j∈Ω

{puu + pdd − pud − pdu| (Q) excluding (27e)} (29a)

Rmax(θ1, θ2) ≡ max
pij , i,j∈Ω

{puu + pdd − pud − pdu| (Q) excluding (27e)} (29b)

For a given set of (θ1, θ2), it is clear that (Q) is feasible, if, and only if, the RHS of (27e)
is between Rmin and Rmax, i.e.,

Rmin(θ1, θ2) ≤ ρ
γ1γ2

c1c2
+

ε1ε2

h1h2
≤ Rmax(θ1, θ2). (30)

Therefore, for θl ∈ Θl(hl), l = 1, 2, we have

c1c2 ·max
θ1,θ2

1
γ1γ2

(
Rmin(θ1, θ2)−

ε1ε2

h1h2

)
≤ ρ ≤ c1c2 ·min

θ1,θ2

1
γ1γ2

(
Rmax(θ1, θ2)−

ε1ε2

h1h2

)
, (31)

Given the values of c1 and c2, using (31), the range of the correlation ρ between the
two factors for which the lattice can guarantee feasible branching probabilities at all nodes
and all stages can be identified. Next, we will show that (31) is symmetric such that its
upper bound is the negative of its lower bound.

Proposition 6. For any arbitrary θl = (εl , xl , γl , hl) ∈ Θl(hl), l = 1, 2, the following equality
holds:

min
θ1,θ2

1
γ1γ2

(
Rmax(θ1, θ2)−

ε1ε2

h1h2

)
= −max

θ1,θ2

1
γ1γ2

(
Rmin(θ1, θ2)−

ε1ε2

h1h2

)
, l = 1, 2. (32)

Since (31) is symmetric, we can focus on solving Rmax. The closed-form expression
for Rmax has been derived in Tseng and Lin (2007), which is duplicated in the following
proposition for the sake of clarity.

Proposition 7. Rmax = min{Rmax
1 , Rmax

2 , Rmax
3 , Rmax

4 , Rmax
5 , Rmax

6 }, where

Rmax
1 = p̃1u + p̃1d

Rmax
2 = p̃2u + p̃2d

Rmax
3 = p̃1u + p̃2d

Rmax
4 = 1− ( p̃1d − p̃2d)− ( p̃2u − p̃1u)

Rmax
5 = p̃2u + p̃1d

Rmax
6 = 1− ( p̃2d − p̃1d)− ( p̃1u − p̃2u),

where p̃li, l = 1, 2, i ∈ Ω are from (26a)–(26c).

Note that Rmax
l , l = 1, · · · , 6 are also functions of θ1 and θ2. It can be seen that Rmax

1 ,
Rmax

3 , and Rmax
4 reduce to Rmax

2 , Rmax
5 , and Rmax

6 , and vice versa, respectively, by exchanging
the factor indices 1 and 2.

Using the result from Proposition 6 to find the upper bound of (31), one needs to solve

min
θ1,θ2

min
i=1,··· ,6

1
γ1γ2

{
Rmax

i − ε1ε2

h1h2

}
(33)



J. Risk Financial Manag. 2021, 14, 241 11 of 32

for θl ∈ Θl(hl), l = 1, 2. It would be easier to solve if one could switch the two minimization
operators in (33) as follows:

min
i=1,··· ,6

{
min
θ1,θ2

1
γ1γ2

(Rmax
i − ε1ε2

h1h2
)

}
. (34)

It turns out that both (33) and (34) are equivalent, which is shown in the follow-
ing proposition.

Proposition 8. Let f1, · · · , fn : Rn → R be n continuous functions and D ⊆ Rn, where n ∈ N
is finite. Then,

min
z∈D

min{ f1(z), · · · , fn(z)} = min{min
z∈D

f1(z), · · · , min
z∈D

fn(z)}. (35)

Next, we state the main theorem of this section.

Theorem 1. (Two-Factor Lattice Feasibility) Given a lattice configuration (c1, c2, h1, h2), (Q) is
feasible for all θl ∈ Θl(hl), l = 1, 2, if, and only if, |ρ| ≤ ρ̄(c1, c2, h1, h2), where

ρ̄(c1, c2, h1, h2) ≡ c1c2 ·min{w1, w2, w3, w4}, (36)

and

w1 = min
θ1,θ2

1
γ1γ2

(
φ2

1
h2

1
− φ1

2h1h2
+

γ2
1

c2
1

)
, φ1(h1, h2) ≡ min(

h1

4h2
,

1
2
), (37a)

w2 = min
θ1,θ2

1
γ1γ2

(
φ2

2
h2

2
− φ2

2h1h2
+

γ2
2

c2
2

)
, φ2(h1, h2) ≡ min(

h2

4h1
,

1
2
), (37b)

w3 = min
θ1,θ2

1
γ1γ2

[
1
8
(φ2

3 − 1) +
1
2

(
γ2

1
c2

1
+

γ2
2

c2
2

)]
,

φ3(h1, h2) ≡ max(1− 1
h1
− 1

h2
, 0), (37c)

w4 = min
θ1,θ2

1
γ1γ2

(1− 1
2h1

)(1− 1
2h2

). (37d)

Theorem 1 is general, but, unfortunately, no explicit functional expressions for
w1, · · · , w4 are available because each of them requires solving a two-dimensional global
minimum of a discontinuous function. However, given a set of lattice parameters
(c1, c2, h1, h2), using numerical methods, such as exhaustive search, one can easily ob-
tain the numerical values of w1, · · · , w4.

From the perspective of minimizing computational requirements, one would prefer
smaller values of (h1, h2) so that the grid size may not become too small. To achieve that,
next, we try to maximize ρ̄ over c1 and c2 for a given (h1, h2) pair:

ρmax(h1, h2) = max
c1,c2
{ρ̄(c1, c2, h1, h2)|c1, c2 subject to (16)}. (38)

Using numerical methods, Table 1 shows the values of ρmax for all 100 pairs of (h1, h2)
for 1 ≤ h1, h2 ≤ 10. Note that, since ρmax is symmetric, Table 1 only displays half of the
pairs with h1 ≥ h2. From Table 1, it is clear that ρmax(h1, h2) is an increasing function in
h1 and h2. If one considers increasing h1 by 1 to be as difficult in terms of computational
effort as increasing h2 by 1, then the diagonal elements where (h1 = h2) seem to be the most
efficient choices.
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Table 1. The 100 values of ρmax(h1, h2) for 1 ≤ h1, h2 ≤ 10.

(h1, h2) 1 2 3 4 5 6 7 8 9 10
1 0.3333 0.4957 0.5544 0.5866 0.6076 0.6222 0.6319 0.6343 0.6362 0.6376
2 0.6399 0.6892 0.7156 0.7327 0.7450 0.7539 0.7610 0.7668 0.7714
3 0.7401 0.7661 0.7834 0.7947 0.8050 0.8112 0.8170 0.8212
4 0.7949 0.8124 0.8235 0.8321 0.8393 0.8450 0.8499
5 0.8302 0.8414 0.8504 0.8571 0.8633 0.8682
6 0.8551 0.8628 0.8707 0.8751 0.8798
7 0.8735 0.8797 0.8856 0.8898
8 0.8878 0.8919 0.8961
9 0.8991 0.9033

10 0.9084

When h1 = h2, to obtain the optimal solutions (c∗1 , c∗2) for achieving ρmax in (38), it
turns out that w1 = w2 in Theorem 1 are the smallest elements in the minimum operator
in (36), so a symmetrical optimal solution c∗1 = c∗2 is obtained. Using numerical methods,
the values of ρmax and the corresponding (c∗1 , c∗2) are summarized in Table 2.

Table 2. The values of ρmax and the optimal (c∗1 , c∗2) when h1 = h2.

h1 = h2 ρmax(h1, h2) (c∗1 , c∗2 )
1 0.3333 (1.7321, 1.7321)
2 0.6397 (1.3340, 1.3340)
3 0.7400 (1.2052, 1.2052)
4 0.7949 (1.1469, 1.1469)
5 0.8320 (1.1145, 1.1145)
6 0.8551 (1.0931, 1.0931)
7 0.8735 (1.0792, 1.0792)
8 0.8878 (1.0686, 1.0686)
9 0.8991 (1.0602, 1.0602)
10 0.9084 (1.0543, 1.0543)

As an example, if ρ = −0.8, using the optimized (c∗1 , c∗2) from Table 2, one can use
h1 = h2 = 5 by using (c1, c2) = (1.1145, 1.1145) obtained from the Appendix A. Note that
the results presented in this section are for general two-factor lattices. If the two underlying
diffusion processes have some special structures, e.g., the class of square root volatility
models, then ρmax may be further increased so that the required (h1, h2) that guarantees
lattice feasibility may be lowered. In the next section, we focus on the Heston SV model,
for which explicit functional expressions for w1, · · · , w4 are available.

3.2. Lattice for the Heston SV Model

Consider the Heston SV model (Heston 1993) as follows:

dY1,t = µ dt +
√

Y2,t dW1,t (39a)

dY2,t = −λ(Y2,t −m)dt + ξ
√

Y2,t dW2,t, (39b)

where Y1,t = ln St is the logarithm of the stock price; µ, λ, m, and ξ are positive constants.
Since both volatilities in (39a) and (39b) are functions of Y2, we focus on the MR

process of Y2. As mentioned in Section 2.2, if the Feller condition is satisfied, ymin
2 > 0

exists for (39b). Based on ymin
2 , we can identify positive σmin

2 and σs
2. Once σs

2 is obtained,
we set

σs
1 = σs

2/ξ. (40)

Proposition 9. To implement the Heston SV model given in (39a)–(39b) using the proposed
trinomial lattice and (40), if h1 = h2, then h1 = h2, x1 = x2, and γ1 = γ2 at all nodes.
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Using Proposition 9, we will show that Theorem 1 has an explicit functional form for
ρ̄ if we set h1 = h2. Since µ1 is a constant, ε1 is a fixed constant for all nodes. We denote
it as ε̃1. Without loss of generality, we assume ε̃1 = 0. To make ε̃1 = 0, from (5), we need
to have

µ1∆t
c1σs

1

√
∆t

=
µ1
√

∆t
c1σs

1
= the nearest integer = k1. (41)

This can be achieved by adjusting the value of c1, σmin
1 , or ∆t. Adjusting c1 and/or ∆t

is more straightforward than adjusting σmin
1 . However, since c1 is a parameter for lattice

configuration, we recommend adjusting the value of ∆t slightly to eliminate the remainder
of (41) in order to make ε̃1 = 0.

With ε1 = 0 and h1 = h2 = h, using (31), the condition for lattice feasibility can be
significantly simplified as follows:

max
θ1,θ2

1
γ2

(
Rmin(θ1, θ2)

)
≤ ρ

c1c2
≤ min

θ1,θ2

1
γ2

(
Rmax(θ1, θ2)

)
, (42)

for θl ∈ Θl(h), l = 1, 2.

Theorem 2. (Lattice feasibility for the Heston SV) Pertaining to the Heston SV model
in (39a)–(39b), assume h1 = h2 = h and ε1 = 0. Given a lattice configuration (c1, c2, h),
(Q) is feasible for all θl ∈ Θl(h), l = 1, 2, if, and only if, ρ ≤ ρ̄H(c1, c2, h), where

ρ̄H(c1, c2, h) = c1c2 ·min{wH
1, wH

2, wH
3, wH

4}, (43)

where

wH
1 =

1
c2

1
(44a)

wH
2 =

1
c2

2
(44b)

wH
3 =

1
2
(

1
c2

1
+

1
c2

2
)− 1

4(max(h, 2)− 0.5)
, (44c)

wH
4 =

h(h− 0.5)
(h + 0.5)2 (44d)

Next, we try to maximize ρ̄H by adjusting the lattice configuration (c1, c2) while
maintaining lattice feasibility. Let

ρH
max(h) = max

c1,c2
{ρ̄H(c1, c2, h)|c1, c2 subject to (16)}. (45)

Using numerical methods, the solution of (45) is obtained as follows. When h ≤ 2,
ρH

max is achieved at the lower bounds of c1 and c2, where c1 = c2 =
√
(h + 0.5)/(h− 0.5),

and ρH
max is determined by wH

3. When h ≥ 3, ρH
max is achieved at c1 =

√
(h + 0.5)/(h− 0.5),

the lower bound, and c2 at the point where wH
3 = wH

4. That is,

ρH
max(h) = cH

1(h)c
H
2(h)

h(h− 0.5)
(h + 0.5)2 , h ≥ 3, (46)

where

cH
1(h) =

√
h + 0.5
h− 0.5

(47)

cH
2(h) =

√
(h + 0.5)2(h− 0.5)

h3 − h2 + 1.25h
. (48)
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It can be seen that ρH
max(h) approaches 1 as h increases. The value of ρH

max(h) for
h = 1, · · · , 10 is given in Table 3, along with the corresponding (cH

1, cH
2). Note that ρH

max(h)
is symmetric in c1 and c2. Therefore, another solution for ρH

max(h) is to switch cH
1 and cH

2.

Table 3. The values of ρH
max (with ε̃1 = 0).

h ρH
max(h) (cH

1 , cH
2) h ρH

max(h) (cH
1 , cH

2)
1 0.5000 (1.7321, 1.7321) 6 0.9453 (1.0871, 1.1133)
2 0.7222 (1.2910, 1.2910) 7 0.9549 (1.0742, 1.0989)
3 0.8596 (1.1832, 1.1866) 8 0.9616 (1.0646, 1.0877)
4 0.9065 (1.1339, 1.1564) 9 0.9667 (1.0572, 1.0787)
5 0.9308 (1.1055, 1.1319) 10 0.9705 (1.0513, 1.0714)

Back to the previous example, if ρ = −0.8, now it only requires h1 = h2 = 3 with
(c1, c2) = (1.1832,1.1866) or (1.1866, 1.1832) to achieve lattice feasibility, a reduction from
h1 = h2 = 5 of the optimized general model.

4. Impact of Lattice Infeasibility on Option Valuation

In this section, we investigate how much lattice infeasibility could impact option
valuation. Consider the following SV model of Heston (1993) where the stock price (St)
and the instantaneous variance (Vt) under the risk neutral measure are defined as follows:

d ln St = (r− q− Vt

2
)dt +

√
VtdW1,t, (49a)

dVt = λ(m−Vt)dt + ξ
√

VtdW2,t, (49b)

where r is the constant risk-free rate, q is the dividend yield, and dW1,t and dW2,t are Wiener
processes such that dW1,t · dW2.t = ρdt.

4.1. An Optimization Perspective

The problem (Q) contains six linear equations with nine variables and a nonnegativity
constraint. Since (Q) has no linear independence of the linear equations, these linear
equations have infinitely many solutions (sets of branching probabilities). Therefore, the
key is the nonnegativity constraint, which requires a solution to be a set of legitimate
probabilities. When the term ‘lattice feasibility’ was coined by Tseng and Lin (2007), there
was an implication of using optimization to determine branching probabilities. The idea
was to add an objective function to be optimized subject to (Q). Since not all feasible
solutions contribute the same to the objective function, using optimization would find not
only a feasible solution, but an optimal solution. The objective function in this context
refers to the quality of fitting the probability distribution of the underlying uncertainties.
The authors in Tseng and Lin (2007) used the following objective function:

min
pij

∑
i,j∈Ω

(pij − p̃1i p̃2j)
2, (50)

where pij, i, j ∈ Ω are subject to (Q); and p̃1i and p̃2j are marginal probabilities obtained
from (26a)–(26c). Tseng and Lin (2007) showed that doing so best fits the probability
distribution of the underlying variables in some measure.

The optimization problem in (50) is a standard quadratic programming (QP) problem
with linear constraints. Apparently, the optimal solution of (50) is pij = p̃1i p̃2j, i, j ∈ Ω
when ρ = 0. When ρ 6= 0, this optimization problem finds the solution that has the
least deviation from the solution of the uncorrelated case. At each node, their approach
requires solving a simple optimization problem to determine branching probabilities for
(Q). We adopt this approach in this paper and refer to it as Best-Fit. Although solving
a (QP) at each node may seem cumbersome, we have developed an iterative method to
identify the binding constraints at optimality. Once the binding constraints are identified,
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the corresponding feasible solution is the optimal one due to the convexity of the QP.
This approach is very efficient as it usually takes a few trials to correctly identify the
binding constraints.

On the other hand, we need a counterpart method for determining branching proba-
bilities that works well in practice but may not guarantee lattice feasibility. We consider the
popular lattice approach proposed by Hull and White (1994) (denoted by H&W) as this
counterpart method. Note that the comparison is conducted in the same lattice framework
such that the lattice structure is exactly the same except for their respective methods of
determining branching probabilities at each node: the first is by Best-Fit and the second
by H&W.

When ρ < 0, Hull and White (1994) suggests with δ = ρ/36: pdu pmu puu
pdm pmm pum
pdd pmd pud

 =

 p̃1d p̃2u p̃1m p̃2u p̃1u p̃2u
p̃1d p̃2m p̃1m p̃2m p̃1u p̃2m
p̃1d p̃2d p̃1m p̃2d p̃1u p̃2d

+

 −δ −4δ +5δ
−4δ +8δ −4δ
+5δ −4δ −δ

; (51a)

and similarly when ρ < 0, pdu pmu puu
pdm pmm pum
pdd pmd pud

 =

 p̃1d p̃2u p̃1m p̃2u p̃1u p̃2u
p̃1d p̃2m p̃1m p̃2m p̃1u p̃2m
p̃1d p̃2d p̃1m p̃2d p̃1u p̃2d

+

 +5δ −4δ −δ
−4δ +8δ −4δ
−δ −4δ +5δ

. (51b)

4.2. Numerical Comparisons: Best-Fit vs. H&W

It is well known that the feasibility of (Q) becomes harder to meet when the value of
the instantaneous correlation ρ is high. If one allows some branching probabilities to be
negative, the corresponding probability distribution(s) of the price and/or the volatility
is distorted. Depending on the degree of the distortion, there may be some impact on the
option valuation. We use both approaches (Best-Fit and H&W) to value a European call
option under the Heston SV model. The parameters are taken from Table 1 of Ball and
Roma (1994) with r = q = 0, λ = 8, m = V0 = 0.1225, and ξ = 0.8.

With S0 = $100, three cases, corresponding to three different strike prices, K = $80,
$100, and $120, are tested with the correlation ρ ranging between −0.8 and 0.8. The result
is summarized in Table 4. For the lattice, we consider n = 100 (with T= 6 months) to make
sure that both methods (Best-Fit and H&W) can best fit the probability distribution of the
underlying variables.

Table 4. Impact of lattice infeasibility on options pricing.

In-the-Money (ITM) At-the-Money (ATM) Out-of-the-Money (OTM) Infeasibility (%)
ρ Exact Best-Fit H&W Exact Best-Fit H&W Exact Best-Fit H&W Best-Fit H&W

0.8 21.5729 21.5704 21.9341 9.8203 9.8259 9.7892 4.3276 4.3337 3.9417 0 99.79
0.7 21.6637 21.6620 21.9489 9.8140 9.8194 9.7859 4.2401 4.2454 3.9227 0 1.03
0.6 21.7499 21.7490 21.9495 9.8060 9.8107 9.7854 4.1509 4.1553 3.9221 0 0.21
0.5 21.8320 21.8313 21.9926 9.7965 9.8010 9.7776 4.0600 4.0640 3.8665 0 0.21
0.4 21.9104 21.9100 22.0347 9.7853 9.7903 9.7694 3.9672 3.9710 3.8103 0 0.11
0.3 21.9854 21.9853 22.0757 9.7726 9.7779 9.7606 3.8725 3.8760 3.7534 0 0.00
0.2 22.0571 22.0575 22.1158 9.7584 9.7640 9.7514 3.7757 3.7790 3.6958 0 0.00
0.1 22.1260 22.1267 22.1549 9.7428 9.7485 9.7417 3.6769 3.6798 3.6375 0 0.00
0.0 22.1920 22.1931 22.1931 9.7256 9.7315 9.7315 3.5759 3.5784 3.5784 0 0.00
−0.1 22.2555 22.2569 22.2304 9.7070 9.7129 9.7210 3.4726 3.4747 3.5186 0 0.00
−0.2 22.3165 22.3183 22.2669 9.6870 9.6928 9.7101 3.3668 3.3684 3.4579 0 0.00
−0.3 22.3752 22.3773 22.3026 9.6655 9.6712 9.6987 3.2584 3.2596 3.3964 0 0.00
−0.4 22.4317 22.4341 22.3375 9.6425 9.6481 9.6869 3.1472 3.1480 3.3339 0 0.11
−0.5 22.4861 22.4888 22.3717 9.6181 9.6234 9.6745 3.0330 3.0334 3.2706 0 0.21
−0.6 22.5386 22.5414 22.4051 9.5922 9.5969 9.6617 2.9157 2.9156 3.2063 0 0.21
−0.7 22.5891 22.5925 22.4052 9.5647 9.5700 9.6619 2.7949 2.7940 3.2057 0 1.03
−0.8 22.6379 22.6415 22.4165 9.5357 9.5410 9.6579 2.6703 2.6687 3.1832 0 99.79
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The last two columns of Table 4 show the percentage of lattice nodes (from t = 0 to T)
that each has at least one outgoing branch with a probability either negative or exceeding
unity. Note that this should not be confused with the situation where a price node at some
stage has a negative probability to prevail. A lattice node may receive many incoming
branches from other nodes in the previous stage. While some of the incoming branches
may have negative probabilities, it is unlikely that the resultant probability for reaching
this node is negative.

Basically, the option prices using Best-Fit are very close to the exact values, within
one cent. It can be seen that Best-Fit maintains lattice feasibility for all ρ values tested,
while H&W meets the feasibility condition only when |ρ| ≤ 0.3. When 0.3 < |ρ| ≤ 0.7,
there is only a very small number of nodes containing branches with negative probabilities.
However, when |ρ| = 0.8, almost all the nodes (99.79%) violate the feasibility condition.
This justifies our selection of H&W as the counterpart, as this method indeed provides
very good approximations of branching probabilities that solve (Q). Figure 2 displays the
percentage deviation of the obtained option prices from the exact ones by changing ρ using
Best-Fit and H&W.
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Figure 2. Deviation (%) of the values of European call options from the exact ones using Best-Fit and
H&W for branching probabilities.

It can be seen from Figure 2 that H&W obtains a precise value only when there is no
correlation. As |ρ| increases, the option value obtained by H&W starts to deviate from
the exact values. The deviation is roughly a piecewise linear function of ρ, whose slope
doubles when |ρ| > 0.6. On the other hand, the deviations of Best-Fit are largely confined
within 0.6 cents (less than 0.1%). Comparing both methods, we make the following three
observations for H&W’s method:

• Consider the OTM option and the ITM option when |ρ| ≤ 0.3. Though lattice feasibil-
ity is fully maintained, the error persists for ρ 6= 0. Therefore, lattice feasibility alone
cannot guarantee good valuation, especially with a finite time step ∆t. The valuation
error would converge to zero only when ∆t is sufficiently small. Therefore, lattice
feasibility is merely a necessary condition for accurate valuations. From this perspec-
tive, the optimization approach for finding a feasible and optimal set of branching
probabilities makes sense.
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• Consider the ATM option. Its pricing errors are relatively small for all ρ values tested.
Even when ρ = |0.8|, where infeasibility occurs at almost all nodes, the error does not
seem too bad (0.3% when ρ = 0.8; 1.3% when ρ = −0.8). This shows that sometimes
negative probabilities seem to matter less.

• Lattice infeasibility means that there are some distortions on the probability distri-
bution of the underlying uncertainties. The effect can be overvaluation (e.g., OTM
and ATM options when ρ < 0) or undervaluation (e.g., ITM option when ρ < 0) of
the options.

In Figure 3, we plot the exact probability density functions (PDF) of the (logarithm of
the) stock price (dotted curve) at different correlation levels, and the PDF approximated
by the lattice using H&W (solid curve) and Best-Fit for branching probabilities. The ex-
act PDF is obtained from a standard integration scheme of characteristic functions (e.g.,
see Rough 2013). The probability distributions are taken when ρ = ±0.3, ±0.6, and ±0.8.
At ρ = ±0.3, both Best-Fit and H&W achieve lattice feasibility (with the first two mo-
ments of price and volatility deviations matched). There is no visible distortion in the
PDF from Figure 3, yet its OTM option price still has an error of more than 3% (12 cents).
This indicates that the optimization of (50) subtly improves the approximation of the
tail distribution.

When |ρ| > 0.3, the discrepancy between the exact PDF and the PDF approximated by
H&W becomes visible. Using ρ = ±0.8 in Figure 3 as an example, where the discrepancy
is most distinct, the exact PDF and the one approximated by Best-Fit are still visually
indistinguishable. In general, when ρ > 0.3 (or ρ < −0.3), it can be seen that, using H&W,
the price distribution is distorted such that it is slightly less skewed to the right (or left)
with a bigger (or smaller) mode. In Figure 3, the three strike prices tested corresponding to
OTM, ATM, and ITM options are also identified. When ρ > 0.3 (or ρ < −0.3), it can be seen
that using this distorted price distribution to value a European call option undervalues
(or overvalues) the OTM and ATM ones, but overvalues (or undervalues) the ITM option.
We make the following three additional observations:

• The price of an OTM option is directly impacted by lattice infeasibility as its value is
determined by the tail distribution, which is the part of the probability distribution
that is most affected by negative probabilities.

• For an ITM option, a wider part of the probability distribution becomes relevant,
which tends to involve both tails and the central part, making the overall effects hard
to predict.

• For an ATM option, the distorted tail part seems less important because the less
distorted central part dominates the valuation.

To sum up, since, in reality, how the underlying distribution is distorted by lattice
infeasibility is unknown a priori, it seems unlikely that one could exploit negative proba-
bilities. However, if one really hopes for negative probabilities to work to their advantage,
it is less likely to happen on OTM options, but more probable on ATM options.
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Figure 3. Illustration of the underlying distributions of ln ST .

5. Performance of the Best-Fit Lattice

In this section, we provide more numerical results for a lattice equipped with lattice
feasibility and the Best-Fit method for branching probabilities. We continue to focus on
the Heston SV model in (49a)–(49b). Since this approach guarantees feasible branching
probabilities that also fit the underlying probability distribution well, with no surprise,
all results indicate that such an approach is very reliable for accurate option valuations.

5.1. European Options Valuation

To make a comprehensive analysis of pricing errors, we compare the option prices
obtained by the proposed lattice model with the exact solutions of European call options of
various specifications. These specifications are drawn from combinations of the following
factors: S0 = 100, q = 2% (dividend yield), T = 0.5 years (time to maturity), m = 0.04,
λ ∈ {2, 4, 8}, ξ ∈ {0.3, 0.6, 0.9}, K ∈ {90, 100, 110} (strike price), r ∈ {3%, 5%, 7%},
V0 ∈ {0.02, 0.04, 0.08}, and ρ ∈ {−0.5,−0.25, 0, 0.25, 0.5}. Those combinations that do
not meet the Feller condition (i.e., 2λm ≥ ξ2) are excluded. After that, 540 sets remain
for the testing. The accuracy measure used in this paper is the root mean squared error
(RMSE), defined as follows:

RMSE =

√√√√ 1
540

540

∑
i=1

e2
i , (52)

where the error ei is the difference between the exact value of the i-th European call option
and the estimated option value using the proposed lattice model.
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From Table 5, it can be seen that the pricing errors of the proposed lattice model are
generally small compared with the exact option prices even if the number of time steps
(N) is small. For instance, when N = 10, the RMSE of the proposed trinomial method
for pricing European call options is $0.0061, which is far smaller than the bid-ask spreads
observed in the market. Moreover, Table 5 indicates that the rate of convergence of the
proposed method is of order O(1/N).

Table 5. The accuracy of the proposed Best-Fit model for pricing European call options under the
Heston SV model.

No. of Time Steps (N) 10 20 30 40

RMSE 0.0061 0.0027 0.0024 0.0013

5.2. Convergence and Complexity

Consider another test case taken from Table 1 of Ball and Roma (1994) with r = q = 0,
ρ = 0, λ = 4, m = V0 = 0.09, and ξ = 0.4. In addition, assume T = 0.5 months,
S0 = K = $100. Using this example, we also investigate the convergence pattern of the
option prices obtained by the proposed lattice approach and the exact value ($8.3595) when
the number of time steps increases, along with its computational requirement. The results
are presented in Figure 4. As seen in the upper portion of Figure 4, the option prices
obtained by the proposed lattice model do converge to the exact price. We have investigated
the convergence pattern for more than twenty cases, and the results are similar to those
shown in Figure 4. In the lower portion, we show the CPU times required for obtaining the
option values. The CPU times (in seconds) are measured on a personal computer with Intel
Core 2 Duo processor E8400 of 3 GHz. We also record the number of lattice nodes in the
final stage. Both the CPU times and the node numbers are displayed in logarithmic scales
on both the horizontal and vertical axes. The purpose is to check whether the computational
complexity is exponential. A linear behavior in a log-log graph, such as the lower portion
of Figure 4, indicates that the complexity is polynomial. It is estimated for this particular
instance that the CPU time is approximately of order O(N4) and the number of nodes in
the final stage is of order O(N3), where N is the number of steps. The result indicates that,
as N increases, most branches do recombine, which prevents the number of lattice nodes
from growing exponentially with N. In this example, when N = 30, the option value is
already within 0.2% of the exact value using about three seconds of CPU time and about
40,000 nodes in the final stage. When N = 45, the pricing error of the proposed approach
is within 0.1%, using about 21 s of CPU time and 160,000 lattice nodes in the final stage.
The number of lattice nodes involved in the proposed approach is indeed much greater
than that of using traditional recombining lattices. However, the computation using the
proposed lattice model can be managed to be quite efficient.



J. Risk Financial Manag. 2021, 14, 241 20 of 32

3

4

5

6

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

-2

-1

0

1

2

3

Logarithm of the number of time steps (log N)

8.24

8.28

8.32

8.36

8.40

10 20 30 40 50 60 70

Number of time steps (N)

P
ri

ce
 (

$
)

1,000

100

10

1

0.1

0.01

1,000,000

100,000

10,000

1,000

C
P

U
 T

im
e 

(s
ec

)

N
o

. 
o

f 
n

o
d

es
 i

n
 f

in
al

 s
ta

g
e

CPU

No. of nodes

Figure 4. Convergence pattern of the option prices and the computational requirement.

5.3. American Options Valuation

One unique benefit for the lattice approach is its ability to value American options. We
use the proposed lattice model (Best-Fit) to value American put option under the Heston
SV model with parameters: strike K = $100. λ = 3.0, m = 0.04, r = 0.05, q = 0, and ξ = 0.1.
The results are summarized in Table 6. We compare the result with that reported in Beliaeva
and Nawalkha (2010), denoted by ‘B&N Tree’ in the same table. We also apply the control
variate (CV) technique to value the American put as follows:

American Put (CV) = American Put (Best-Fit) +(
European Put (Closed-Form) - European Put (Best-Fit)

)
Each of the last two columns of Table 6 indicates the difference, labeled as ‘error’,

between an obtained American put option prices (by either the proposed lattice model or
the B&N Tree) and that by the CV technique. It can be seen that most errors are smaller
than one cent, and, in most cases, the differences obtained by the Best-Fit model are smaller
than the corresponding ones reported in Beliaeva and Nawalkha (2010). Furthermore, the
approach that achieves a smaller error is highlighted in bold in each comparison.

A more detailed comparison is summarized in Table 7. There are 36 cases tested
in Table 6 (corresponding to 36 rows), which can be divided into several categories given
in Table 7. The number of wins (in terms of a lower error) and the percentage of winning
are recorded, along with the corresponding RMSE of each category. Overall, the Best-Fit
model achieves smaller errors in 61% of all 36 test cases; our RMSE (0.0081) is only 44% of
that (0.0181) by the B&N Tree (see Table 6). In all categories summarized in Table 7, the
Best-Fit model outperforms the B&N tree approach in all categories either by the number
of case wins or RMSE. In terms of the correlation ρ, Table 7 shows that the Best-Fit model
performs especially well when the correlation is high (ρ = −0.7) such that the Best-Fit
model does better in 67% of cases, and the RMSE is only 1/3 of the B&N Tree approach.
When |ρ| is high, lattice feasibility becomes harder to meet. Since the proposed lattice
model maintains lattice feasibility and can best fit the underlying probability distribution
for all ρ, the results in Table 7 show that it indeed performs relatively well when |ρ| is high.

To summarize Table 7, it is fair to say that the Best-Fit model performs better especially
when |ρ| is high, T is greater than one month, and/or for the options that are ITM or OTM.
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Table 6. American put price computed using Best-Fit model and control variate (CV) technique, compared with the result
reported in Beliaeva and Nawalkha (2010).

S0 ρ V0 T Best-Fit Best-Fit CV B&N Tree B&N Tree CV Euro Put Error Error
(N = 50) (N = 50) (N = 50) (N = 50) True Value (Best-Fit) (B&N Tree)

90 −0.1 0.04 0.0833 10.0000 9.9996 10.0000 10.0001 9.6699 0.0004 0.0001
90 −0.7 0.04 0.0833 10.0000 10.0010 10.0000 9.9996 9.6533 0.0010 0.0004
100 −0.1 0.04 0.0833 2.1253 2.1262 2.1257 2.1249 2.0950 0.0009 0.0008
100 −0.7 0.04 0.0833 2.1279 2.1274 2.1250 2.1263 2.0971 0.0006 0.0013
110 −0.1 0.04 0.0833 0.1092 0.1090 0.1087 0.1090 0.1083 0.0002 0.0003
110 −0.7 0.04 0.0833 0.1259 0.1275 0.1282 0.1273 0.1265 0.0016 0.0009
90 −0.1 0.16 0.0833 10.7103 10.7109 10.7195 10.7099 10.5957 0.0006 0.0096
90 −0.7 0.16 0.0833 10.6858 10.6829 10.6709 10.6800 10.5668 0.0030 0.0091
100 −0.1 0.16 0.0833 4.2187 4.2166 4.2275 4.2163 4.1859 0.0021 0.0112
100 −0.7 0.16 0.0833 4.2196 4.2156 4.2184 4.2147 4.1852 0.0040 0.0037
110 −0.1 0.16 0.0833 1.1721 1.1667 1.1667 1.1669 1.1608 0.0053 0.0002
110 −0.7 0.16 0.0833 1.1962 1.1944 1.2176 1.1942 1.1882 0.0018 0.0234
90 −0.1 0.04 0.2500 10.1653 10.1654 10.1678 10.1663 9.6430 0.0002 0.0015
90 −0.7 0.04 0.2500 10.1197 10.1208 10.1162 10.1207 9.5698 0.0010 0.0045
100 −0.1 0.04 0.2500 3.4750 4.4765 3.4736 3.4727 3.3684 0.0014 0.0009
100 −0.7 0.04 0.2500 3.4848 3.4816 3.4803 3.4801 3.3770 0.0032 0.0002
110 −0.1 0.04 0.2500 0.7725 0.7729 0.7722 0.7730 0.7584 0.0003 0.0008
110 −0.7 0.04 0.2500 0.8429 0.8417 0.8462 0.8412 0.8259 0.0012 0.0050
90 −0.1 0.16 0.2500 12.1895 12.1773 12.1898 12.1752 11.8933 0.0122 0.0146
90 −0.7 0.16 0.2500 12.1256 12.1135 12.0626 12.1061 11.8287 0.0121 0.0435
100 −0.1 0.16 0.2500 6.5014 6.4937 6.5027 6.4936 6.3755 0.0077 0.0091
100 −0.7 0.16 0.2500 6.4986 6.4898 6.4855 6.4908 6.3735 0.0089 0.0053
110 −0.1 0.16 0.2500 3.0985 3.0900 3.0874 3.0900 3.0451 0.0085 0.0026
110 −0.7 0.16 0.2500 3.1550 3.1453 3.1731 3.1479 3.1011 0.0097 0.0252
90 −0.1 0.04 0.5000 10.6472 10.6466 10.6431 10.6422 9.8582 0.0006 0.0009
90 −0.7 0.04 0.5000 10.5627 10.5636 10.5575 10.5609 9.7572 0.0009 0.0034
100 −0.1 0.04 0.5000 4.6481 4.6492 4.6445 4.6439 4.4126 0.0011 0.0006
100 −0.7 0.04 0.5000 4.6685 4.6636 4.6672 4.6610 4.4312 0.0050 0.0062
110 −0.1 0.04 0.5000 1.6812 1.6812 1.6804 1.6813 1.6220 0.0001 0.0009
110 −0.7 0.04 0.5000 1.7906 1.7872 1.7950 1.7856 1.7240 0.0034 0.0094
90 −0.1 0.16 0.5000 13.3245 13.3089 13.2938 13.2944 12.7057 0.0155 0.0006
90 −0.7 0.16 0.5000 13.2393 13.2230 13.0958 13.1731 12.6171 0.0162 0.0773
100 −0.1 0.16 0.5000 8.0210 8.0041 7.9928 7.9943 7.6974 0.0168 0.0015
100 −0.7 0.16 0.5000 8.0174 8.0001 7.9432 7.9810 7.6965 0.0174 0.0378
110 −0.1 0.16 0.5000 4.5590 4.5430 4.5221 4.5383 4.3942 0.0160 0.0162
110 −0.7 0.16 0.5000 4.6343 4.6188 4.5972 4.6118 4.4716 0.0155 0.0146

RMSE 0.0080 0.0181

Table 7. Comparison summary of the results in Table 6.

No. of Wins (%) RMSE

Category No. of Cases Best-Fit B&N Tree Best-Fit B&N Tree

Overall 36 22 (61%) 14 (39%) 0.0080 0.0181
ρ = −0.1 18 10 (56%) 8 (44%) 0.0078 0.0066
ρ = −0.7 18 12 (67%) 6 (33%) 0.0082 0.0247
V0 > m 18 11 (61%) 7 (39%) 0.0112 0.0254
V0 ≤ m 18 11 (61%) 7 (39%) 0.0018 0.0033

In-the-money (ITM) 12 9 (75%) 3 (25%) 0.0082 0.0263
At-the-money (ATM) 12 5 (42%) 7 (58%) 0.0081 0.0120

Out-of-the-money (OTM) 12 8 (67%) 4 (33%) 0.0077 0.0122
T = 1/12 yr 12 6 (50%) 6 (50%) 0.0023 0.0085
T = 1/4 yr 12 8 (67%) 4 (33%) 0.0072 0.0156
T = 1/2 yr 12 8 (67%) 4 (33%) 0.0116 0.0259

6. Conclusions

In this paper, we focus on two-factor lattices for general diffusion processes where
volatilities can be state-dependent, including stochastic volatility models. For a lattice
approach, although it is common knowledge that branching probabilities must be between
zero and one, few methods can guarantee all branching probabilities of all nodes in all
stages are always legitimate. We refer to this property as lattice feasibility. Since it is not
unusual to encounter negative probabilities, some practitioners have argued that negative



J. Risk Financial Manag. 2021, 14, 241 22 of 32

probabilities are not necessarily ‘bad’ and may be further exploited. We have developed a
theoretical framework of lattice feasibility to investigate how negative probabilities may
impact option pricing in a lattice approach. We have shown that lattice feasibility can be
achieved by adjusting a lattice’s configuration (e.g., grid sizes).

Failing to meet lattice feasibility means that some branching probabilities in a lattice
are negative or exceed unity, which implies distortions on the probability distribution of
the underlying variables. Depending on the distortion, the accuracy of options pricing may
be affected. We have found that out-of-the-money options are most affected, followed by
in-the-money options and at-the-money options. It has also been observed that negative
probabilities indeed matter less in some situations. Since, in reality, how an underlying
probability distribution is distorted by lattice infeasibility is unknown a priori, it seems
unlikely that one could exploit negative probabilities consistently as some practitioners
may hope.

Although lattice feasibility is a necessary condition for weak convergence of approx-
imating the underlying diffusion processes, our numerical tests also show that lattice
feasibility alone may not be sufficient to guarantee accurate valuation, especially when
the time step of the lattice is not especially small. Since legitimate branching probabilities
may not be unique, we use an optimization approach to find branching probabilities that
are not only legitimate but also can best fit the probability distribution of the underlying
variables. Extensive numerical tests show that this optimized lattice model is a reliable and
robust approach for financial option valuations.
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Appendix A

Appendix A.1. Proof of Proposition 1

From (15a)–(15c), apparently

pu ≥ 0, pd ≥ 0, pm ≥ 0 ⇔ −( ε

h
)2 +

|ε|
h
≤ x2

c2h2 ≤ 1− (
ε

h
)2 (A1)

For pu, pm, and pd to be legitimate for all ε ∈ [−0.5, 0.5], we consider

max
|ε|≤0.5

(
−( ε

h
)2 +

|ε|
h

)
≤ x2

c2h2 ≤ min
|ε|≤0.5

(
1− (

ε

h
)2
)

. (A2)

The upper bound of (A2) is 1− 1/(2h2) achieved at ε = 0.5. The lower bound is
achieved at ε = ±0.5. Thus,

h
2
− 1

4
≤
(

x
c

)2

≤ h2 − 1
4

, (A3)
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From (9), it is clear that the middle term of (A3) is within the following interval:(
x
c

)2

∈
{

[1/c2, 1.52/c2), if h = 1,
[(h− 0.5)2/c2, (h + 0.5)2/c2), if h ≥ 2.

(A4)

For both (A3) and (A4) to hold, we must have for h ∈ N and

(h + 0.5)2

c2 ≤ h2 − 1
4

(A5a)

max(
1
c2 ,

(h− 0.5)2

c2 ) ≥ h
2
− 1

4
. (A5b)

Thus,
h + 0.5
h− 0.5

≤ c2 ≤ max(1, (h− 0.5)2)(
h
2
− 1

4
)−1 (A6)

Plugging h = 1, 2, 3, · · · to (A6) gives the following ranges of c2:

3 ≤ c2 ≤ 4, if h = 1

5/3 ≤ c2 ≤ 3, if h = 2

7/5 ≤ c2 ≤ 5, if h = 3

9/7 ≤ c2 ≤ 7, if h = 4

· · ·

When h = 1, apparently c2 must be 3. When h ≥ 2, the upper bound of c2 increases
with h, while the lower bound decreases. Therefore, for h ≥ h, h sets the bounds. That is,√

(h + 0.5)/(h− 0.5) ≤ c ≤
√

2h− 1 for h ≥ 2.

Appendix A.2. Proof of Proposition 2

The proof is based on Durrett (1996) where the conditions for weak convergence from
Markov chains to diffusion processes are given. To present our proof, we first give the
following lemma which is taken from Lemma 8.2 of (Durrett 1996, p. 306) and adapted
to our one-factor case. For convenience, we introduce the following definitions for the
one-factor lattice Y∆t

t .

α∆t(y) = (∆t)−1E[(Y∆t
t+∆t − y)|Y∆t

t = y],

β∆t(y) = (∆t)−1E[(Y∆t
t+∆t − y)2|Y∆t

t = y],

γ∆t
p (y) = (∆t)−1E[|Y∆t

t+∆t − y|p|Y∆t
t = y].

They are concerned with the first, second, and higher (absolute) moments of the
change in lattice across ∆t.

Lemma A1. Suppose that Y∆t
0 = Y0. If there exists a p ≥ 2 and for all R < ∞, we have

(i) lim
∆t↓0

sup
|y|≤R

|α∆t(y)− µ(y)| = 0,

(ii) lim
∆t↓0

sup
|y|≤R

|β∆t(y)− σ2(y)| = 0,

(iii) lim
∆t↓0

sup
|y|≤R

γ∆t
p (y) = 0,

then the one-factor lattice Y∆t
t converges weakly to Yt as ∆t→ 0.
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To prove Proposition 2, we need to check the above three conditions. Note that
conditions (i) and (ii) are true because (17a)–(17c) hold for all y. Then, we check condition
(iii) with p = 4 and have

γ∆t
4 (y) = (∆t)−1E[|Y∆t

t+∆t − y|4|Y∆t
t = y]

= (∆t)−1(pu|(k + h)∆y|4 + pm|k∆y|4 + pd|(k− h)∆y|4)

≤ (∆t)−1(|(k + h)∆y|4 + |k∆y|4 + |(k− h)∆y|4)

≤ (∆t)−13(k + h)4(∆y)4.

Note that

∆y = cσs
√

∆t, k(y) =
⌊

µ(y)∆t
∆y

+ 0.5
⌋

, h(y) =
⌊

σ(y)
σs + 0.5

⌋
.

Fix an arbitrarily large R < ∞. For any y such that |y| ≤ R (thus µ(y) and σ(y) are
finite) and for a sufficiently small ∆t, we have

|k(y)| ≤ sup
|y|≤R

|µ(y)
cσs |

√
∆t + 0.5 ≤ 1, |h(y)| ≤ sup

|y|≤R
|σ(y)

σs |+ 1 = M < ∞.

Putting these together, we have

sup
|y|≤R

γ∆t
4 (y) ≤ 3c4(σs)4(M + 1)4∆t→ 0 as ∆t→ 0.

Thus, condition (iii) is satisfied.

Appendix A.3. Proof of Proposition 3

Before we prove Proposition 3, some preparation needs to be done. Equation (20) is
equivalent to: ⌊

y
∆y

⌋
+

⌊
−λ(y−m)∆t

∆y + 0.5
⌋
−
⌊

ξ
√

y
σs + 0.5

⌋
−
⌊

ymin

∆y

⌋
=

⌊
y

∆y

⌋
+

⌊
−λ(y−m)∆t

∆y + 0.5
⌋
−
⌊

ξc
√

∆t
√

y
∆y + 0.5

⌋
−
⌊

ymin

∆y

⌋
≥ 0

(A7a)

Likewise, (21) is equivalent to:⌊
−λ(y−m)∆t

∆y
+ 0.5

⌋
−
⌊

ξc
√

∆t
√

y
∆y

+ 0.5
⌋
≥ 0 (A7b)

Since dealing with the floor functions is cumbersome, the following lemma enables us
to consider the sufficient conditions without the floor functions that imply (A7a) and (A7b).

Lemma A2. Suppose a1, · · · , a4 ∈ R. The following two statements are true:

(a) If a1 + a2 − a3 − a4 ≥ 1, then ba1c+ ba2 + 0.5c − ba3 + 0.5c − ba4c ≥ 0.

(b) If a2 − a3 ≥ 0, then ba2 + 0.5c − ba3 + 0.5c ≥ 0.

Proof. Let n1 = ba1c, n2 = ba2 + 0.5c, n3 = ba3 + 0.5c, and n4 = ba4c. This implies that
a1 ∈ [n1, n1 + 1), a2 ∈ [n2 − 0.5, n2 + 0.5), a3 ∈ [n3 − 0.5, n3 + 0.5), and a4 ∈ [n4, n4 + 1).

(a) We have a1 + a2− a3− a4 ∈ (n1 + n2− n3− n4− 2, n1 + n2− n3− n4 + 2). If n1 + n2−
n3 − n4 < 0, i.e., n1 + n2 − n3 − n4 ≤ −1, then a1 + a2 − a3 − a4 < 1. This means that
a1 + a2 − a3 − a4 ≥ 1 implies n1 + n2 − n3 − n4 ≥ 0.
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(b) Similarly, a2 − a3 ∈ (n2 − n3 − 1, n2 − n3 + 1). If n2 − n3 < 0, i.e., n2 − n3 ≤ −1, then
a2 − a3 < 0. This means that, if a2 − a3 ≥ 0, then n2 − n3 ≥ 0.

Using Lemma A2, we consider the sufficient condition of (A7a) as follows:

y
∆y

+
−λ(y−m)∆t

∆y
−

ξc
√

∆t
√

y
∆y

− ymin

∆y
≥ 1, (A8)

which is equivalent to

(1− λ∆t)y− ξc
√

∆t
√

y + (λm∆t− ymin − ∆y) ≥ 0. (A9)

We want to show that ymin > 0 exists such that (A9) holds for all y ≥ 0. Then, using
Lemma A2(a), this implies that (20) holds for all y ≥ 0.

For (A7b), we consider the following sufficient condition using Lemma A2(b):

λ(m− ∆y)∆t
∆y

−
ξc
√

∆y
√

∆t
∆y

=
−∆t
∆y

(∆y +
ξc√
∆t

√
∆y− λm) ≥ 0, (A10)

which is equivalent to

∆y +
ξc√
∆t

√
∆y ≤ λm. (A11)

Lemma A3. The following two statements are true:

(a) Given a, b, d ∈ R, if a > 0, b > 0, d > 0, and b2 ≤ 4ad, then ay− b
√

y + d ≥ 0 for ∀y ≥ 0.

(b) If α1 ≥ 0 and α2 > 0, then y + α1
√

y ≤ α2 has a solution y > 0.

Proof.

(a) Given a, b, d ∈ R, a > 0, b > 0, d > 0, and b2 ≤ 4ad, consider f (y) = a2y2 + (2ad−
b2)y + d2. Note that f (y) is a quadratic convex function. Consider two cases: (I) If
b2 ≤ 2ad, then f ′(0) = 2ad − b2 ≥ 0; f (y) is increasing and is positive for ∀y ≥ 0.
(II) If 2ad < b2 ≤ 4ad, f has a local minimum at y∗ = (b2 − 2ad)/(2a2) > 0 with
objective value f (y∗) = b2(4ad− b2)/(4a2) ≥ 0. Both cases imply that f (y) ≥ 0, ∀y ≥ 0.
Since a > 0 and d > 0, f (y) = a2y2 + (2ad − b2)y + d2 ≥ 0, ∀y ≥ 0 implies that
ay + d ≥ b

√
y, ∀y ≥ 0.

(b) When y = 0, the left-hand-side of y + α1
√

y = 0 < α2. Therefore, by continuity, there
exists some y > 0 to satisfy the inequality y + α1

√
y ≤ α2.

Now, we are ready to prove Proposition 3 using Lemmas A2 and A3. Let a = 1− λ∆t,
b = ξc

√
∆t, d = λm∆t− ymin − ∆y, where ∆y is from (19). From Lemma A3(a), if a =

1− λ∆t > 0, which is condition (i) of Proposition 3, and b2 ≤ 4ad, then (A9) holds for
∀y ≥ 0, which further implies that (20) holds for ∀y ≥ 0. Now, consider the following
equivalent statements:

b2 ≤ 4ad (A12)

⇔ ξ2c2∆t ≤ 4(1− λ∆t)(λm∆t− ymin −
ξc

max(h− 0.5, 1)
√

ymin
√

∆t) (A13)

⇔ ymin +
ξc
√

∆t
max(h− 0.5, 1)

√
ymin ≤ ∆t

(
λm− ξ2c2

4(1− λ∆t)

)
. (A14)
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Using Lemma A3(b), ymin > 0 exists if the right-hand side of (A14) is strictly positive.
That is,

λm >
ξ2c2

4(1− λ∆t)
, (A15)

which is given by condition (ii) of Proposition 3. Suppose a feasible ymin = ỹa > 0 is found
that satisfies (A14). Using Lemma A2(a) and Lemma A3(a), we conclude ymin > 0 exists
such that (20) holds for ∀y ≥ 0.

Using ymin = ỹa to evaluate ∆y from (19), if ỹa ≥ ∆y, we are done. Otherwise,
k(∆y)− h(∆y) ≥ 0 is imposed as given in (21), which is reduced to (A11). Using Lemma
A3(b), it is clear that ∆y > 0 exists to ensure (A11). However, to ensure that ymin < ∆y,
from (19), the following upper bound of ∆y must also be imposed:

∆y < ξ2c2∆t/ max(h− 0.5, 1)2 (A16)

Using Lemma A3(b) again, it is clear that a ∆y > 0 exists that also meets (A16).
Since ∆y is a function of ymin from (19), we conclude that a ymin > 0 exists, say ymin =
ỹb, such that (21) holds. Since ỹb < ỹa, it is clear that ỹa also meets (A14). Therefore,
both (A7a) and (A7b) hold with ymin = ỹb.

To sum up, given conditions (i) and (ii) of Proposition 3, ymin > 0 exists (e.g., equal to
min(ỹa, ỹb) > 0). This means that the entire lattice can be well contained in R+.

Appendix A.4. Proof of Proposition 4

Given Feller’s condition λm ≥ 0.5ξ2, we want to show there exists a lattice configu-
ration (∆t, h, c) such that c2/(1− λ∆t) ≤ 2. To do so, we choose a small ∆t > 0 such that
λ∆t < 0.5, i.e., 2(1− λ∆t) > 1. We also choose a big h such that c2 is very close to 1 while
still being greater than 1 based on (16), and furthermore 2(1− λ∆t) ≥ c2 > 1. This would
imply 1− λ∆t > 0, which is condition (i) of Proposition 3; and

λm ≥ 0.5ξ2 ≥ c2

4(1− λ∆t)
ξ2, (A17)

which is condition (ii) of Proposition 3. The result follows from Proposition 3.

Appendix A.5. Proof of Proposition 5

The proof for the two-factor case is in the same spirit as the one-factor case treated in
Section A.2. For the two-factor lattice (Y∆t

1,t , Y∆t
2,t ), define

α∆t
l (y1, y2) = (∆t)−1E[(Y∆t

l,t+∆t − yl)|(Y∆t
1,t , Y∆t

2,t ) = (y1, y2)], l = 1, 2,

β∆t
l (y1, y2) = (∆t)−1E[(Y∆t

l,t+∆t − yl)
2|(Y∆t

1,t , Y∆t
2,t ) = (y1, y2)], l = 1, 2,

δ∆t(y1, y2) = (∆t)−1E[(Y∆t
1,t+∆t − y1)(Y∆t

2,t+∆t − y2)|(Y∆t
1,t , Y∆t

2,t ) = (y1, y2)],

γ∆t
p (y1, y2) = (∆t)−1E[((Y∆t

1,t+∆t − y1)
2 + (Y∆t

2,t+∆t − y2)
2)

p
2 |(Y∆t

1,t , Y∆t
2,t ) = (y1, y2)].

With the above definitions, we may restate Lemma 8.2 of Durrett (1996) for the two-
factor case as follows.
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Lemma A4. Suppose that (Y∆t
1,0, Y∆t

2,0) = (Y1,0, Y2,0). If there exists a p ≥ 2 and for all R < ∞,
we have

(i) lim
∆t↓0

sup
|(y1,y2)|≤R

|α∆t
l (y1, y2)− µl(y1, y2)| = 0, l = 1, 2,

(ii) lim
∆t↓0

sup
|(y1,y2)|≤R

|β∆t
l (y1, y2)− σ2

l (y1, y2)| = 0, l = 1, 2,

lim
∆t↓0

sup
|(y1,y2)|≤R

|δ∆t(y1, y2)− ρ(y1, y2)σ1(y1, y2)σ2(y1, y2)| = 0,

(iii) lim
∆t↓0

sup
|(y1,y2)|≤R

γ∆t
p (y1, y2) = 0,

then (Y∆t
1,t , Y∆t

2,t ) converges weakly to (Y1,t, Y2,t) as ∆t→ 0.

The proof of Proposition 5 requires the above three conditions. Conditions (i) and (ii)
are true because (25a)–(25d) hold. To check condition (iii) with p = 4, we observe that

γ∆t
4 (y1, y2) = (∆t)−1 ∑

i,j∈Ω
pij

[
((k1 + n1h1)∆y1)

2 + ((k2 + n2h2)∆y2)
2
]2

≤ (∆t)−19
[
((k1 + h1)∆y1)

2 + ((k2 + h2)∆y2)
2]2,

where n1, n2 ∈ {−1, 0, 1}. Using an argument similar to Section A.2, we conclude that, for
a given R < ∞, there exists a constant M < ∞ such that γ∆t

4 (y1, y2) ≤ M∆t for all lattice
nodes with |(y1, y2)| < R. This shows that condition (iii) is satisfied.

Appendix A.6. Proof of Proposition 6

(i) First, observe from (15a)–(15c) that replacing ε by −ε is equivalent to switching
pu and pd. Consider the optimization problem of Rmax with a feasible solution of
{pij}, i, j ∈ Ω, as shown in Figure A1. The objective function is puu + pdd − pud − pdu,
which is the sum of the northwest and southeast corner elements minus the sum of the
other two corner elements. It can be seen that switching the first and the third columns
(i.e., replacing p̃2u and p̃2d), and the first and the third rows (i.e., replacing p̃1u and p̃1d),
yields the same objective value. This implies that Rmax(ε1, x1, γ1, h1, ε2, x2, γ2, h2) =
Rmax(−ε1, x1, γ1, h1,−ε2, x2, γ2, h2).

uup ump udp

mup mmp mdp

dup dmp ddp )(~
11dp

)(~
11mp

)(~
11up

)(~
22up )(~

22mp )(~
22dp

Figure A1. Interpretation of (Q).

(ii) Continuing the argument in (i), if one only switches the first and the third columns or
the first and the third rows, the objective value will still be the same but with a different
sign. Therefore, Rmax(ε1, x1, γ1, h1, ε2, x2, γ2, h2) =−Rmin(ε1, x1, γ1, h1,−ε2, x2, γ2, h2)
= −Rmin(−ε1, x1, γ1, h1, ε2, x2, γ2, h2).



J. Risk Financial Manag. 2021, 14, 241 28 of 32

(iii) From (ii), it is clear that

min
θl∈Θl(hl)

1
γ1γ2

(
Rmax(ε1, x1, γ1, h1, ε2, x2, γ2, h2)−

ε1ε2

h1h2

)
(A18a)

= min
θl∈Θl(hl)

1
γ1γ2

(
−Rmin(−ε1, x1, γ1, h1, ε2, x2, γ2, h2)−

ε1ε2

h1h2

)
(A18b)

= − max
θl∈Θl(hl)

1
γ1γ2

(
Rmin(−ε1, x1, γ1, h1, ε2, x2, γ2, h2)−

(−ε1)ε2

h1h2

)
(A18c)

= − max
θl∈Θl(hl)

1
γ1γ2

(
Rmin(ε1, x1, γ1, h1, ε2, x2, γ2, h2)−

ε1ε2

h1h2

)
(A18d)

In (A18d), we use the fact that ε1 ∈ [−0.5, 0.5]; thus, replacing −ε1 by ε1 will not affect
the result of the optimization.

Appendix A.7. Proof of Proposition 7

See the proof of Lemma 2 in Tseng and Lin (2007).

Appendix A.8. Proof of Proposition 8

Let f0(z) ≡ min( f1(z), · · · , fn(z)), and zi ≡ arg minz∈D fi(z), i = 0, · · · , n. For
simplicity, we assume f1(z1) ≤ fi(zi), ∀i = 1, · · · , n. We want to show f0(z0) = f1(z1).

By the definition of zi, i = 1, · · · , n, we have f1(z1) = min{ f1(z1), · · · , fn(z1)} =
f0(z1). Thus, f1(z1) ≥ f0(z0). Furthermore, we have fi(zi) ≤ fi(z0), i = 1, · · · , n. Thus,
min{ f1(z1), · · · , fn(zn)} ≤ min{ f1(z0), · · · , fn(z0)}. This means that f1(z1) ≤ f0(z0).
Thus, we conclude that f0(z0) = f1(z1).

Appendix A.9. Proof of Theorem 1

We consider the six cases of Rmax
i , i = 1, · · · , 6, given in Proposition 7.

(i) Rmax
1 = p̃1u + p̃1d. From (31), we consider the following optimization problem:

min
θl∈Θl(hl)

1
γ1γ2

(Rmax
1 − ε1ε2

h1h2
) (A19a)

= min
θl∈Θl(hl)

1
γ1γ2

(
γ2

1
c2

1
+

ε2
1

h2
1
− ε1ε2

h1h2
) (A19b)

= min
θl∈Θl(hl)

1
γ1γ2

(
γ2

1
c2

1
+

φ2
1

h2
1
− φ1

2h1h2
) (A19c)

= w1, (A19d)

where, in (A19c), we optimize the objective function over ε1 and ε2 first, with γl > 0
and hl > 0 being fixed. The optimal solution is achieved at (ε1, ε2) = (φ1, 1/2), with
φ1 = min(h1/(4h2), 1/2).

(ii) This is a symmetric case for case (i) by exchanging the factor indices, 1 and 2.
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(iii) Rmax
3 = p̃1u + p̃2d, we have

min
θl∈Θl(hl)

1
γ1γ2

(Rmax
3 − ε1ε2

h1h2
) (A20a)

= min
θl∈Θl(hl)

1
γ1γ2

[
1
2

(
γ2

1
c2

1
+

ε2
1

h2
1
+

ε1

h1

)
+ (A20b)

1
2

(
γ2

2
c2

2
+

ε2
2

h2
2
− ε2

h2

)
− ε1ε2

h1h2

]
= min

θl∈Θl(hl)

1
γ1γ2

[
1
2

(
(

ε1

h1
− ε2

h2
+

1
2
)2 − 1

4

)
+ (A20c)

1
2

(
γ2

1
c2

1
+

γ2
2

c2
2

)]
= min

θl∈Θl(hl)

1
γ1γ2

[
1
8
(φ2

3 − 1) +
1
2

(
γ2

1
c2

1
+

γ2
2

c2
2

)]
(A20d)

= w3. (A20e)

Again, in (A20d), we optimize over (ε1, ε2) first, and the optimal solution is achieved
at (ε1, ε2) = (−0.5, 0.5) with φ3 = max{1− 1/h1 − 1/h2, 0}.

(iv) Rmax
4 = 1− ( p̃1d − p̃2d)− ( p̃2u − p̃1u). Repeat the same process and we have

min
θl∈Θl(hl)

1
γ1γ2

(Rmax
4 − ε1ε2

h1h2
) (A21a)

= min
θl∈Θl(hl)

1
γ1γ2

(
1 +

ε1

h1
− ε2

h2
− ε1ε2

h1h2

)
(A21b)

= min
θl∈Θl(hl)

1
γ1γ2

(
1 +

ε1

h1

)(
1− ε2

h2

)
(A21c)

= min
θl∈Θl(hl)

1
γ1γ2

(
1− 1

2h1

)(
1− 1

2h2

)
(A21d)

= w4, (A21e)

where in (A21d) we used the fact that the optimal solution for (ε1, ε2) is (−1/2, 1/2).

(v) For cases associated with Rmax
5 and Rmax

6 , they are symmetric counterparts of (iii) and
(iv) by exchanging the factor indices 1 and 2. This obtains the same lower bounds as
in (iii) and (iv).

Summarizing all four possible cases above, we conclude that

ρ̄ = c1c2 ·min{w1, w2, w3, w4}. (A22)

The proof is completed.

Appendix A.10. Proof of Proposition 9

From (11) and (40), we have σs
1 = σs

2/ξ. It follows that at any node

x1 =

√
y2

σs
1

=
ξ
√

y2

σs
2

= x2, (A23)

and
h1 = bx1 + 0.5c = bx2 + 0.5c = h2. (A24)

Thus,
γ1 =

x1

h1
=

x2

h2
= γ2. (A25)
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Appendix A.11. Proof of Theorem 2

This proof is similar to that of Theorem 1. Six cases corresponding to Rmax
1 to Rmax

6
will be discussed.

(i) Rmax
1 = p̃1u + p̃1d. Consider

min
x,h,ε2

h2

x2

(
Rmax

1 (θ1, θ2)

)
= min

x,h,ε2

h2

x2

(
x2

c2
1h2

)
=

1
c2

1

This corresponds to wH
1.

(ii) Rmax
2 = p̃2u + p̃2d. Consider

min
x,h,ε2

h2

x2

(
Rmax

2 (θ1, θ2)

)
= min

x,h,ε2

h2

x2

(
x2

c2
2h2

+
ε2

2
h2

)
=

1
c2

2
,

where the minimum is achieved at ε2 = 0. This corresponds to wH
2.

(iii) Rmax
3 = p̃1u + p̃2d, we have

min
x,h,ε2

h2

x2

(
Rmax

3 (θ1, θ2)

)
= min

x,h,ε2

h2

x2

(
1
2

(
x2

c2
1h2

+
x2

c2
2h2

)
+

1
2

(
− ε2

h
+

1
2

)2

− 1
8

)
(A26)

=
1
2
(

1
c2

1
+

1
c2

1
) + min

x,h

h2

x2

(
1
2

(
− 1

2h
+

1
2

)2

− 1
8

)
(A27)

=
1
2
(

1
c2

1
+

1
c2

1
) +

ĥ
2

(ĥ− 0.5)2

(
1
2

(
− 1

2ĥ
+

1
2

)2

− 1
8

)
(A28)

where in the minimization of (A26) over ε2, the minimum is achieved at ε2 = 0.5.
To solve the optimization in (A27), treat the objective function as a one-dimensional
function of x ≥ 1, which is a continuous variable, with h plugged in as bx + 0.5c from
(9). It can be seen that the objective function is discontinuous. Using computing tools
to display the one-dimensional function, subject to x ≥ max(h− 0.5, 1) from (14) and
h ≥ h, the global minimum is achieved at (h, x) = (ĥ, ĥ− 0.5), where ĥ = max(h, 2).

(iv) Rmax
4 = 1− ( p̃1d − p̃2d)− ( p̃2u − p̃1u).

min
x,h,ε2

h2

x2

(
Rmax

4 (θ1, θ2)

)
= min

x,h,ε2

h2

x2

(
1− ε2

h

)
(A29)

= min
x,h

h2

x2

(
1− 1

2h

)
=

h2

(h + 0.5)2

(
1− 1

2h

)
(A30)

where, in the minimization of (A29) over ε2, the minimum is achieved at ε2 = 0.5.
Using computing tools to solve the one-dimensional minimization in (A30), the global
minimum is achieved at h = h and x = h + 0.5− δ, where δ > 0 is infinitesimal.
The existence of an infinitesimal δ is to enforce the relation h = bx + 0.5c. However,
for obtaining the minimum value, which will just serve a bound in our purpose,
one essentially can just plug (h, x) = (h, h + 0.5) into (A29) to find the value of
the minimum.
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(v) Rmax
5 = p̃2u + p̃1d

min
x,h,ε2

h2

x2

(
Rmax

5 (θ1, θ2)

)
= min

x,h,ε2

h2

x2

(
1
2

(
x2

c2
1h2

+
x2

c2
2h2

)
+

1
2

(
ε2

h
+

1
2

)2

− 1
8

)
(A31)

=
1
2
(

1
c2

1
+

1
c2

1
) + min

x,h

h2

x2

(
1
2

(
−1
2h

+
1
2

)2

− 1
8

)
(A32)

=
1
2
(

1
c2

1
+

1
c2

1
) +

ĥ
2

(ĥ− 0.5)2

(
−(ĥ− 0.5)

4ĥ
2

)
,

where, in the minimization of (A31) over ε2, the minimum is achieved at ε2 = −0.5.
Following the steps described in (iii) to minimize (A32) as a one-dimensional problem
using computing tools, the global minimum is achieved at (h, x) = (ĥ, ĥ− 0.5), where
ĥ = max(h, 2). This term corresponds to wH

3. It can be seen that wH
3 is smaller than the

term in (A28). Thus, Rmax
3 does not contribute to ρ̄H.

(vi) Rmax
6 = 1− ( p̃2d − p̃1d)− ( p̃1u − p̃2u).

min
x,h,ε2

h2

x2

(
Rmax

6 (θ1, θ2)

)
= min

x,h,ε2

h2

x2

(
1 +

ε2

h

)
(A33)

= min
x,h

h2

x2

(
1− 1

2h

)
=

(h)2

(h + 0.5)2

(
1− 1

2h

)
(A34)

where, in the minimization in (A33) over ε2, the minimum is achieved at ε2 = −0.5.
Using computing tools to solve the one-dimensional minimization in (A34), the global
minimum is achieved at h = h and x = h + 0.5− δ, where δ > 0 is infinitesimal. Like
in (iv), one can simply plug (h, x) = (h, h + 0.5) into (A34). This corresponds to wH

4,
which is always smaller than the term in (A30). Thus, Rmax

4 does not contribute to ρ̄H.
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Costabile, Massimo, Ivar Massabò, and Emilio Russo. 2012. A forward shooting grid method for option pricing with stochastic

volatility. Journal of Derivatives 20: 67–78. [CrossRef]
Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross. 1985. A theory of the term structure of interest rates. Econometrica 53: 385–408.

[CrossRef]
Cox, John C., Stephen Ross, and Mark Rubinstein. 1979. Option pricing: A simplified approach. Journal of Financial Economics 7: 229–64.

[CrossRef]
Durrett, Richard. 1996. Stochastic Calculus: A Practical Introduction. Boca Raton: CRC Press Inc.
Feller, William. 1951. Two singular diffusion problems. Annals of Mathematics 54: 173–82. [CrossRef]

http://doi.org/10.1214/13-AAP977
http://ssrn.com/abstract=946405
http://ssrn.com/abstract=946405
http://dx.doi.org/10.2307/2331111
http://dx.doi.org/10.3905/jod.2010.17.4.025
http://dx.doi.org/10.2307/2331019
http://dx.doi.org/10.1287/opre.1050.0247
http://dx.doi.org/10.1287/mnsc.1060.0652
http://dx.doi.org/10.3905/jod.2012.20.2.067
http://dx.doi.org/10.2307/1911242
http://dx.doi.org/10.1016/0304-405X(79)90015-1
http://dx.doi.org/10.2307/1969318


J. Risk Financial Manag. 2021, 14, 241 32 of 32

Haug, Espen Gaarder. 2007. Why so negative to negative probabilities. In Derivatives Models on Models. New York: John Wiley & Sons,
Chapter 14.

Heston, Steven L. 1993. A closed-form solutions for options with stochastic volatility with application to bond and currency options.
The Review of Financial Studies 6: 327–43. [CrossRef]

Hull, John C., and Alan White. 1988. The use of control variate technique in option-pricing. Journal of Financial and Quantitative Analysis
23: 237–51. [CrossRef]

Hull, John C., and Alan White. 1990. Valuing derivative securities using the explicit finite difference method. Journal of Financial and
Quantitative Analysis 25: 87–100. [CrossRef]

Hull, John C., and Alan White. 1993. One-factor interest-rate models and the valuation of interest-rate derivative securities. Journal of
Financial and Quantitative Analysis 28: 235–54. [CrossRef]

Hull, John C., and Alan White. 1994. Numerical procedures for implementing term structure models II: Two-factor models. Journal of
Derivatives 2: 37–49. [CrossRef]

Kouritzin, Michael A. 2000. Exact infinite dimensional filters and explicit solutions. In Stochastic Models. Edited by Luis G. Gorostiza
and B. Gail Ivanoff. Providence: American Mathematical Society, pp. 265–82.

Kouritzin, Michael A., and Anne Mackay. 2020. Branching particle pricers with Heston examples. International Journal of Theoretical and
Applied Finance 23: 2050003. [CrossRef]

Longstaff, Francis A., and Eduardo S. Schwartz. 2001. Valuing American options by simulation: A simple least-squares approach.
Review of Financial Studies 14: 113–47. [CrossRef]

Maghsoodi, Yoosef. 1996. Solutions of the extended CIR term structure and bond option valuation. Mathematical Finance 6: 89–109.
[CrossRef]

Rendleman, Richard J., and Brit J. Bartter. 1979. Two-state option pricing. Journal of Finance 34: 1093–110. [CrossRef]
Rough, Fabrice D. 2013. The Heston Model and Its Extension in Matlab and C#. Hoboken: Wiley.
Ruckdeschel, Peter, Tilman Sayer, and Alexander Szimayer. 2013. Pricing American options in the Heston model: A close look on

incorporating correlation. Journal of Derivatives 20: 9–29. [CrossRef]
Tseng, Chung-Li, and Kyle Lin. 2007. A framework using two-factor price lattices for generation asset valuation. Operations Research

55: 234–51. [CrossRef]
Zvan, R., Peter A. Forsyth, and K. R. Vetzal. 2001. Negative Coefficients in Two Factor Option Pricing Models. Working Paper.

Available online: https://cs.uwaterloo.ca/~paforsyt/posmesh3.pdf (accessed on 21 May 2021).

http://dx.doi.org/10.1093/rfs/6.2.327
http://dx.doi.org/10.2307/2331065
http://dx.doi.org/10.2307/2330889
http://dx.doi.org/10.2307/2331288
http://dx.doi.org/10.3905/jod.1994.407908
http://dx.doi.org/10.1142/S021902492050003X
http://dx.doi.org/10.1093/rfs/14.1.113
http://dx.doi.org/10.1111/j.1467-9965.1996.tb00113.x
http://dx.doi.org/10.1111/j.1540-6261.1979.tb00058.x
http://dx.doi.org/10.3905/jod.2013.20.3.009
http://dx.doi.org/10.1287/opre.1060.0355
https://cs.uwaterloo.ca/~paforsyt/posmesh3.pdf

	Introduction
	General One-Factor Trinomial Lattice
	Effects of Grid Refinement
	Weak Convergence of the One-Factor Lattice
	Estimating min for CIR Model and Feller Condition

	Two-Factor Trinomial Lattice
	Feasibility of the General Lattice
	Lattice for the Heston SV Model

	Impact of Lattice Infeasibility on Option Valuation
	An Optimization Perspective
	Numerical Comparisons: Best-Fit vs. H&W

	Performance of the Best-Fit Lattice
	European Options Valuation
	Convergence and Complexity
	American Options Valuation

	Conclusions
	
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Theorem 1
	Proof of Proposition 9
	Proof of Theorem 2

	References

