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Abstract: This study was motivated by the poor performance of the current models used in stock
return forecasting and aimed to improve the accuracy of the existing models in forecasting future
stock returns. The current literature largely assumes that the residual term used in the existing
model is white noise and, as such, has no valuable information. We exploit the valuable information
contained in the residuals of the models in the context of cumulative return and construct a new
cumulative return gap (CRG) model to overcome the weaknesses of the traditional cumulative
abnormal returns (CAR) and buy-and-hold abnormal returns (BHAR) models. To deal with the
residual items of the prediction model and improving the prediction accuracy, we also lead the finite
difference (FD) method into the autoregressive (AR) model and autoregressive distributed lag (ARDL)
model. The empirical results of the study show that the cumulative return (CR) model is better than
the simple return model for stock return prediction. We found that the CRG model can improve
prediction accuracy, the term of the residuals from the autoregressive analysis is very important in
stock return prediction, and the FD model can improve prediction accuracy.

Keywords: cumulative return; cumulative return gap; cumulative abnormal returns; finite difference;
autoregressive model; autoregressive distributed lag model

1. Introduction

The success of investment strategies lies in accurately forecasting the future returns of
each of the stocks in the markets place. Analysts have been analyzing all available data
and trends in an attempt to identify mispriced securities in order to make profits that are
in excess of the profits based on the riskiness of the assets. Practitioners and analysts in
this instance believe that markets are not informationally efficient, and that they are able to
analyze available data so as to make superior profits. Participants have used the concepts
of abnormal return and cumulative abnormal return (CAR) to identify whether the stock
prices will rise or decline immediately following some trading activities or events.

Studies by Barber and Lyon (1997), Ziobrowski et al. (2004), Zamanian et al. (2013),
Lamba and Tripathi (2015), Mitesh et al. (2016), Campbell et al. (2021), and Hillegeist and
Weng (2021) test the impact of trading activities and events on stock prices based on the
buy-and-hold abnormal return (BHAR) or the cumulative abnormal return (CAR) models.
More efficient stock prices benefit shareholders by reducing information imbalance and
improving liquidity. However, there are two main disadvantages for the BHAR model.
Firstly, the formula of the BHAR model cannot present a consistent forecasting result
with a zero abnormal return at the end of the time period. Based on the BHAR formula
BHARt = ∏t

t=1 (rt − E(rt)), if the terminal value rT − E(rT) 6= 0, then lim
t→T

BHARt =

r1r2 . . . rt−1(rT − E(rT)) 6= 0. Secondly, there is a compounding effect suggested by the
BHAR model, but the expectation of E(rt) is a geometric average return, or not a compound
average return.
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This study aims to overcome the weaknesses of the BHAR model by developing a
new model referred to as the cumulative return gap (CRG) model. Moreover, we use the
cumulative return gap (CRG) model as an improvement of the CAR and BHAR models
to predict stock returns by the autoregressive distributed lag (ARDL) model1. The new
CRG model will present a consistent forecasting result with a zero abnormal return at
the end of the time period for a cumulative average compound return: lim

t→T
r(c,gap)

t =

lim
t→T

{
∏t

t=1 rt − (∏t
t=1 rt)

t/T
}

. The empirical study shows that the cumulative return gap is

better than the simple abnormal return model for stock return prediction.
A very important role of index forecasting is analyzing time series and building a

proper forecasting model. Gijon et al. (2021) focus on how traffic forecasting in telecom-
munication networks can be treated as a time series analysis problem. Linear time series
models, such as autoregressive integrated moving average models, capture trend and short-
range dependencies in traffic demand. Studies by Lin et al. (2021) consider interval-valued
series data, the analysis of which is conducted in an auto-interval-regressive model using
statistics from normal distribution. Similarly, Maratkhan et al. (2021) propose a three-step
model on the framework on financial time series to take advantage of the powerful models
offered for image classification. However, they all overlooked the residual part of the
selected autoregression mode and many researchers have preferred to assume that the
residual part is zero (e.g., Devi et al. 2013; Ye and Wei 2015; Zaham and Kenett 2013).
However, the residual item generally includes a lot of information, and it is easy to reduce
the accuracy of forecasting results when the residual is assumed to be zero. As a result, the
key to improving the forecasting accuracy by using autoregressive-related models2 is to
forecast the trend of residual items. For this reason, we will analyze the residual part by the
normalized probability cumulative distribution function (CDF) and finite difference (FD)
methods. Moreover, we will carry out a comparison between residual = 0 and residual 6= 0
to detect the importance of the residual in stock return forecasting.

2. Literature Review

According to the efficient market hypothesis (EMH), investors and traders in stock
markets are not able to make abnormal positive returns by using publicly available infor-
mation (Hu et al. 2021). However, abnormal phenomena in the financial markets have
brought about an impact on classical financial theory. Such assumptions about abnormal
positive returns are unrealistic, because people acting to maximize their personal utility
in their public capacities as well as their private lives is the most fundamental principle.
Ziobrowski et al. (2004) conducted an empirical analysis to test whether U.S. Senators have
an informational advantage over other investors in terms of common stock investments by
testing for abnormal returns during the period of 1993–1998, proving that stocks purchased
by U.S. Senators earn statistically significant positive abnormal returns and outperform
the market by 85 basis points per month on a trade-weighted basis. This result proves that
U.S. Senators have an informational advantage compared to other investors. Zamanian
et al. (2013) used the cumulative abnormal return (CAR) method to test long-run returns
from 1 February 2006 to 29 February 2011 on the initial public offerings (IPO) of 18 public
and 15 private companies in the Tehran Stock Exchange (TSE), and proved that corporate
ownership has no significant impact on the returns of IPOs in the short run or long run.
Lamba and Tripathi (2015) used the concepts of average abnormal return (AAR) and cumu-
lative average abnormal return (CAAR) to detect whether Indian firms are able to create
value for shareholders after cross-border mergers and acquisitions. Their results proved
that acquisitions do not create value to Indian acquiring companies in the long run, and
abnormal returns and cumulative abnormal returns have significantly deteriorated since
the period of 1998–2009; this value destruction could be attributed to the financial crisis.
Bharandev and Rao (2021) examined the stock market and trading volume reaction with
respect to the information content of 34 selected companies’ stock splitting announcements
between 1 January to 31 July 2016; the average abnormal return (AAR) and cumulative
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average abnormal return (CAAR) were used to test whether an opportunity was available
to make abnormal returns, and their study proved that no one can obtain abnormal returns
from the Indian stock market, but stock splitting announcements have a negative impact
on stock returns.

Some studies (Ritter 1991; Barber and Lyon 1997; Mohit and Aggarwal 2014; Mitesh
et al. 2016) defined two kinds of abnormal return, CAR3 and BHAR4.

The difference between CAR and BHAR is that CAR ignores compounding, but BHAR
includes the effect of compounding. Barber and Lyon (1997) proved that the empirical
analysis of CAR may result in more bias than BHAR. In fact, there are two disadvan-
tages for buy-and-hold abnormal returns (BHAR), even though they proved that the
empirical results of BHAR are much better than CAR. When the variables r1, r2, . . . , rt
are the returns between the time periods of t ∈ [0, 1], [1, 2], . . . , [t− 1, t], the expression
of ∏t

t=1 rt represents the compounding return of the stock during the time period t ∈
[0, t]. When we consider the conditional compounding effect, the conditional expected
value is E(∏t

t=1 rt) = ∏t−1
t=1 rtE(rt), then the buy-and-hold abnormal returns will be

BHARt
∣∣Ft−1 = E(∏t

t=1 rt −∏t
t=1 E(rt))

∣∣Ft−1 = r1r2 . . . rt−1E(rt − E(rt)
∣∣Ft−1) . However,

if E(rT − E(rT)) 6= 0, there is lim
t→T

BHARt

∣∣∣∣Ft−1 = lim
t→T
{r1r2 . . . rt−1E(rt − E(rt)|Ft−1)} 6= 0 ,

which cannot protect us by obtaining a consistent forecasting result with a zero abnormal
return at the end of the time period. Another disadvantage of BHAR is that, theoretically,
the expectation of E(rt) is a geometric average return, but not a compound average return.
This is not consistent with the main assumption of the compounding effect suggested by
the BHAR model.

To overcome these weaknesses of the traditional cumulative abnormal returns (CAR)
and buy-and-hold abnormal returns (BHAR) models, we define a new cumulative return
gap (CRG) model. The principal of our cumulative return gap (CRG) model is similar to
the concept of buy-and-hold abnormal returns (BHAR).

Assume the time variable is t ∈ [0, T], where T is the biggest width of the time window;
variable pt represents the stock price, p0 = p1; the return index rt is defined as rt = pt/pt−1,
r1 = 1; the new defined cumulative return index is defined as r(c)t = ∏t

t=1 rt, r(c)1 = r1 = 1;

the average compound return of the cumulative return r(c)t is defined as r(ave)
t = (r(c)t )

1
t ,

r(ave)
T = (r(c)T )

1
T ; and the average cumulative compound return index of the cumulative

return index r(c)t is defined as r(c,ave)
t = (r(ave)

T )
t
. Based on these assumed variables, the

cumulative return gap (CRG) is defined as

r(c,gap)
t = r(c)t − r(c,ave)

t =
t

∏
t=1

rt − (r(ave)
T )

t
=

t

∏
t=1

rt − ((r(c)T )
1
T
)

t

=
t

∏
t=1

rt − (
T

∏
t=1

rt)

t
T

When comparing our new concept of the cumulative return gap (CRG) with the
concept of buy-and-hold abnormal returns (BHAR), CRG will provide us with a consistent
forecasting result with a zero abnormal return at the end of the time period.

lim
t→T

r(c,gap)
t = lim

t→T

 t

∏
t=1

rt − (
t

∏
t=1

rt)

t
T

 = 0

Furthermore, the average compound return r(ave)
T = (r(c)T )

1
T is a constant during the

time period t ∈ [0, T], which is also a compound return.
Traditionally, the cumulative abnormal return (CAR) and BHAR models are used to

study the long-term behavior of stock returns during a particular period, such as several
days, several months, or several years. However, there are fewer studies using the cumula-
tive abnormal return model to forecast stock returns. Our research will fill the research gap
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by using the cumulative return gap (CRG) model as an improvement of the cumulative
abnormal return model to forecast stock returns.

The aim of prediction is to look for future information on the basis of previous in-
formation. Based on historical events, prediction is aimed towards forecasting the events
which may happen in the future. Shen et al. (2012) believe that a single stock price can
be directly predicted by its autocorrelation, because the performance of a stock market
prediction heavily depends on the correlation between the data used. If the trend of a
stock price is always an extension of yesterday, or if a time series of the stock market price
has a high autocorrelation, the accuracy of prediction should be fairly high. The results
of Shen et al. (2012) prove that autocorrelation is a very useful tool for predicting a single
stock price; however, their analysis does not mention the disturbance of the regression
model’s residual noise, which may influence the accuracy of the prediction values.

A very important part of forecasting is analyzing the time series and building a
proper forecasting model, especially when the initial stochastic time series of the return is
nonstationary in nature and can be analyzed based on the selection of any method (Rabbani
et al. 2021). When autoregressive-related models are used to analyze time series, such as in
the ES, AR, MA, ARMA, ARIMA and SARMA models, many researchers prefer to assume
that the residual item is zero with the absolute lowest error.

Usually, ARIMA(p, d, q), also known as the Box–Jenkins method, is used to remove
the trend of the series by differencing so that a stationary series is obtained by transforming
a non-stationary series (Dimri et al. 2020). Here, the parameter p represents the order
of the autoregressive process, such as a model of AR(p); the parameter q represents the
order of the moving average process, such as a model of MA(q); and the parameter d
represents the order of differencing of the time series. Samrad et al. (2021) suggest that the
ARIMA modelling approach, according to various measures, is the most effective and best
model for predicting trend stock prices by keeping the residuals at zero. Zaham and Kenett
(2013) also use ARIMA models such as ARIMA(1, 1, 1) and ARIMA(2, 1, 2) to forecast the
stock prices by letting residuals be zero. Ye and Wei (2015) think that since the ARIMA
model is a typical linear time series model, it is not easy to represent the nonlinear dynamic
system of stock markets; if the ARIMA model is used to predict complex time series such
as stock prices, the forecasting result will be not ideal. Skare et al. (2021) preferred to use
the autoregressive model (AR) and the vector autoregressive model (VAR) to perform the
purpose of forecasting. The autoregressive model is a good model when the dependent
variable is a univariate; however, when the number of dependent variables is more than
one, then the vector autoregressive model has an advantage over the former.

The residual item generally includes a lot of private information and some public
information such as economic shocks, and it is easy to reduce the accuracy of forecasting
when the residual is assumed to be zero, as Dimri et al. (2020) have done. Because the
auto-regressive-related models such as SE, AR, MA, ARMA, and ARIMA are based on
linear models, most of the nonlinear information is composited into the residual items. If
the residual items are simply assumed to be zero, most of the nonlinear information will
be removed, and the accuracy of forecasting will be disturbed. Even though the moving
average (MA) model considers the influence of residual lagged items, it is based on linear
models and not on nonlinear models. If the residual items are mostly not considered, the
auto-regressive-related models will not be able to significantly improve the accuracy of
forecasting within the models. The key of improving the forecasting accuracy by using auto-
regressive-related models is to forecast the trend of residual items. For this reason, we will
try to improve the forecasting accuracy by forecasting the residual items. The probability
method and finite difference (FD) method will be used to deal with the residual items.

Thus, for this study, we chose the autoregressive distributed lag (ARDL) model as
the regression model to predict the underlying stock returns. The ARDL model was first
defined by Pesaran and Shin (1999). The purpose of the ARDL model is to represent the
long-term relationships between variables in econometric analysis.
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The general ARDL(p, q) model can be defined as

yt = ω0 + ω1t +
p

∑
i=1

αiyt−i + β0xt +
q

∑
j=1

βixt−j + ut

The ARDL model represents the long-term relationship between the variable yt and xt,
where xt is the k (k > 1) dimensional order 1 difference stationary variable (I(1) for short,
meaning it has an order 1 unit root) or an order 0 difference stationary variable (I(0) for
short, meaning the level variable is stationary). If the variable xt is the order 1 difference
stationary variable, even though it has an order 1 unit root, the vector autoregressive
process in ∆xt is stable.

Wang et al. (2021) have approved that the ARDL model is good for dealing with the
time series econometric variables; additionally, the ARDL model has the advantage of
predicting consistent estimates of the long-run coefficients and cointegrating relationships
between variables that are asymptotically normal but irrespective of whether the underlying
stock prices’ regressions are I(1) or I(0).

Li et al. (2020) preferred to use the autoregressive distributed lag (ARDL) model
proposed by Shin et al. (2014) for prediction, because the ARDL model has three important
stages that include changes in the policy rate: first, it can be applied regardless of what
levels of stationary or what orders of unit root the underlying variables; second, ARDL
is suitable for both big and small samples; and third, the appropriate order modification
of ARDL is sufficient for simultaneously correcting the residual serial correlation and the
problem of endogenous variables. In this paper, the prediction model for the cumulative
return index r(c)t will be defined by the following ARDL-CRG model

r(c)t = k0 + k1 r(c,ave)
t + β ln t +

p

∑
i=1

αi r(c,gap)
t−i + at

For carrying out a comparison, the AR model is also usually used to build the predic-
tion model

rt = α0 + α1rt−1 + · · ·+ αprt−p + at

For both the ARDL and AR models, because the residual item at is very important for
building prediction models, we will borrow the finite difference method to deal with the
residual item at. For dealing with the residual variable at, we will focus on dealing with
the probability variable qt. The relationship between at and qt is

at = − ln (
1
qt
− 1) or qt =

1
1 + e−at

There are seldom studies that use the finite difference method to deal with the resid-
ual items of at. We will apply different orders of the finite difference to the probability
variable qt.

3. Methodology and Data
3.1. Data

A daily closing price index of the Dow Jones Industry Index is used as the time series
samples (Ranco et al. 2015; Stekelenburg et al. 2015). The time intervals are listed within
the period of 1 April 2010 to 8 July 2016.5 The total transaction days, or the observations,
are 1531 days. The daily closing price index is simply gathered from the calendar dates
when the US stock markets were open. Very few data were canceled if the data were from a
special holiday when the US stock markets were not open. All of the calculations in this
paper will be conducted using EViews 8.0 statistical software. The variable rt is defined
as a daily closing return index of the Dow Jones Industry Index. Table 1 shows the main
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variables used in this paper. Variables will be explained in detail when they are introduced
in this paper.

Table 1. Main variables for building the four kinds of models: AR-FD, AR-GARCH-FD, ARDL-CRG-
FD and ARDL-CRG-GARCH-FD.

Variables Explanations Models Variables Explanations

pt Price of an asset AR ra,t Return index of an asset

rt Return index of an asset AR µa,t Expected value of ra,t

r(c)t
Cumulative compound return

index AR at Residual item of AR model

r(c)T
Cumulative compound return

index AR-FD q(a)
t

Cumulative probability of quantile at

r(ave)
T

Average cumulative compound
return AR-FD r(2)a,t

Return from the 2nd-order difference

r(c,ave)
t

Cumulative average compound
return AR-FD r(3)a,t

Return from the 3rd-order difference

r(c,gap)
t

Cumulative return gap (CRG) AR-FD r(4)a,t
Return from the 4th-order difference

q(a)
t

Cumulative probability of quantile at AR-FD ra,t|j=p Predictions of ra,t when q(a)
t−p used

dnq(a)
t nth-order finite difference of q(a)

t
AR-GARCH-FD q(e)a,t

Cumulative probability of quantile ea,t

d2q(a)
t 2nd-order finite difference of q(a)

t
AR-GARCH-FD r(e)a,t Predictions of ra,t when q(e)a,t used

d3q(a)
t 3rd-order finite difference of q(a)

t
AR-GARCH-FD r(e)a,t|j=p Predictions of ra,t when q(a)

t−p used

d4q(a)
t 4th-order finite difference of q(a)

t
ARDL-CRG r(c)b,t Prediction value of r(c)t

at
Residual item of a regression

model ARDL-CRG µ
(c)
b,t Expected value of r(c)t

qt Cumulative probability of quantile at ARDL-CRG bt Residual of the ARDL-CRG model

σt Dynamic volatility based on at ARDL-CRG-FD q(b)t
Cumulative probability of quantile bt

εt Standardized error item from at/σt ARDL-CRG-FD r(2)b,t
Return from the 2nd-order difference

et Standardized error item from εt ARDL-CRG-FD r(3)b,t
Return from the 3rd-order difference

σa,t Dynamic volatility based on at ARDL-CRG-FD r(4)b,t
Return from the 4th-order difference

εa,t Standardized error item from at/σa,t ARDL-CRG-FD µb,t Expected value of rt

ea,t Standardized error item from εa,t ARDL-CRG-FD rb,t|j=p Predictions of rb,t when q(b)t−p used

σb,t Dynamic volatility based on bt ARDL-CRG-GARCH-FD q(e)b,t
Cumulative probability of quantile eb,t

εb,t Standardized error item from bt/σb,t ARDL-CRG-GARCH-FD r(e)b,t Predictions of rb,t when q(e)b,t used

eb,t Standardized error item from εb,t ARDL-CRG-GARCH-FD r(e)b,t|j=p Predictions of rb,t when q(e)b,t−p used

3.2. Cumulative Return

Based on the definition of a one-period simple return, the time-varying variable rt can
represent the simple return for a holding asset from the time interval [t− 1, t] (Tsay 2005).

When the time interval is defined as t ∈ [0, t], the cumulative return index r(c)t of an
underling stock can be rewritten as6

r(c)t =

{
r(c)t−1rt, t = 1, 2, . . . , T
1 t = 0

where rt =

{ pt
pt−1

, t = 1, 2, . . . , T

1 t = 0
(1)

Then, for representing the gross return between a long time interval [0, t], there is a
relationship between the cumulative return r(c)t and the simple return rt, which can be
written as

r(c)t = rtrt−1 . . . r2r1 (2)
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The time variable T is the terminal point of the time period. When the simple return rt

is based on the time interval t ∈ [t− 1, t], the cumulative return r(c)t is based on the time
interval t ∈ [0, t].

3.3. Cumulative Average Compound Return and the Cumulative Return Gap

The principle of this study is to use the predicted value of the cumulative return r(c)t
to obtain the forecasting value of a simple return rt by Formula (2). Thus, we need a deeper
understanding of r(c)t for several parts. For this paper, we define two new factors r(c,ave)

t

and r(c,gap)
t , which represent the cumulative average compound return (CACR) and the

cumulative return gap (CRG), respectively.
If t = T is the final value of the cumulative return r(c)t , then r(ave)

T can represent the

average change of r(c)t in a constant compound average rate

r(ave)
t = (r(c)t )

1
t , t = 1, 2, . . . , T (3)

As a result, the cumulative average compound return (CACR) will be defined as

r(c,ave)
t = (r(ave)

T )
t
= (r(c)T )

t
T , t = 1, 2, . . . , T (4)

where the curve of the cumulative return index r(c)t will move around the curve of the

cumulative average compound return index r(c,ave)
t .

Then, the gap between the cumulative return r(c)t and the cumulative average com-

pound return r(c,ave)
t can be represented as r(c,gap)

t

r(c,gap)
t = r(c)t − r(c,ave)

t , t = 1, 2, . . . , T (5)

The variable r(c,gap)
t represents the cumulative return gap, which can be seen as a

cumulative risk premium of a risk asset. The curve of the cumulative return gap index
r(c,gap)

t will move around the horizontal line. After carrying out the replacement of r(c)t −
r(c,ave)

t , the characteristics of the cumulative risk premium r(c,gap)
t during a long term period

of t ∈ [0, t] are as similar as the characteristics of the risk premium rt − r f in the CAPM
model during a short-term period of t ∈ [t− 1, t].7

3.4. ARDL-CRG Model

The first prediction model for this paper is to transfer the residual term of the ARDL
regression model from a quantile to a probability. Once we have the factors of r(c,ave)

t

and r(c,gap)
t , we can run an ARDL regression model to present the cumulative return r(c)t .

Because the cumulative return gap (CRG) is introduced to the ARDL model, this model
can be defined as an ARDL-CRG model

r(c)t = k0 + k1 r(c,ave)
t + β ln t +

p

∑
i=1

αi r(c,gap)
t−i + at where E( at|Ft−1 ) = 0 (6)

Here, the residual variable at can be seen as a quantile of a probability variable qt. The
probability of the cumulative distribution function (CDF) (Figure 1) can be defined as

F(x) =
1

1 + e−x , x ∈ (−∞,+∞), lim
x→−∞

F(x) = 0, lim
x→+∞

F(x) = 1, F(x) ∈ (0, 1) (7)
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When at ∈ (−∞,+∞), assume variable qt represents the cumulative probability of the
residual variable at, then the probability function is qt = F(at) and qt ∈ (0, 1), then

at = − ln (
1
qt
− 1) (8)

Thus, the cumulative return prediction model of ARDL-CRG will be rewritten as a
new type as follows:

r(c)t = k0 + k1 r(c,ave)
t + β ln t +

p

∑
i=1

αi r(c,gap)
t−i − ln (

1
qt
− 1) (9)

It is clear that the ARDL-CRG model has two types: one directly uses the residual item
at, and the other indirectly uses the probability item qt. Both are ARDL-CRG models.

Because the value interval of the function F(x) is (0, 1) when x ∈ (−∞,+∞), it is a
cumulative probability function. It is easy to transfer the residual item to a probability item.

3.5. ARDL-CRG-GARCH Model

The second prediction model for this paper is to use the GARCH8 model to present
the residual term of ARDL regression. The conditional volatility in the GARCH (1,1) model
is defined as

σ2
t = ω + α a2

t−1 + βσ2
t−1, at = σtεt, Var(at) = σ2

a (10)

Theoretically, the random variable εt ∼ N(0, 1) is distributed as a standardized
normal distribution. However, because the regressive error is unavoidable, for conducting
regressive estimation accurately, assume the random variable εt ∼ N(µ0, σ2

0 ), then define a
standardized random variable et as

et =
εt − µ0

σ0
, εt = µ0 + σ0et (11)

Thus, the residual variable at can be defined as

at = σtεt = σt(µ0 + σ0et), et ∼ N(0, 1) (12)

Again, we can transfer the standardized residual item et to a probability variable
qt = F(et), and the inverse relation between them is et = F−(qt) = − ln ( 1

qt
− 1). If the

dynamic volatility variable σt is introduced to the ARDL-CRG model, then we can obtain
an ARDL-CRG-GARCH model, which has two types, as follows:

r(c)t = k0 + k1r(c,ave)
t + β ln t +

p

∑
i=1

αir
(c,gap)
t−i + σt(µ0 + σ0et) (13)
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r(c)t = k0 + k1 r(c,ave)
t + β ln t +

p

∑
i=1

αi r(c,gap)
t−i + σt(µ0 − σ0 ln (

1
qt
− 1)) (14)

The ARDL-CRG-GARCH model uses a standardized residual variable et to represent
the residual of the model, and then transfers this standardized residual variable to a
probability variable qt to represent the residual of the model.

4. Empirical Results
4.1. Return Index

Figure 2 shows the moving curves of the return index rt of the US Dow Jones Industry
Index between 1 April 2010 and 8 July 2016. The sample size is 1531, and the time interval
is t ∈ [0, T], T = 1531. There are three cluster vibrations during 2010, 2011, and 2015. These
cluster vibrations can be expressed by a GARCH model.
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Here we can see that the term of the return index rt shows the moving trend of a stock
price during a short period t ∈ [t− 1, t]. When the return index rt is defined as rt =

pt
pt−1

, it
shows that the trend of a stock price is down when pt < pt−1 or up when pt > pt−1. The
purpose of forecasting is to predict the moving trend of a stock price in the next time t
when the information set Ft−1 = {r1, r2, . . . , rt−1} is already known.

4.2. Autocorrelation Test for the Return Index

Table 2 lists the test results of the autocorrelations, Ljung and Box (1978) statistics and
related probabilities for the return index rt. It shows a significant autocorrelation between
rt and rt−1 (t = 1, 2, . . . , t− 1) at the probability degree levels of 5% and 1%.

Table 2. Autocorrelation (AC) values and Ljung and Box (1978) statistics and probabilities for time
series of the return index.

Variable AC(1) Q(1) P(1) AC(5) Q(5) P(5) AC(10) Q(10) P(10) AC(15) Q(15) P(15)

rt −0.052 4.1099 0.043 −0.089 31.848 0.000 0.013 32.854 0.000 −0.017 42.504 0.000

Variable AC(20) Q(20) P(20) AC(25) Q(25) P(25) AC(30) Q(30) P(30) AC(35) Q(35) P(35)

rt −0.040 54.108 0.000 −0.040 58.371 0.000 −0.007 65.140 0.000 0.035 74.216 0.000

These autocorrelations are better expressed in an AR(p) model as rt = α0 + α1rt−1 +
· · · + +αprt−p + at. Generally, when defined as µt = α0 + α1rt−1 + · · · + +αprt−p, the
AR(p) model will be rt = µt + at. If the information set Ft−1 = {r1, r2, . . . , rt−1} is already
known, then E(rt|Ft−1) = µt , E( at|Ft−1 ) = 0, Var( rt|Ft−1 ) = Var( rt|Ft−1 ) = σ2

t . Here,
the expectations and variances are conditional expectations and conditional variances.
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For building a stable autoregressive model, it is necessary to test if there are any unit
roots for the time series of the return index. By using an ADF unit root test, Table 3 has
listed the t-statistic values and probabilities under the three criteria of AIC, SIC and HQC.
We can see that there are not any unit roots at the three levels’ time series of level variables,
first-order difference variables, and second-order difference variables. Because the return
index rt is an autocorrelation time series, and it does not have any unit roots, we will build
an autoregressive model to carry out forecasting tasks. Figure 3 shows the residual item at
from AR model of ra,t = µa,t + at.

Table 3. Autocorrelation (AC) values and Ljung and Box (1978) statistics and probabilities for
difference time series of residual probability.

Variable AC(1) Q(1) P(1) AC(5) Q(5) P(5) AC(10) Q(10) P(10) AC(20) Q(20) P(20)

q(a)
t 0.001 0.0005 0.982 −0.002 0.0236 1.000 0.009 1.0563 1.000 −0.040 18.650 0.545

dq(a)
t −0.500 381.33 0.000 −0.003 381.36 0.000 −0.016 382.37 0.000 −0.022 406.78 0.000

Variable AC(1) Q(1) P(1) AC(5) Q(5) P(5) AC(10) Q(10) P(10) AC(20) Q(20) P(20)

d2q(a)
t −0.667 678.44 0.000 −0.005 721.33 0.000 −0.027 723.33 0.000 −0.017 759.94 0.000

d3q(a)
t −0.750 858.30 0.000 −0.005 1000.9 0.000 −0.033 1004.0 0.000 −0.019 1053.7 0.000

d4q(a)
t −0.800 976.19 0.000 −0.005 1243.9 0.000 −0.039 1248.2 0.000 −0.023 1310.4 0.000J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 11 of 43 
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4.3. AR(p) Prediction Model for Return Index

Because the return index rt is an autocorrelation time series, and it does not have any
unit roots, we will build an autoregressive model to carry out forecasting tasks.

After assessing many autoregressive models, next AR(5) model is selected

ra,t = µa,t + at

µa,t = 1.190795− 0.045747rt−1 + 0.020058rt−2 − 0.086443rt−3 + 0.005487rt−4
−0.083679rt−5

R2 = 0.0181, S.E. = 0.0095, AIC = −6.4626, SIC = −6.4416

This AR(5) model has a very small determined coefficient as R2 = 0.0181. When
define ra,t = µa,t + at, the residual item at may include too much information about the
return index rt. Figure 3 shows the residual item at form AR model of ra,t = µa,t + at. The
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correlation between the return index rt and its residual item at of AR(5) model is 0.9908.
The correlation is as high as Corr(rt, at)0.9908. For this reason, it is very important to
estimate the values of residual items.

4.4. Direct Prediction of the Return Index Based on the Finite Difference Method and the
AR-FD Model

For improving the prediction accuracy of the AR model, we will introduce the finite
difference (FD) method to the AR model and build a new AR-FD model.

Because the residual item at has a strong impact on the prediction value of the return
index rt, it is important to predict the trend of the residual item at. When we define

q(a)
t =

1
1 + e−at

, or at = − ln (
1

q(a)
t

− 1)

Then, the variable q(a)
t can be seen as a probability of at. Assume the first-order

difference is dq(a)
t = q(a)

t − q(a)
t−1, the second-order difference is d2q(a)

t = dq(a)
t − dq(a)

t−1, the

third-order difference is d3q(a)
t = d2q(a)

t − d2q(a)
t−1, and the nth-order difference is dnq(a)

t =

dn−1q(a)
t − dn−1q(a)

t−1, and if the level variable q(a)
t is not the autocorrelation time series,

the nth-order difference dnq(a)
t may be the autocorrelation time series, then the higher

degree th − order difference dnq(a)
t can be expressed by a regression model as dnq(a)

t =

ω + α0q(a)
t−1 + α1dq(a)

t−1 + · · ·+ αn−1dn−1q(a)
t−1 + β1dnq(a)

t−1 + · · ·+ βpdnq(a)
t−p + ct.

The th-order difference dnq(a)
t can also be expressed by a regression model as

dnq(a)
t = ω +

n−1

∑
i=0

αidiq(a)
t−1 +

p

∑
j=1

β jdnq(a)
t−j + ct

Here, the variable ct is the residual item of the regression model. Then, according to
the definition of the difference method, the probability q(a)

t can be predicted by

q(a)
t = q(a)

t−1 + dq(a)
t−1 + d2q(a)

t−1 + · · ·+ dn−1q(a)
t−1 + dnq(a)

t

It is important to determine a proper order number, which depends on both the degree
of autocorrelation and the probability degree of the residual.

Table 3 has listed the autocorrelation (AC) values and Ljung and Box (1978) statistics
and probabilities of the time series differences. When the difference orders of the probability
time series q(a)

t are increased, the autocorrelation degrees of the related time series will

be increased. The autocorrelation of the level time series q(a)
t is AC(1) = 0.001, which

is quite low and the level time series q(a)
t cannot be called an autocorrelation time series.

The autocorrelation of the first-order time series dq(a)
t is AC(1) = −0.500, which is much

more than the autocorrelation of the level time series q(a)
t . The autocorrelations of the

second-order, third-order, and fourth-order difference time series d2q(a)
t , d3q(a)

t , d4q(a)
t are

AC(1) = −0.667, AC(1) = −0.750, and AC(1) = −0.800, respectively. Obviously, the
second-order, third-order, and fourth-order difference time series have a higher degree of
autocorrelation.

The probability prediction models from the second-order difference are

d2q(a)
t = 0.500528− 1.001057q(a)

t−1 − 0.999412dq(a)
t−1

R2 = 0.8332, S.E. = 0.0023, AIC = −9.2381, SIC = −9.2276
q(a)

t = q(a)
t−1 + dq(a)

t−1 + d2q(a)
t−1
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The probability prediction models from the third-order difference are

d3q(a)
t = 0.502031− 1.004064q(a)

t−1 − 0.993302dq(a)
t−1 − 1.002993d2q(a)

t−1
R2 = 0.9499, S.E. = 0.0023, AIC = −9.2362, SIC = −9.2222

q(a)
t = q(a)

t−1 + dq(a)
t−1 + d2q(a)

t−1 + d3q(a)
t−1

The probability prediction models from the fourth-order difference are

d4q(a)
t = 0.502080− 1.004163q(a)

t−1 − 0.993244dq(a)
t−1 − 1.003043d2q(a)

t−1

−1.000014d3q(a)
t−1

R2 = 0.9857, S.E. = 0.0023, AIC = −9.2343, SIC = −9.2168
q(a)

t = q(a)
t−1 + dq(a)

t−1 + d2q(a)
t−1 + d3q(a)

t−1 + d4q(a)
t−1

After obtaining the prediction value of q(a)
t , the prediction value of the return index rt

will be estimated by

ra,t = µa,t − ln (
1

q(a)
t

− 1)

By applying the equation, it is easy to obtain the prediction value of the return index rt.
Assume variable µa,t is the conditional mean from the autoregressive model

ra,t = µa,t + at when at = 0 or q(a)
t = 0.5. When at 6= 0, assume variable r(2)a,t repre-

sents the prediction index of the return index rt from the second-order difference variable
d2q(a)

t ; variable r(3)a,t represents the prediction index of the return index rt from the third-

order difference variable d3q(a)
t ; and variable r(4)a,t represents the prediction index of the

return index rt from the fourth-order difference variable d4q(a)
t .

Figure 4 shows the return index rt and its prediction values of r(2)a,t , r(3)a,t , and r(4)a,t from
the second-, third-, and fourth-order differences.
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Figure 4. The return index rt and its prediction values of r(2)a,t , r(3)a,t , and r(4)a,t from the 2nd-, 3rd-, and
4th-order differences.

Figure 5 shows the prediction values of r(2)a,t , r(3)a,t , and r(4)a,t under the second-, third-,
and fourth-order differences, and the conditional mean µa,t of rt.
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After improving the lag order of the finite order differences’ variables, when at 6= 0,

assume variable r(2
′)

a,t represents the prediction index of the return index from rt the second-

order difference variable d2q(a)
t ; variable r(3

′)
a,t represents the prediction index of the return

index rt from the third-order difference variable d3q(a)
t ; and variable r(4

′)
a,t represents the

prediction index of the return index rt from the fourth-order difference variable d4q(a)
t .

Then, there is a correlation between the return index rt and its conditional mean µa,t, and its

prediction values of r(2
′)

a,t , r(3
′)

a,t , r(4
′)

a,t are 0.136470, 0.156046, 0.158559, 0.163743, respectively.
Obviously, improving the lag order of the finite order differences’ variables can improve
the correlations between the return index and its prediction value a lot.
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4.5. Return Index Prediction Based on the Second-Order Difference and the AR-FD Model

From the above empirical analysis, we find that if we increasingly improve the order
of the finite order differences’ variables, the correlations between the return index and
its prediction value cannot increase more and more. We will focus on conducting an
analysis on the second-order finite difference regression model and test if higher lags of the
probability variable q(a)

t can lead to a higher correlation between the real return index rt
and its prediction value.

The second-order finite difference d2q(a)
t can be expressed as

d2q(a)
t = ω + α0q(a)

t−1 + α1dq(a)
t−1 +

p

∑
j=1

β jd2q(a)
t−j + ct

When the lag order of the probability variable q(a)
t is defined as p = 3, 50, 100, 150, 200,

300, 400, 500, 600, 700, we can obtain ten different prediction models of d2q(a)
t . According to

the equation of q(a)
t = q(a)

t−1 + dq(a)
t−1 + d2q(a)

t , ra,t = µa,t − ln (1/q(a)
t − 1), we will obtain the

return index prediction values of ra,t|p=3,50,100,150,200,300,400,500,600,700.
Table 4 lists the first three parameters of the second-order difference regression models

for the residual of the return index prediction model.

Table 4. Results of the second-order finite difference regression models of AR-FD when the lags of
the probability are different.

No.
Prediction Model for Second-Order Difference d2q(a)t ra,t

Correlation
ρ(ra,t,rt)ω α0 α1 p R2 S.E. AIC SIC

1 0.503001 −1.006001 −0.984222 3 0.833302 0.002388 −9.233150 −9.212135 ra,t|p=3 0.136766

2 0.699362 −1.398724 10.57640 50 0.839955 0.002381 −9.207139 −9.016722 ra,t|p=50 0.238128

3 0.800919 −1.601812 25.15103 100 0.844830 0.002335 −9.212454 −8.831902 ra,t|p=100 0.294749

4 0.908183 −1.816307 47.93676 150 0.851597 0.002329 9.181926 −8.600049 ra,t|p=150 0.341969

5 1.072259 −2.144498 101.5909 200 0.856684 0.002350 −9.128677 −8.333173 ra,t|p=200 0.389903

6 1.006904 −2.013859 38.47244 300 0.872071 0.002402 −9.014493 −7.749547 ra,t|p=300 0.486086

7 0.657598 −1.315164 −72.80206 400 0.888580 0.002247 −9.085781 −7.284239 ra,t|p=400 0.578318

8 1.028349 −2.056674 245.4824 500 0.899775 0.002524 −9.093179 −6.670786 ra,t|p=500 0.651674

9 1.495949 −2.991754 809.0302 600 0.924362 0.002325 −9.042018 −5.890813 ra,t|p=600 0.745966

10 1.775340 −3.550546 1191.350 700 0.957954 0.002693 −9.208468 −5.186548 ra,t|p=700 0.867847

When the lag order p = 3, the regression model of the second-order difference d2q(a)
t

includes the intercept ω, and the coefficient α0 for item q(a)
t−1, the coefficient α1 for item

dq(a)
t−1, and the coefficient β1, β2, β3 for item q(a)

t−1, q(a)
t−2, q(a)

t−3.

When the lag order p = 50, the regression model of the second-order difference d2q(a)
t

includes the intercept ω and the coefficient α0 for item q(a)
t−1, the coefficient α1 for item dq(a)

t−1,

and the coefficient β1, β2, . . . , β50 for item q(a)
t−1, q(a)

t−2, . . . , q(a)
t−50.

Similarly, when the lag order p = 700, the regression model of the second-order
difference d2q(a)

t includes the intercept ω and the coefficient α0 for item q(a)
t−1, the coefficient

α1 for item dq(a)
t−1, and the coefficient β1, β2, . . . , β700 for item q(a)

t−1, q(a)
t−2, . . . , q(a)

t−700.
Figure 6 depicts the curves of the return index rt and its prediction values of ra,t|p=200

from the second-order difference regression model.
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Figure 7. The return index rt and its prediction values of ra,t|p=700 from the second-order difference
regression model.

From these regression models for the second-order difference variable d2q(a)
t , there are

three results:
First, when the lag order of the probability variable q(a)

t increases, the determinate
coefficient for the regression model will increase. When the lag order is increased from 3 to
50, 100, 150, 200, 300, 400, 500, 600, and 700, the R-squared value of the regression model
is increased from 0.833302 to 0.839955, 0.844830, 0.851597, 0.856684, 0.872071, 0.888580,
0.899775, 0.924362, and 0.957954.

Second, when the lag order increases, the correlations between the real return index rt
and its prediction values will increase. When the lag order is increased from 3 to 50, 100,
150, 200, 300, 400, 500, 600, and 700, the correlation between rt and its prediction value of
ra,t|p=3, ra,t|p=50, ra,t|p=100, ra,t|p=150, ra,t|p=200, ra,t|p=300, ra,t|p=400, ra,t|p=500, ra,t|p=600,
ra,t|p=700 is increased from 0.136766 to 0.238128, 0.294749, 0.341969, 0.389903, 0.486086,
0.578318, 0.651674, 0.745966, and 0. 0.867847, respectively.

Third, when comparing both figures, we can see that the prediction values of ra,t|p=700
are more approximated to the real return index rt than the prediction values of ra,t|p=200.
This means that higher lags of the AR-FD prediction model can create a higher approxi-
mated result between the real return index rt and its prediction value.
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4.6. GARCH Model

For the residual variable at, the conditional volatility in the GARCH (1,1) model is
regressed as:

σ2
a,t = 3.65E− 06 + 0.142963a2

t−1 + 0.819842σ2
a,t−1

LL = 3698.91, AIC = −4.84, SIC = −4.83, HIC = −4.84

where the static variance is σ2 = 0.009907, the coefficient of the ARCH item is
α = 0.142963 > 0, the coefficient of the GARCH item is β = 0.819842 > 0, the intercept is
ω = 0.00000365 > 0, and the three parameters satisfy the relation of α + β = 0.962805 < 1,
ω + α + β = 0.96280865 < 1.

The mean and variance of the random variable εa,t = at/σa,t are −0.008643 and
1.000669, respectively. When the new standardized random variable is defined by
ea,t = (εa,t − µa,0)/σa,0, the mean and variance of the random variable ea,t are 3.86E-17
and 1.000328, respectively. Obviously, the random variable ea,t is more approximate to the
standardized normal distribution than the random variable εa,t.

4.7. Return Index Prediction Based on the Second-Order Finite Difference AR-GARCH-FD Model

When µa,0 = mean(εa,t), σa,0 =
√

Var(εa,t), the residual item can be defined as
εt = µ0,t + σ0,tea,t, then the autoregressive prediction model of the return index rt is

ra,t = µa,t + σa,t(µa,0 + σa,0ea,t)

Generally, when Var(εa,t) ≈ 1, then σa,0 =
√

Var(εa,t). For simplicity, we will use√
Var(εa,t) to replace σa,0. When the variable q(e)a,t represents the probability of the quantile

of ea,t, let q(e)a,t = 1/(1 + e−ea,t). Assuming that the probability q(e)a,t is the same as the
probability of the random variable, the autoregressive prediction model of the return index
rt can be defined by

r(e)a,t = µa,t + σa,t

µa,0 − σa,0(ln (
1

q(e)a,t

− 1))


We will test if a higher lag order of the probability variable q(e)a,t regression model can

lead to a higher correlation between the real return index rt and its prediction value. For
this purpose, we will focus on conducting an analysis of the second-order finite difference
regression model.

The second-order finite difference d2q(e)a,t can be expressed by a regression model as

d2q(e)a,t = ω + α0q(e)a,t−1 + α1dq(a)
a,t−1 + ∑p

j=1 β jd2q(e)a,t−j + ct

When the lag order is p = 3, 50, 100, 150, 200, 300, 400, 500, 600, 700, we can obtain ten
different prediction regression models for the second-order finite difference d2q(e)a,t .

According to the second-order finite difference equation q(e)a,t = q(e)a,t−1 + dq(e)a,t−1 +

d2q(e)a,t , the return index prediction regression model r(e)a,t = µa,t + σa,t(mean(εa,t) + Var(εa,t)

(− ln (1/q(e)a,t − 1))), we will be able to obtain the return index prediction values of

r(e)a,t

∣∣∣
p=3,50,100,150,200,300,400,500,600,700

.

Table 5 lists the first three parameters of the second-order finite difference regres-
sion models for different lags of the probability from the residual of the return index
prediction model.
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Table 5. Results of the second-order finite difference regression models of AR-GARCH-FD when the
lags of the probability are different.

No.
Prediction Model for Second-Order Difference d2q(e)a,t r(e)a,t

Correlation
ρ(r(e)a,t ,rt)ω α0 α1 p R2 S.E. AIC SIC

1 0.469779 −0.932678 −1.158642 3 0.833870 0.200776 −0.369317 −0.348303 r(e)a,t

∣∣∣
p=3

0.119018

2 0.589021 −1.170411 4.081024 50 0.837518 0.202060 −0.325208 −0.134791 r(e)a,t

∣∣∣
p=50

0.209055

3 0.628908 −1.248931 11.11614 100 0.843600 0.200978 −0.301658 0.078894 r(e)a,t

∣∣∣
p=100

0.268237

4 0.581813 −1.153323 3.988102 150 0.849075 0.202184 −0.254624 0.327253 r(e)a,t

∣∣∣
p=150

0.315291

5 0.731301 −1.453786 52.43478 200 0.853597 0.203925 −0.201919 0.593585 r(e)a,t

∣∣∣
p=200

0.367438

6 0.760529 −1.516576 54.26585 300 0.869262 0.206495 −0.106405 1.158541 r(e)a,t

∣∣∣
p=300

0.472224

7 0.821250 −1.628421 172.4720 400 0.887668 0.206334 −0.045567 1.755975 r(e)a,t

∣∣∣
p=400

0.552860

8 0.999699 −1.986074 296.8563 500 0.905421 0.210893 0.031770 2.454163 r(e)a,t

∣∣∣
p=500

0.640771

9 1.493677 −2.955449 783.0487 600 0.930127 0.220599 0.062982 3.214187 r(e)a,t

∣∣∣
p=600

0.701112

10 1.459492 −2.890825 827.5364 700 0.962585 0.248488 −0.158915 3.863005 r(e)a,t

∣∣∣
p=700

0.847974

When the lag order p = 3, the regression model of the second-order difference d2q(e)a,t

includes the intercept ω and the coefficient α0 for item q(e)a,t−1, the coefficient α1 for item

dq(e)a,t , and the coefficient β1, β2, β3 for item q(e)a,t−1, q(e)a,t−2, q(e)a,t−3.

When the lag order p = 50, the regression model of the second-order difference d2q(e)a,t

includes the intercept ω and the coefficient α0 for item q(e)a,t−1, the coefficient α1 for item

dq(e)a,t , and the coefficient β1, β2, . . . , β50 for item q(e)a,t−1, q(e)a,t−2, q(e)a,t−50.
Similarly, When the lag order p = 700, the regression model of the second-order

difference d2q(e)a,t includes the intercept ω and the coefficient α0 for item q(e)a,t−1, the coefficient

α1 for item dq(e)a,t , and the coefficient β1, β2, . . . , β700 for item q(e)a,t−1, q(e)a,t−2, q(e)a,t−700.

Figure 8 depicts the curves of the return index rt and its prediction values of r(e)a,t

∣∣∣
p=200

from the second-order difference regression model.
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Figure 9 depicts the curves of the return index rt and its prediction values of r(e)a,t

∣∣∣
p=700

from the second-order difference regression model.
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p=700
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regression model.

From these regression models for the second-order difference variable d2q(e)t , there are
three results:

First, when the lag order increases, the determinate coefficient for the regression model
will increase. When the lag order is increased from 3 to 50, 100, 150, 200, 300, 400, 500, 600,
and 700, the R-squared value of the regression model is increased from 0.833870 to 0.837518,
0.843600, 0.849075, 0.853597, 0.869262, 0.887668, 0.905421, 0.930127, and 0.962585.

Secondly, when the lag order increases, the correlations between the real return in-
dex rt and its prediction values will increase. When the lag order is increased from 3
to 50, 100, 150, 200, 300, 400, 500, 600, and 700, the correlation between rt and its pre-
diction values of r(e)a,t

∣∣∣
p=3

, r(e)a,t

∣∣∣
p=50

, r(e)a,t

∣∣∣
p=100

, r(e)a,t

∣∣∣
p=150

, r(e)a,t

∣∣∣
p=200

, r(e)a,t

∣∣∣
p=300

, r(e)a,t

∣∣∣
p=400

,

r(e)a,t

∣∣∣
p=500

, r(e)a,t

∣∣∣
p=600

, r(e)a,t

∣∣∣
p=700

increases from 0.119018 to 0.209055, 0.268237, 0.315291,

0.367438, 0.472224, 0.552860, 0.640771, 0.701112, and 0.847974, respectively.
Thirdly, when comparing both figures, we can see that the prediction values of

r(e)a,t

∣∣∣
p=700

are more approximated to the real return index rt than the prediction values of

r(e)a,t

∣∣∣
p=200

. This means that higher lags of the AR-GARCH-FD prediction model can create

a higher approximated result between the real return index rt and its prediction value.

5. Empirical Analysis Based on the Cumulative Return Index
5.1. The Cumulative Return Index

Figure 10 shows the moving curves of the average compound return index r(ave)
t

between the time period t ∈ [0, t] and the average compound return index r(ave)
T when

t = T between 4 January 2010 and 8 July 2016.
Figure 11 shows the cumulative return index r(c)t and the cumulative average com-

pound return index r(c,ave)
t between 4 January 2010 and 8 July 2016.

According to statistics, the average arithmetic return index r = 1.000398, and the

average compound return index r(ave)
T = (r(c)T )

1/T
= 1.000352. The average arithmetic

return index is not equal to the average compound return index. The average compound
return index reveals the characteristics of the risk assets’ return indices.

It is clear that the cumulative return index r(c)t represents the long-term moving trend

of the return index rt, and the cumulative average compound return index r(c,ave)
t represents

the long-term moving trend of the average compound return index r(ave)
T .
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When comparing the trends between the short-term return index rt and the long-term
cumulative return index r(c)t , it is obvious that the long-term cumulative return index has a
clearer moving trend than the short-term return index. For this reason, we will focus on
conducting an analysis of the long-term cumulative return index.

If we have already learned the prediction value of the cumulative return index r(c)t ,

we will obtain the prediction value of the stock price P′t = P0r(c)t . Because the stock price
on the first day (4 January 2010) is P0 = P1 = 10583.96, if we can predict the value of the
cumulative return index r(c)t , the prediction value of the price at any time t ∈ [1, t] will be

P′t = P0r(c)t = 10583.96r(c)t .
Figure 12 has listed the stock price Pt and its prediction value from the formula

P′t = 10583.96r(c)t . Because the cumulative return index r(c)t is from the real value of the

return index rt, the curves of both Pt and P′t = 10583.96r(c)t are almost the same.

It is clear from comparing the curves of the cumulative return index r(c)t and the real

return index rt that the forecasting procedure of the cumulative return index r(c)t may be
much easier than the forecasting procedure of the real return index rt.
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5.2. The Cumulative Return Gap Index

Figure 13 shows the moving curves of the cumulative return gap (CRG) index r(c,gap)
t

and its lag 1 item r(c,gap)
t−1 between 4 January 2010 and 8 July 2016.
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Figure 13. The cumulative return gap index r(c,gap)
t and its lag 1 item r(c,gap)

t−1 .

The cumulative return gap index r(c,gap)
t represents a long-term cumulative excess

return, which has an average arithmetic mean of 0.0375. We can see that it is difficult to
differentiate both curves of r(c,gap)

t and its lag 1 item r(c,gap)
t−1 ; this is because the time series

of the cumulative return gap index r(c,gap)
t has a very high autocorrelation.

The cumulative return gap (r(c,gap)
t = r(c)t − r(c)T ) reveals a cumulative risk premium

during the time period of t ∈ (0, t). When the general risk premium (r(gap)
t = rt − r f )

reveals a difference between the return of a risk asset and the return of a risk-free asset, the
cumulative return gap reveals the difference between the cumulative compound return
and the cumulative average compound return of a risk asset.

Table 6 lists the autocorrelations and the probabilities of Ljung and Box (1978) statistics
for the time series variable r(c,gap)

t . The autocorrelation between both time series r(c,gap)
t

and r(c,gap)
t−1 is 0.988, which is much higher than the value of the autocorrelation of −0.052

between the time series rt and rt−1.
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Table 6. Autocorrelation (AC) values and probabilities of Ljung and Box (1978) statistics for the
cumulative return gap index.

Variable AC(1) P(1) AC(5) P(5) AC(10) P(10) AC(15) P(15) AC(20) P(20) AC(25) P(25)

r(c,gap)
t 0.988 0.000 0.942 0.000 0.897 0.000 0.850 0.000 0.808 0.000 0.769 0.000

Because the correlation between the cumulative return gap index and its lag 1 item is
as high as 0.988, or ρ1 = Corr(r(c,gap)

t , r(c,gap)
t−1 ) = 0.988, the term of r(c,gap)

t−1 can be applied

into the prediction model to replace the value of r(c,gap)
t . We have already learned that the

cumulative return index r(c)t can be depicted as r(c)t = r(c,ave)
t + r(c,gap)

t ; if r(c,gap)
t ≈ r(c,gap)

t−1 ,

then r(c)t = r(c,ave)
t + r(c,gap)

t−1 . For this reason, the expression of r(c)t will include these two

items of r(c,ave)
t and r(c,gap)

t−1 .

5.3. ARDL-CRG Prediction Model for the Cumulative Return Index

According to the definition, the cumulative return index r(c)t is related to four compo-

nents: the cumulative average compound return index r(c,ave)
t , the time function f (t), the

cumulative return gap index r(c,gap)
t−1 , and the residual variable bt. Because the cumulative

return gap item r(c,gap)
t−1 is introduced to the ARDL model, the new model can be called the

ARDL-CRG model with the following equation

r(c)b,t = µ
(c)
b,t + bt

µ
(c)
b,t = −0.002475 + 0.998355r(c,ave)

t + 0.985347r(c,gap)
t−1 + 0.000818 ln t

R2 = 0.997444, S.E. = 0.012508, AIC = −5.922330

The ARDL-CRG model shows that the dependent variable r(c)t can be represented by

the independent variable r(c,ave)
t , r(c,gap)

t−1 , and ln t very well. The determined coefficient is
as high as R2 = 0.997444.

The coefficient of r(c,ave)
t is 0.998355. The coefficient of r(c,gap)

t−1 is 0.985347. Both of the
coefficients are very close to one. Because the coefficient of ln t is 0.000818, this means that
the long-term trend of the stock market increases when the time variable is moving forward.

When the residual value of bt is ignored, it is easy to obtain the predicted value µ
(c)
b,t

from this ARDL-CRG model. From the ARDL_CRM model, we can predict the return index
by following the equations

rb,t = µb,t + b′t, where µb,t =
µ
(c)
b,t

r(c)t−1

, b′t =
bt

r(c)t−1

Figure 14 shows the return index rt and its prediction value of µb,t. The prediction
value of µb,t is the conditional mean of rt, which is similar to the equation of rb,t = µb,t
when b′t = 0. The correlation between rt and µb,t is 0.0984. Although the correlation is low,
it is good for representing the relationship between the return index rt and the conditional
mean µb,t.

Figure 15 shows the residual bt from the prediction model of r(c)b,t = µ
(c)
b,t + bt and the

residual b′t from the prediction model of rb,t = µb,t + b′t. The correlation between bt and b′t is
0.9803. The correlation is quite high. It means that the prediction model of the cumulative
return index is consistent with the prediction model of the real return index, although the
most historic information is included in the residual items.
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Figure 15. The residual bt and the residual b′t.

5.4. Indirect Prediction of the Return Index Based on the Finite Difference Method ARDL-CRG-FD
Model

When the finite difference method is introduced into the ARDL-CRG model, the model
will become the ARDL-CRG-FD model.

Because the residual item bt has a strong impact on the prediction value of the cumu-
lative return index r(c)t , it is important to predict the trend of the residual item bt. When
defining

q(b)t =
1

1 + e−bt
, or bt = − ln(

1

q(b)t

− 1)

then the variable q(b)t can be seen as a probability of bt. If we assume the first-order

difference is dq(b)t = q(b)t − q(b)t−1, the second-order difference is d2q(b)t = dq(b)t − dq(b)t−1, the

third-order difference is d3q(b)t = d2q(b)t − d2q(b)t−1, and the nth-order difference is dnq(b)t =

dn−1q(b)t − dn−1q(b)t−1. If the level variable q(b)t is not the autocorrelation time series, the nth-

order difference dnq(b)t may be the autocorrelation time series. If the nth-order difference

dnq(b)t can be expressed as

dnq(b)t = ω + α0q(b)t−1 + α1dq(b)t−1 + · · ·+ αn−1dn−1q(b)t−1 + β1dnq(b)t−1 + · · ·+ βpdnq(b)t−p + ct
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the nth-order difference dnq(b)t can also be expressed as

dnq(b)t = ω +
n−1

∑
i=0

αidiq(b)t−1 +
p

∑
j=1

β jdnq(b)t−j + ct

Then, according to the definition of the difference method, the probability q(b)t can be
predicted by

q(b)t = q(b)t−1 + dq(b)t−1 + d2q(b)t−1 + · · ·+ dn−1q(b)t−1 + dnq(b)t

The variable ct is the residual item of the regression model. It is important to determine
a proper order number; for example, we will consider the first-, second- and fourth-order
differences. For simplicity, we will not consider the residual ct again and assume ct = 0.

After obtaining the prediction value of the probability q(b)t , it is easy to obtain the

prediction value of the cumulative return index r(c)t by

r(c)b,t = µ
(c)
b,t − ln (

1

q(b)t

− 1)

By applying the equation of rb,t = r(c)b,t /r(c)t−1, it is easy to obtain the prediction value of
the return index rt.

The probability prediction models from the second-order difference are

d2q(b)t = 0.563364− 1.126737q(b)t−1 − 0.675543dq(b)t−1 − 0.225449d2q(b)t−1

−0.103285d2q(b)t−2 − 0.051688d2q(b)t−3
R2 = 0.8426, S.E. = 0.0031, AIC = −8.6992, SIC = 8.6782

q(b)t = q(b)t−1 + dq(b)t−1 + d2q(b)t

The probability prediction models from the third-order difference are

d3q(b)t = 0.563364− 1.126737q(b)t−1 − 0.675543dq(b)t−1 − 1.380421d2q(b)t−1+

0.154973d3q(b)t−1 + 0.051688d3q(b)t−2
R2 = 0.9536, S.E. = 0.0031, AIC = −8.6992, SIC = −8.6782

q(b)t = q(b)t−1 + dq(b)t−1 + d2q(b)t−1 + d3q(b)t

The probability prediction models from the fourth-order difference are

d4q(b)t = 0.563364− 1.126737q(b)t−1 − 0.675543dq(b)t−1 − 1.380421d2q(b)t−1−
0.793340d3q(b)t−1 − 0.051688d4q(b)t−1

R2 = 0.9869, S.E. = 0.0031, AIC = −8.6992, SIC = −8.6782
q(b)t = q(b)t−1 + dq(b)t−1 + d2q(b)t−1 + d3q(b)t−1 + d4q(b)t

Assume variable r(2)b,t represents the prediction value of the return index rt from the

second-order difference probability prediction value of q(b)t ; variable r(3)b,t represents the
prediction value of the return index rt from the third-order difference probability prediction
value of q(b)t ; and variable r(4)b,t represents the prediction value of the return index rt from

the fourth-order difference probability prediction value of q(b)t .

Figure 16 shows the curves of the return index rt and its prediction values of r(2)b,t , r(3)b,t ,

and r(4)b,t from the second, third and fourth difference probability prediction values during
2010–2016.
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Figure 16. Curves of the return index rt and its prediction values of r(2)b,t , r(3)b,t , and r(4)b,t from the 2nd,
3rd, and 4th difference probability prediction values during 2010–2016.

Figure 17 shows the curves of the conditional mean µb,t of the return index rt and the

prediction values r(2)b,t , r(3)b,t , and r(4)b,t of the return index rt from the second, third, and fourth
difference probability prediction values during 2010–2016.
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Figure 17. Curves of the conditional mean µb,t of the return index rt and the prediction values r(2)b,t ,

r(3)b,t , and r(4)b,t from the 2nd, 3rd, and 4th difference probability prediction values during 2010–2016.

The correlations between rt and µb,t, r(2)b,t , r(3)b,t , r(4)b,t are 0.1018, 0.1614, 0.1435, 0.1614,
respectively. It is obvious that the residual item bt has made the correlations between
the return index rt and its prediction values, r(2)b,t , r(3)b,t , r(4)b,t increase much more than the
correlation between the return index rt and its prediction values of the conditional mean
µb,t. This means that applying the second-, third-, and fourth-order finite differences to
the residual item bt can improve the correlations between the real return index rt and its
prediction values.

5.5. Return Index Prediction Based on the Second-Order Difference ARDL-CRG-FD Model

Because applying the second, third, and fourth-order finite difference methods to
the residual item bt can improve the correlations between the real return index rt and its
prediction values, we will test if higher lags of the probability q(b)t regression model can
lead to a higher correlation between the real return index rt and its prediction value. For
this purpose, we will focus on conducting an analysis of the second-order finite difference
regression model.

The second-order difference d2q(b)t can be expressed by a regression model as

d2q(b)t = ω + α0q(b)t−1 + α1q(b)t−1 +
p

∑
j=1

β jd2q(b)t−j + ct
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When the lag-order is p = 3, 50, 100, 150, 200, 300, 400, 500, 600, 700, we can obtain ten
different prediction regression models for the second-order difference d2q(b)t .

By applying the equations of q(b)t = q(b)t−1 + dq(b)t−1 + d2q(b)t , r(c)b,t = µ
(c)
b,t − ln ( 1

q(b)t

− 1),

and rb,t = r(c)b,t /r(c)t−1, we will be able to obtain the return index prediction values of
rb,t
∣∣

p=3,50,150,200,300,400,500,600,700.
Table 7 has listed the first three parameters of the second-order difference regression

models for the residual of the cumulative return index prediction model.

Table 7. Results of the second-order finite difference regression models of ARDL-CRG-FD when the
lags of the probability are different.

No.
Prediction Model for Second-Order Difference d2q(b)t rb,t

Correlation
ρ(rb,t,rt)ω α0 α1 p R2 S.E. AIC SIC

1 0.563364 −1.126737 −0.675543 3 0.842668 0.003118 −8.699228 −8.678259 rb,t
∣∣

p=3 0.161486

2 0.538496 −1.077017 −0.410510 50 0.847195 0.003144 −8.651569 −8.461571 rb,t
∣∣

p=50 0.242633

3 0.421591 −0.843178 −20.90050 100 0.852919 0.003136 −8.622071 −8.242382 rb,t
∣∣

p=100 0.296988

4 0.373183 −0.746334 −35.27877 150 0.860050 0.003148 −8.579957 −7.999447 rb,t
∣∣

p=150 0.344799

5 0.398982 −0.797960 −15.82828 200 0.863607 0.003214 −8.503039 −7.709469 rb,t
∣∣

p=200 0.382242

6 0.343252 −0.686537 −28.55671 300 0.877231 0.003315 −8.370555 −7.108924 rb,t
∣∣

p=300 0.478909

7 0.667269 −1.334446 199.7550 400 0.891028 0.003242 −8.352795 −6.556372 rb,t
∣∣

p=400 0.584397

8 0.563196 −1.126326 140.5567 500 0.906935 0.003267 −8.302990 −5.888115 rb,t
∣∣

p=500 0.656670

9 2.112864 −4.225520 1324.022 600 0.930281 0.003485 −8.230197 −5.089768 rb,t
∣∣

p=600 0.752572

10 4.288409 −8.576220 3052.109 700 0.961514 0.004071 −8.362576 −4.355974 rb,t
∣∣

p=700 0.873537

When the lag order p = 3, the regression model of the second-order difference d2q(b)t

includes the intercept ω and the coefficient α0 for item q(b)t−1, the coefficient α1 for item dq(b)t−1,

and the coefficient β1, β2, β3 for item q(b)t−1, q(b)t−2, q(b)t−3.

When the lag order p = 50, the regression model of the second-order difference d2q(b)t

includes the intercept ω and the coefficient α0 for item q(b)t−1, the coefficient α1 for item dq(b)t−1,

and the coefficient β1, β2, . . . , β50 for item q(b)t−1, q(b)t−2, . . . , q(b)t−50.
Similarly, When the lag order p = 700, the regression model of the second-order

difference d2q(b)t includes the intercept ω and the coefficient α0 for item q(b)t−1, the coefficient

α1 for item dq(b)t−1, and the coefficient β1, β2, . . . , β700 for item q(b)t−1, q(b)t−2, . . . , q(b)t−700.
Figure 18 depicts the curves of the return index rt and its prediction values of rb,t

∣∣
p=200

from the second-order difference regression model.
Figure 19 depicts the curves of the return index rt and its prediction values of rb,t

∣∣
p=700

from the second-order difference regression model.
From these regression models for the second-order difference variable d2q(b)t , there are

three results:
First, when the lag order increases, the determinate coefficient for the regression

model will increase. When the lag order increases from 3 to 50, 100, 150, 200, 300, 400,
500, 600, and 700, the R-squared value of the regression model increases from 0.842668 to
0.847195, 0.852919, 0.860050, 0.863607, 0.877231, 0.891028, 0.906935, 0.930281, and 0.961514,
respectively.

Second, when the lag order increases, the correlations between the real return in-
dex rt and its prediction values will increase. When the lag order increases from 3 to 50,
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100, 150, 200, 300, 400, 500, 600, and 700, the correlation between rt and its prediction
value of rb,t

∣∣
p=3, rb,t

∣∣
p=50, rb,t

∣∣
p=100, rb,t

∣∣
p=150, rb,t

∣∣
p=200, rb,t

∣∣
p=300, rb,t

∣∣
p=400, rb,t

∣∣
p=500,

rb,t
∣∣

p=600, rb,t
∣∣

p=700 increases from 0.161486 to 0.242633, 0.296988, 0.344799, 0.382242,
0.478909, 0.584397, 0.656670, 0.752572, and 0.873537, respectively.
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Figure 19. The return index rt and its prediction values of rb,t

∣∣
p=700 from the second-order difference

regression model.

Third, when comparing both figures, we can see that the prediction values of rb,t
∣∣

p=700
are more approximated to the real return index rt than the prediction values of rb,t

∣∣
p=200.

This means that a higher lag order prediction model can create a higher approximated
result between the real return index rt and its prediction value.

5.6. ARDL-CRG-GARCH-FD Model and Return Index Prediction Based on the Finite
Difference Method

For the residual variable bt, the conditional volatility in the GARCH (1,1) model is
regressed as

σ2
b,t = 6.59E− 0.6 + 0.134894b2

t−1 + 0.823964σ2
b,t−1

LL = 3276.90, AIC = −4.27, SIC = −4.26, HIC = −4.27

where the static variance is σ2 = 0.01265, the coefficient of the ARCH item is α = 0.134894 > 0,
the coefficient of the GARCH item is β = 0.823964 > 0, the intercept is ω = 0.00000659 > 0,
and the three parameters satisfy the relation of α + β = 0.958858 < 1, ω + α + β =
0.95886459 < 1.
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Because the regressive residual is unavoidable, the mean and variance of the random
variable eb,t = bt/σb,t are 0.000692 and 1.005242, respectively. When the new standardized
random variable is defined by eb,t = (εb,t − µb,0)/σb,0, the mean and variance of the random
variable eb,t are 1.74E-18 and 1.000327, respectively. Obviously, the random variable eb,t is
more approximate to the standardized normal distribution than the random variable εb,t.

Then, the prediction value of the cumulative return index r(c)t will be

r(c,e)
b,t = µ

(c)
b,t + σb,t(mean(εb,t) + Var(εb,t)eb,t)

When the variable q(e)b,t represents the probability of the quantile of eb,t, let q(e)b,t =

1
1+e−eb,t

. Assume that the probability q(e)b,t is the same as the probability of the random
variable with the standard normal distribution, then for simplicity, the prediction model of
the cumulative return index r(c)t can be defined as

r(c,e)
b,t = µ

(c)
b,t + σb,t(mean(εb,t) + Var(εb,t)(− ln (

1

q(e)b,t

− 1)))

Then, the prediction model of the return index rt can be defined as

r(e)b,t =
r(c,e)

b,t

r(c)b,t

The probability prediction models from the second-order difference are

d2q(e)b,t = 0.534293− 1.060669q(e)b,t−1 − 0.820323dq(e)b,t−1 − 0.152446d2q(e)b,t−1−
0.102566d2q(e)b,t−2 − 0.052680d2q(e)b,t−3

R2 = 0.9532, S.E. = 0.2014, AIC = −0.3625, SIC = −0.3415
q(e)b,t = q(e)b,t−1 + dq(e)b,t−1 + d2q(e)b,t

The probability prediction models from the third-order difference are

q(e)b,t = 0.534293− 1.060669q(e)b,t−1 − 0.820323dq(e)b,t−1 − 1.307692d2q(e)b,t−1+

0.155246d3q(e)b,t−1 − 0.052680d3q(e)b,t−2
R2 = 0.9532, S.E. = 0.2014, AIC = −0.3625, SIC = −0.3415

q(e)b,t = q(e)b,t−1 + dq(e)b,t−1 + d2q(e)b,t−1 + d3q(e)b,t

The probability prediction models from the fourth-order difference are

d4q(e)b,t = 0.534293− 1.060669q(e)b,t−1 − 0.820323dq(e)b,t−1 − 1.307692d2q(e)b,t−1

−0.792074d3q(e)b,t−1 − 0.052680d4q(e)b,t−1
R2 = 0.9867, S.E. = 0.2014, AIC = −0.3625, SIC = −0.3415

q(e)b,t = q(e)b,t−1 + dq(e)b,t−1 + d2q(e)b,t−1 + d3q(e)b,t−1 + d4q(e)b,t

Assume variable r(e)b,t

∣∣∣
2nd

represents the prediction value of the return index rt from the

second-order difference probability prediction value of q(e)b,t ; variable r(e)b,t

∣∣∣
3rd

represents the
prediction value of the return index rt from the third-order difference probability prediction
value of q(e)b,t ; and variable r(e)b,t

∣∣∣
4th

represents the prediction value of the return index rt from

the fourth-order difference probability prediction value of q(e)b,t .
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Figure 20 shows the curves of the return index rt and its prediction values of r(e)b,t

∣∣∣
2nd

,

r(e)b,t

∣∣∣
3rd

, and r(e)b,t

∣∣∣
4th

from the second, third, and fourth difference probability prediction
values during 2010–2016.
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Figure 20. The return index rt and its prediction values of r(e)b,t

∣∣∣
2nd

, r(e)b,t

∣∣∣
3rd

, and r(e)b,t

∣∣∣
4th

from the 2nd-,

3rd-, and 4th- order differences.

Figure 21 shows the curves of the conditional mean µb,t of the return index rt and the

prediction values r(e)b,t

∣∣∣
2nd

, r(e)b,t

∣∣∣
3rd

, and r(e)b,t

∣∣∣
4th

of the return index rt from the second, third,
and fourth order difference probability prediction values during 2010–2016.
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Figure 21. Under the 2nd-, 3rd-, and 4th- order differences, the prediction values of r(e)b,t

∣∣∣
2nd

, r(e)b,t

∣∣∣
3rd

,

and r(e)b,t

∣∣∣
4th

, and µb,t of rt.

The correlations between rt and µb,t, r(e)b,t

∣∣∣
2nd

, r(e)b,t

∣∣∣
3rd

, and r(e)b,t

∣∣∣
4th

are 0.1006, 0.1467,
0.1467, 0.1467, respectively. It is obvious that the residual item bt has made the correlations
between the return index rt and its prediction values r(e)b,t

∣∣∣
2nd

, r(e)b,t

∣∣∣
3rd

, and r(e)b,t

∣∣∣
4th

increase
much more than the correlation between the return index rt and its prediction values of the
conditional mean µb,t.

5.7. Return Index Prediction Based on the Second-Order Difference ARDL-CRG-GARCH-FD
Model

Because applying the second-, third-, and fourth-order finite difference methods to
the residual item eb,t can improve the correlations between the real return index rt and
its prediction values, we will test if higher lags of the probability prediction value of the
q(e)b,t regression model can lead to a higher correlation between the real return index rt
and its prediction value. For this purpose, we will focus on conducting an analysis of the
second-order finite difference regression model.
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The second-order difference d2q(e)b,t can be expressed by a regression model as

d2q(e)b,t = ω + α0q(e)b,t−1 + α1dq(e)b,t−1 +
p

∑
j=1

β jd2q(e)b,t−j + ct

When the lag order is p = 3, 50, 100, 150, 200, 300, 400, 500, 600, 700, we can obtain ten
different prediction regression models for the second-order difference d2q(e)b,t .

According to the second-order difference equation q(e)b,t = q(e)b,t−1 + dq(e)b,t−1 + d2q(e)b,t ,

the return index prediction regression model r(c,e)
b,t = µ

(c)
b,t + σb,t(mean(εb,t) + Varr(εb,t)

(− ln (1/q(e)b,t − 1))), and the return index prediction model r(e)b,t = r(c,e)
b,t /r(c)b,t , we will be able

to obtain the return index prediction values of r(e)b,t

∣∣∣
p=3,50,100,150,200,300,400,500,600,700

.

Table 8 has listed the first three parameters of the second-order finite difference
regression models for the residual of the cumulative return index prediction model.

Table 8. Results of the second-order finite difference ARDL-CRG-GARCH-FD models when the lags
of the probability are different.

No.
Prediction Model for Second-Order Difference d2q(e)b,t r(e)b,t

Correlation
ρ(r(e)b,t ,rt)ω α0 α1 p R2 S.E. AIC SIC

1 0.534293 −1.060669 −0.820323 3 0.842384 0.201461 −0.362523 −0.341564 r(e)b,t

∣∣∣
p=3

0.146718

2 0.442926 −0.881374 −6.802927 50 0.845745 0.202992 −0.316119 −0.126225 r(e)b,t

∣∣∣
p=50

0.220724

3 0.364174 −0.723608 −19.37262 100 0.852091 0.202484 −0.286966 0.092508 r(e)b,t

∣∣∣
p=100

0.284660

4 0.300778 −0.596242 −37.47253 150 0.857610 0.204075 −0.236363 0.343807 r(e)b,t

∣∣∣
p=150

0.329443

5 0.330035 −0.655289 −19.05648 200 0.861082 0.206740 −0.174969 0.618118 r(e)b,t

∣∣∣
p=200

0.368404

6 0.331949 −0.659683 1.016989 300 0.875154 0.210358 −0.070013 1.190792 r(e)b,t

∣∣∣
p=300

0.472701

7 0.589264 −1.164536 161.4154 400 0.892694 0.210504 −0.006255 1.788893 r(e)b,t

∣∣∣
p=400

0.566134

8 0.504847 −0.998953 135.5047 500 0.910258 0.214921 0.069515 2.482519 r(e)b,t

∣∣∣
p=500

0.646393

9 2.024880 −3.998776 1122.926 600 0.933839 0.224660 0.102500 3.240248 r(e)b,t

∣∣∣
p=600

0.732672

10 3.727738 −7.356259 2310.739 700 0.965393 0.250051 −0.122220 3.880572 r(e)b,t

∣∣∣
p=700

0.840273

When the lag order p = 3, the regression model of the second-order difference d2q(b)t

includes the intercept ω and the coefficient α0 for item q(b)t−1, the coefficient α1 for item dq(b)t−1,

and the coefficient β1, β2, β3 for item q(b)t−1, q(b)t−2, q(b)t−3.

When the lag order p = 50, the regression model of the second-order difference d2q(b)t

includes the intercept ω and the coefficient α0 for item q(b)t−1, the coefficient α1 for item dq(b)t−1,

and the coefficient β1, β2, . . . , β50 for item q(b)t−1, q(b)t−2, . . . , q(b)t−50.
Similarly, when the lag order p = 700, the regression model of the second-order

difference d2q(b)t includes the intercept ω and the coefficient α0 for item q(b)t−1, the coefficient

α1 for item dq(b)t−1, and the coefficient β1, β2, . . . , β700 for item q(b)t−1, q(b)t−2, . . . , q(b)t−700.
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Figure 22 depicts the curves of the return index rt and its prediction values of r(e)b,t

∣∣∣
p=200

from the second-order finite difference regression model.
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Third, when we compare both figures, we can see that the prediction values of
r(e)b,t

∣∣∣
p=700

are more approximated to the real return index rt than the prediction values of

r(e)b,t

∣∣∣
p=200

. This means that a higher lag order of the probability r(e)b,t prediction model can

create a higher approximated result between the real return index rt and its prediction
value.

6. Tests of the Prediction Accuracy for the Four Kinds of Models
6.1. Comparison of the Correlations between the Real and Predicted Returns from the Four
Different Models

From the probability prediction models, we have already learned that the correlations
between the real return index rt and its prediction values from the higher order differences
are higher than the correlations between the real return index rt and its prediction values
from the lower order differences.

When we fixed the finite difference order of the probability variable qt that transferred
from the residual variable at at the second order, the higher lags of the probability variable
qt will make higher correlations between the real return index rt and its prediction values
for each of the four different prediction models.

It is clear that the higher correlations mean that the prediction accuracy is high. For
the four different models, we will compare the empirical results based on the perspectives
of the correlations.

From the previous study, we built an AR(5) model when the lag order is p = 5 and
the lag items are rt−1, rt−2, rt−3, rt−4, rt−5 from the real return index rt. We also built an
ARDL-CRG model when the cumulative gap lag order is 1 as item r(c,gap)

t−1 . Based on the
two models’ residual items, by using a second-order finite difference method, we have
already built four different models.

Table 9 has listed the correlations between the real return index rt and its prediction
values of ra,t, rb,t, r(e)a,t , and r(e)a,t from the four different kinds of prediction models.

Table 9. Correlations between the real return index and its prediction values from four different
kinds of prediction models.

ra,t ρ(ra,t, rt) rb,t ρ(rb,t, rt) r(e)a,t ρ(r(e)a,t , rt) r(e)b,t ρ(r(e)b,t , rt)

ra,t|p=3 0.136766 rb,t
∣∣

p=3 0.161486 r(e)a,t

∣∣∣
p=3

0.119018 r(e)b,t

∣∣∣
p=3

0.146718

ra,t|p=50 0.238128 rb,t
∣∣

p=50 0.242633 r(e)a,t

∣∣∣
p=50

0.209055 r(e)b,t

∣∣∣
p=50

0.220724

ra,t|p=100 0.294749 rb,t
∣∣

p=100 0.296988 r(e)a,t

∣∣∣
p=100

0.268237 r(e)b,t

∣∣∣
p=100

0.284660

ra,t|p=150 0.341969 rb,t
∣∣

p=150 0.344799 r(e)a,t

∣∣∣
p=150

0.315291 r(e)b,t

∣∣∣
p=150

0.329443

ra,t|p=200 0.389903 rb,t
∣∣

p=200 0.382242 r(e)a,t

∣∣∣
p=200

0.367438 r(e)b,t

∣∣∣
p=200

0.368404

ra,t|p=300 0.486086 rb,t
∣∣

p=300 0.478909 r(e)a,t

∣∣∣
p=300

0.472224 r(e)b,t

∣∣∣
p=300

0.472701

ra,t|p=400 0.578318 rb,t
∣∣

p=400 0.584397 r(e)a,t

∣∣∣
p=400

0.552860 r(e)b,t

∣∣∣
p=400

0.566134

ra,t|p=500 0.651674 rb,t
∣∣

p=500 0.656670 r(e)a,t

∣∣∣
p=500

0.640771 r(e)b,t

∣∣∣
p=500

0.646393

ra,t|p=600 0.745966 rb,t
∣∣

p=600 0.752572 r(e)a,t

∣∣∣
p=600

0.701112 r(e)b,t

∣∣∣
p=600

0.732672

ra,t|p=700 0.867847 rb,t
∣∣

p=700 0.873537 r(e)a,t

∣∣∣
p=700

0.847974 r(e)b,t

∣∣∣
p=700

0.840273
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First, the perspective of AR-FD models is considered. The prediction values of ra,t are
from the traditional autoregressive (AR) model ra,t = µa,t + at. When the probability is
defined as q(a)

t = 1/(1 + e−at), the residual item at = − ln (1/q(a)
t − 1) can be predicted by

predicting the probability q(a)
t . Because the second-order difference d2q(a)

t of the probability

q(a)
t is an autoregressive time series, the probability q(a)

t can be predicted by predicting its

second-order difference d2q(a)
t . When we choose different lag orders for the second-order

difference d2q(a)
t as d2q(a)

t−3, d2q(a)
t−50, . . . , and d2q(a)

t−700, we will obtain the prediction values of
ra,t|p=3, ra,t|p=50, . . . , and ra,t|p=700. When the lag order increases, the correlation between
the real return index rt and the prediction values of ra,t will increase.

Second, from the perspective of ARDL-CRG-FD models, the prediction values of rb,t

are from the traditional autoregressive distribution lag (ARDL) model r(c)b,t = µ
(c)
b,t + bt.

Because rb,t = r(c)b,t /r(c)t−1, it is easy to predict the values of the return index if we know
the prediction values of the cumulative return index. When the probability is defined
as q(b)t = 1/(1 + e−bt), then the residual item bt = − ln (1/q(b)t − 1) can be predicted by

predicting the probability q(b)t . Because the second-order difference d2q(b)t of the probability

q(b)t is an autoregressive time series, the probability q(b)t can be predicted by predicting its

second-order difference d2q(b)t . When we choose different lag orders for the second-order

difference d2q(b)t as d2q(b)t−3, d2q(b)t−50, . . . , and d2q(b)t−700, we will get the prediction values of
rb,t
∣∣

p=3, rb,t
∣∣

p=50, . . . , and rb,t
∣∣

p=700. When the lag order increases, the correlation between
the real return index rt and the prediction values of rb,t will increase.

Third, from the perspective of AR-GARCH-FD models, the prediction values of r(e)a,t
are from the traditional autoregressive (AR) model and the generalized autoregressive
conditional heteroscedasticity (GARCH) model ra,t = µa,t + at, at = σa,tεa,t, εa,t = at/σa,t,
ea,t = (εa,t − µa,0)/σa,0. When the probability is defined as q(e)a,t = 1/(1 + e−ea,t), by pre-

dicting the probability q(e)a,t , the residual item at = σa,t(µa,0 + σa,0(− ln (1/q(e)a,t − 1))) can be

predicted. Because the second-order difference d2q(e)a,t of the probability q(e)a,t is an autore-

gressive time series, the probability q(e)a,t can be predicted by predicting its second-order

difference d2q(e)a,t . When we choose different lag orders for the second-order difference

d2q(e)a,t as d2q(e)a,t−3, d2q(e)a,t−50, . . . , and d2q(e)a,t−700, we will get the prediction values of r(e)a,t

∣∣∣
p=3

,

r(e)a,t

∣∣∣
p=50

, . . . , and r(e)a,t

∣∣∣
p=700

. When the lag order increases, the correlation between the real

return index rt and the prediction values of r(e)a,t will increase.
Fourth, from the perspective of ARDL-CRG-GARCH-FD models, the prediction val-

ues of r(e)b,t are from the traditional autoregressive distribution lag (ARDL) model and

the generalized autoregressive conditional heteroscedasticity (GARCH) model r(c)b,t =

µ
(c)
b,t + bt, bt = σb,tεb,t, εb,t = bt/σb,t, eb,t = (εb,t − µb,0)/σb,0. When the probability

is defined as q(e)b,t = 1/(1 + e−eb,t), by predicting the probability q(e)b,t , the residual item

bt = σb,t(mean(εb,t) + Var(εb,t)(− ln (1/q(e)b,t − 1))) can be predicted. Because the second-

order difference d2q(e)b,t of the probability q(e)b,t is an autoregressive time series, the probability

q(e)b,t can be predicted by predicting its second-order difference d2q(e)b,t . When we choose

different lag orders for the second-order difference d2q(e)b,t as d2q(e)b,t−3, d2q(e)b,t−50, . . . , and

d2q(e)b,t−700, we will get the prediction values of r(e)b,t

∣∣∣
p=3

, r(e)b,t

∣∣∣
p=50

, . . . , and r(e)b,t

∣∣∣
p=700

. When

the lag order increases, the correlation between the real return index rt and the prediction
values of r(e)b,t will increase.
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Table 10 lists the comparison values of the correlations between the return index and
the prediction values from the AR, ARDL, AR-GARCH, and ARDL-GARCH models.

Table 10. Comparison of correlations between the return index and the prediction values from AR,
ARDL, AR-GARCH, ARDL-GARCH.

ρ(ra,t,rt) ρ(rb,t,rt) ρ(r(e)a,t ,rt) ρ(r(e)b,t ,rt) Correlation Correlation Correlation Correlation

(1) (2) (3) (4) (2)–(1) (4)–(3) (1)–(3) (2)–(4)

ra,t|p=3 rb,t
∣∣

p=3 r(e)a,t

∣∣∣
p=3

r(e)b,t

∣∣∣
p=3

0.024720 0.027700 0.017748 0.014768

ra,t|p=50 rb,t
∣∣

p=50 r(e)a,t

∣∣∣
p=50

r(e)b,t

∣∣∣
p=50

0.004505 0.011669 0.029073 0.021909

ra,t|p=100 rb,t
∣∣

p=100 r(e)a,t

∣∣∣
p=100

. r(e)b,t

∣∣∣
p=100

0.002239 0.016423 0.026512 0.012328

ra,t|p=150 rb,t
∣∣

p=150 r(e)a,t

∣∣∣
p=150

r(e)b,t

∣∣∣
p=150

0.002830 0.014152 0.026678 0.015356

ra,t|p=200 rb,t
∣∣

p=200 r(e)a,t

∣∣∣
p=200

r(e)b,t

∣∣∣
p=200

−0.007661 0.000966 0.022465 0.013838

ra,t|p=300 rb,t
∣∣

p=300 r(e)a,t

∣∣∣
p=300

r(e)b,t

∣∣∣
p=300

−0.007177 0.000477 0.013862 0.006208

ra,t|p=400. rb,t
∣∣

p=400 r(e)a,t

∣∣∣
p=400

r(e)b,t

∣∣∣
p=400

0.006079 0.013274 0.025458 0.018263

ra,t|p=500 rb,t
∣∣

p=500 r(e)a,t

∣∣∣
p=500

r(e)b,t

∣∣∣
p=500

. 0.004996 0.005622 0.010903 0.010277

ra,t|p=600 rb,t
∣∣

p=600 r(e)a,t

∣∣∣
p=600

r(e)b,t

∣∣∣
p=600

0.006606 0.031560 0.044854 0.019900

ra,t|p=700. rb,t
∣∣

p=700 r(e)a,t

∣∣∣
p=700

r(e)b,t

∣∣∣
p=700

0.005690 −0.007701 0.019873 0.033264

From the comparative results, we can get the following four results:
Firstly, the comparison between the correlations of ρ(rb,t, rt) and ρ(ra,t, rt) shows that

the correlations of ρ(rb,t, rt) are mostly greater than the correlations of ρ(ra,t, rt). It means
that the correlations between the return index rt and the prediction values rb,t. from the
ARDL-CRG-FD models for the cumulative return index are greater than the correlations
between the return index rt and the prediction values ra,t from the AR-FD models for the
return index. It reveals that the CRG model can improve the prediction accuracy.

Secondly, the comparison between the correlations of ρ(r(e)b,t , rt) and ρ(r(e)a,t , rt) shows

that the correlations of ρ(r(e)b,t , rt) are mostly greater than the correlations of ρ(r(e)a,t , rt). It

means that the correlations between the return index rt and the prediction values r(e)b,t
from the ARDL-CRG-GARCH-FD models for the cumulative return index are greater
than the correlations between the return index rt and the prediction values r(e)a,t from the
AR-GARCH-FD models for the return index. It reveals that the CRG model can improve
the prediction accuracy.

Thirdly, the comparison between the correlations of ρ(ra,t, rt) and ρ(r(e)a,t , rt) shows that

the correlations of ρ(ra,t, rt) are greater than the correlations of ρ(r(e)a,t , rt). It means that
the correlations between the return index rt and the prediction values ra,t from the AR-FD
models for the return index are greater than the correlations between the return index rt

and the prediction values r(e)a,t from the AR-GARCH-FD models for the return index. It
means that the GARCH model has little impact on prediction values.

Fourthly, the comparison between the correlations of ρ(rb,t, rt) and ρ(r(e)b,t , rt) shows

that the correlations of ρ(rb,t, rt) are greater than the correlations of ρ(r(e)b,t , rt). It means
that the correlations between the return index rt and the prediction values rb,t from the
ARDL-CRG-FD models for the cumulative return index are greater than the correlations
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between the return index rt and the prediction values r(e)b,t from the ARDL-CRG-GARCH-FD
models for the cumulative return index. It means that the GARCH model has little impact
on prediction values.

6.2. Hit Ratio Tests

Hit ratio analysis includes four cases: both the return index and the prediction value
are upward, both the return index and the prediction value are downward, the return index
is up but the prediction value is down, and the return index is down but the prediction
value is up.

The ideal prediction values are that the higher hit ratios are better under the two cases
when both the return index and the prediction values move upward or downward together,
or the lower hit ratios are better in the two cases in both the return index and the prediction
values are moving in the inverse directions.

First, the hit ratios from the AR-FD models were analyzed.
Table 11 lists the hit ratios between the real return index rt and its prediction values of

ra,t from the direct AR-FD model for the return index at ten levels of different lag orders.

Table 11. Hit ratios between the real return index and its prediction values of the direct AR-FD model
for the return index.

Condition {rt ≥ 1}∩{χ ≥ 1} {rt ≥ 1}∩{χ < 1} {rt < 1}∩{χ < 1} {rt < 1}∩{χ ≥ 1} Total Ratio Prediction

Hit Ratio (1) (2) (3) (4) (1) + (3) Windows

µa,t 540 35.39% 285 18.68% 266 17.43% 435 28.51% 806 52.82% 1526

ra,t|p=3 536 35.24% 286 18.80% 267 17.55% 432 28.40% 803 52.79% 1521

ra,t|p=50 481 32.63% 312 21.17% 324 21.98% 357 24.22% 805 54.61% 1474

ra,t|p=100 461 32.37% 304 21.35% 321 22.54% 338 23.74% 782 54.92% 1424

ra,t|p=150 455 33.11% 289 21.03% 326 23.73% 304 22.13% 781 56.84% 1374

ra,t|p=200 440 33.23% 270 20.39% 331 25.00% 283 21.37% 771 58.23% 1324

ra,t|p=300 415 33.91% 238 19.44% 354 28.92% 217 17.73% 769 62.83% 1224

ra,t|p=400 413 36.74% 190 16.90% 326 29.00% 195 17.35% 739 65.75% 1124

ra,t|p=500 379 37.01% 168 16.41% 319 31.15% 158 15.43% 698 68.16% 1024

ra,t|p=600 365 39.50% 137 14.83% 294 31.82% 128 13.85% 659 71.32% 924

ra,t|p=700 357 43.33% 94 11.41% 292 35.44% 81 9.83% 649 78.76% 824

Note: (1) variable χ represents each of the variables µa,t, ra,t|p=3, . . . , and ra,t|p=700; (2) because the lag order
levels in the different autoregressive models are different, the sample sizes are different.

Under the ideal prediction criteria, it is clear that a higher level of lag order leads
to a higher hit ratio than a lower level of lag order when both the return index and the
prediction values move upward or downward together.

Secondly, the hit ratios from the ARDL-CRG-FD models were analyzed.
Table 12 lists the hit ratios between the real return index rt and its prediction values of

rb,t from the indirect ARDL-CRG-FD model for the return index at ten levels of different
lag orders.
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Table 12. Hit ratios between the return index and its prediction values of the indirect ARDL-CRG-FD
model for the cumulative return index.

Condition {rt ≥ 1}∩{χ ≥ 1} {rt ≥ 1}∩{χ < 1} {rt < 1}∩{χ < 1} {rt < 1}∩{χ ≥ 1} Total Ratio Prediction

Hit Ratio (1) (2) (3) (4) (1) + (3) Windows

µb,t 510 33.33% 318 20.78% 275 17.97% 427 27.91% 785 51.31% 1530

rb,t
∣∣

p=3 491 32.20% 333 21.84% 293 19.21% 408 26.75% 784 51.41% 1525

rb,t
∣∣

p=50 471 31.87% 325 21.99% 336 22.73% 346 23.41% 807 54.60% 1478

rb,t
∣∣

p=100 466 32.63% 303 21.22% 340 23.81% 319 22.34% 806 56.44% 1428

rb,t
∣∣

p=150 455 33.02% 291 21.12% 354 25.69% 278 20.17% 809 58.71% 1378

rb,t
∣∣

p=200 432 32.53% 280 21.08% 345 25.98% 271 20.41% 777 58.51% 1328

rb,t
∣∣

p=300 411 33.47% 245 19.95% 351 28.58% 221 18.00% 762 62.05% 1228

rb,t
∣∣

p=400 405 35.90% 199 17.64% 339 30.05% 185 16.40% 744 65.96% 1128

rb,t
∣∣

p=500 380 36.96% 169 16.44% 328 31.91% 151 14.69% 708 68.87% 1028

rb,t
∣∣

p=600 369 39.76% 133 14.33% 301 32.44% 125 13.47% 670 72.20% 928

rb,t
∣∣

p=700 362 43.72% 91 10.99% 298 35.99% 77 9.30% 660 79.71% 828

Note: (1) variable χ represents each of the variables µb,t, rb,t|p=3, . . . , and rb,t|p=700; (2) because the lag order
levels in the different autoregressive models are different, the sample sizes are different.

Under the ideal prediction criteria, it is clear that a higher level of lag order has led
to a higher hit ratio than a lower level of lag order when both the return index and the
prediction values move upward or downward together.

Third, we carried out a comparison between the hit ratios from the ARDL-CRG-FD
models and from the AR-FD models.

Table 13 has listed the comparative results of hit ratios between the results from the
direct AR-FD model and the results from the indirect ARDL-CRG-FD model.

Table 13. Comparison of hit ratios between the results from the AR-FD models and the ARDL-CRG-
FD models.

Condition {rt ≥ 1}∩{χ ≥ 1} {rt ≥ 1}∩{χ < 1} {rt < 1}∩{χ < 1} {rt < 1}∩{χ ≥ 1} Total Hit
Ratio

Hit Ratio (1) (2) (3) (4) (1) + (3)

µb,t − µa,t −2.06% 2.10% 0.54% −0.60% −1.51%

rb,t − ra,t
∣∣

p=3 −3.04% 3.04% 1.66% −1.65% −1.38%

rb,t − ra,t
∣∣

p=50 −0.76% 0.82% 0.75% −0.81% −0.01%

rb,t − ra,t
∣∣

p=100 0.26% −0.13% 1.27% −1.40% 1.52%

rb,t − ra,t
∣∣

p=150 −0.09% 0.09% 1.96% −1.96% 1.87%

rb,t − ra,t
∣∣

p=200 −0.70% 0.69% 0.98% −0.96% 0.28%

rb,t − ra,t
∣∣

p=300 −0.44% 0.51% −0.34% 0.27% −0.78%

rb,t − ra,t
∣∣

p=400 −0.84% 0.74% 1.05% −0.95% 0.21%

rb,t − ra,t
∣∣

p=500 −0.05% 0.03% 0.76% −0.74% 0.71%

rb,t − ra,t
∣∣

p=600 0.26% −0.50% 0.62% −0.38% 0.88%

rb,t − ra,t
∣∣

p=700 0.39% −0.42% 0.55% −0.53% 0.95%
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Under the ideal prediction criteria, the comparison shows that the prediction values
from the indirect prediction model ARDL-CRG-FD for the cumulative return index are
mostly better than the prediction values from the direct prediction model AR-FD for the
return index, especially when the lag order is higher and greater than 400. For example,
under the two cases when both the return index and the prediction values move upward
together and expressed as {rt ≥ 1} ∩ {χ ≥ 1} or downward together and expressed as
{rt < 1} ∩ {χ < 1}, the hit ratios of rb,t

∣∣
p=100, rb,t

∣∣
p=150, rb,t

∣∣
p=200, rb,t

∣∣
p=400, rb,t

∣∣
p=500,

rb,t
∣∣

p=600, and rb,t
∣∣

p=700 are greater than the hit ratios of ra,t|p=100, ra,t|p=150, ra,t|p=200,
ra,t|p=400, ra,t|p=500, ra,t|p=600, and ra,t|p=700.

Inversely, in the case when the return index is downward but the prediction values
are upward and expressed as {rt < 1} ∩ {χ ≥ 1}, the hit ratios of rb,t

∣∣
p=100, rb,t

∣∣
p=150,

rb,t
∣∣

p=200, rb,t
∣∣

p=400, rb,t
∣∣

p=500, rb,t
∣∣

p=600, and rb,t
∣∣

p=700 are less than the hit ratios of
ra,t|p=100, ra,t|p=150, ra,t|p=200, ra,t|p=400, ra,t|p=500, ra,t|p=600, and ra,t|p=700. It means that
the ARDL-CRG-FD model is better for improving the hit ratios than the AR-FD models,
especially when the difference orders or lags are higher.

Fourth, the hit ratios from the AR-GARCH-FD models were analyzed.
Table 14 lists the hit ratios between the real return index rt and its prediction values of

r(e)a,t from the direct AR-GARCH-FD model for the return index at ten levels of different lag
orders.

Table 14. Hit ratios between the real return index and its prediction values of the AR-GARCH-FD
model for the return index.

Condition {rt ≥ 1}∩{χ ≥ 1} {rt ≥ 1}∩{χ < 1} {rt < 1}∩{χ < 1} {rt < 1}∩{χ ≥ 1} Total Ratio Prediction

Hit Ratio (1) (2) (3) (4) (1) + (3) Windows

µa,t 540 35.39% 285 18.68% 266 17.43% 435 28.51% 806 52.82% 1526

r(e)a,t

∣∣∣
p=3

598 39.32% 224 14.73% 193 12.69% 506 33.27% 791 52.01% 1521

r(e)a,t

∣∣∣
p=50

545 36.97% 248 16.82% 291 19.74% 390 26.46% 836 56.72% 1474

r(e)a,t

∣∣∣
p=100

504 35.39% 261 18.33% 309 21.70% 350 24.58% 813 57.09% 1424

r(e)a,t

∣∣∣
p=150

491 35.74% 253 18.41% 324 23.58% 306 22.27% 815 59.32% 1374

r(e)a,t

∣∣∣
p=200

478 36.10% 232 17.52% 338 25.53% 276 20.85% 816 61.63% 1324

r(e)a,t

∣∣∣
p=300

438 35.78% 215 17.57% 349 28.51% 222 18.14% 787 64.30% 1224

r(e)a,t

∣∣∣
p=400

436 38.79% 167 14.86% 351 31.23% 170 15.12% 787 70.02% 1124

r(e)a,t

∣∣∣
p=500

393 38.38% 154 15.04% 330 32.23% 147 14.36% 723 70.61% 1024

r(e)a,t

∣∣∣
p=600

387 41.88% 115 12.45% 316 34.20% 106 11.47% 703 76.08% 924

r(e)a,t

∣∣∣
p=700

387 46.97% 64 7.77% 322 39.08% 51 6.19% 709 86.04% 824

Note: (1) variable χ represents each of the variables µa,t, r(e)a,t

∣∣∣
p=3

, . . . , and r(e)a,t

∣∣∣
p=600

; (2) because the lag order

levels in the different autoregressive models are different, the sample sizes are different.

Under the ideal prediction criteria, it is clear that the higher level of lag order has led
to a higher hit ratio than the lower level of lag order.

Fifth, the hit ratios from the ARDL-CRG-GARCH-FD models were analyzed.
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Table 15 lists the hit ratios between the real return index rt and its prediction values of
r(e)b,t from the indirect ARDL-CRG-GARCH-FD model for the cumulative return index at
ten levels of different lag orders.

Table 15. Hit ratios between the return index and its prediction values of the ARDL-CRG-GARCH-FD
model for the cumulative return index.

Condition {rt ≥ 1}∩{χ ≥ 1} {rt ≥ 1}∩{χ < 1} {rt < 1}∩{χ < 1} {rt < 1}∩{χ ≥ 1} Total Ratio Prediction

Hit Ratio (1) (2) (3) (4) (1) + (3) Windows

µb,t 510 33.33% 318 20.78% 275 17.97% 427 27.91% 785 51.31% 1530

r(e)b,t

∣∣∣
p=3

527 34.53% 298 19.53% 252 16.51% 449 29.42% 779 51.05% 1526

r(e)b,t

∣∣∣
p=50

528 35.70% 269 18.19% 291 19.68% 391 26.44% 819 55.38% 1479

r(e)b,t

∣∣∣
p=100

504 35.27% 265 18.54% 318 22.25% 342 23.93% 822 57.52% 1429

r(e)b,t

∣∣∣
p=150

492 35.68% 254 18.42% 329 23.86% 304 22.04% 821 59.54% 1379

r(e)b,t

∣∣∣
p=200

476 35.82% 237 17.83% 340 25.58% 276 20.77% 816 61.40% 1329

r(e)b,t

∣∣∣
p=300

443 36.05% 214 17.41% 344 27.99% 228 18.55% 787 64.04% 1229

r(e)b,t

∣∣∣
p=400

430 38.09% 175 15.50% 345 30.56% 179 15.85% 775 68.64% 1129

r(e)b,t

∣∣∣
p=500

403 39.16% 146 14.19% 333 32.36% 147 14.29% 736 71.53% 1029

r(e)b,t

∣∣∣
p=600

394 42.41% 109 11.73% 320 34.45% 106 11.41% 714 76.86% 929

r(e)b,t

∣∣∣
p=700

387 46.68% 66 7.96% 319 38.48% 57 6.88% 706 85.16% 829

Note: (1) variable χ represents each of the variables µb,t, r(e)b,t

∣∣∣
p=3

, . . . , and r(e)b,t

∣∣∣
p=700

; (2) because the lag order

levels in the different autoregressive models are different, the sample sizes are different.

Under the ideal prediction criteria, it is clear that the higher level of lag order has led
to a higher hit ratio than the lower level of lag order.

Sixth, a comparison between the hit ratios from the AR-GARCH-FD and the ARDL-
CRG-GARCH-FD models was carried out.

Table 16 lists the comparative results of hit ratios between the results from the direct
AR-GARCH-FD model and the results from the indirect ARDL-CRG-GARCH-FD model.

The comparison shows that the hit ratios from the indirect prediction values of the
ARDL-CRG-GARCH-FD model for the cumulative return index are similar to the direct
prediction values of the AR-GARCH-FD model for the return index. It means that in
terms of the hit ratios, the ARDL-CRG-GARCH-FD model is similar to the AR-GARCH-FD
model.

Seventh, a comparison between the hit ratios from the AR-FD and the AR-GARCH-FD
models was carried out.

Table 17 lists the comparative results of the hit ratios between the results from the
direct AR-FD models and the results from the indirect AR-GARCH-FD models.
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Table 16. Comparison of the hit ratios between the results from the AR-GARCH-FD and the ARDL-
CRG-GARCH-FD models.

Condition {rt ≥ 1}∩{χ ≥ 1} {rt ≥ 1}∩{χ < 1} {rt < 1}∩{χ < 1} {rt < 1}∩{χ ≥ 1} Total Ratio

Hit Ratio (1) (2) (3) (4) (1) + (3)

µb,t − µa,t −2.06% 2.10% 0.54% −0.60% −1.51%

r(e)b,t − r(e)a,t

∣∣∣
p=3

−4.79% 4.80% 3.82% −3.85% −0.96%

r(e)b,t − r(e)a,t

∣∣∣
p=50

−1.27% 1.37% −0.06% −0.02% −1.34%

r(e)b,t − r(e)a,t

∣∣∣
p=100

−0.12% 0.21% 0.55% −0.65% 0.43%

r(e)b,t − r(e)a,t

∣∣∣
p=150

−0.06% 0.01% 0.28% −0.23% 0.22%

r(e)b,t − r(e)a,t

∣∣∣
p=200

−0.28% 0.31% 0.05% −0.08% −0.23%

r(e)b,t − r(e)a,t

∣∣∣
p=300

0.27% −0.16% −0.52% 0.41% −0.26%

r(e)b,t − r(e)a,t

∣∣∣
p=400

−0.70% 0.64% −0.67% 0.73% −1.38%

r(e)b,t − r(e)a,t

∣∣∣
p=500

0.78% −0.85% 0.13% −0.07% 0.92%

r(e)b,t − r(e)a,t

∣∣∣
p=600

0.53% −0.72% 0.25% −0.06% 0.78%

r(e)b,t − r(e)a,t

∣∣∣
p=700

−0.29% 0.19% −0.60% 0.69% −0.88%

Table 17. Comparison of hit ratios between the results from the direct AR models and the direct
AR-GARCH models.

Condition {rt ≥ 1}∩{χ ≥ 1} {rt ≥ 1}∩{χ < 1} {rt < 1}∩{χ < 1} {rt < 1}∩{χ ≥ 1} Total Ratio

Hit Ratio (1) (2) (3) (4) (1) + (3)

µa,t − µa,t 0.00% 0.00% 0.00% 0.00% 0.00%

ra,t − r(e)a,t

∣∣∣
p=3

−4.08% 4.07% 4.86% −4.87% 0.78%

ra,t − r(e)a,t

∣∣∣
p=50

−4.34% 4.35% 2.24% −2.24% −2.11%

ra,t − r(e)a,t

∣∣∣
p=100

−3.02% 3.02% 0.84% −0.84% −2.17%

ra,t − r(e)a,t

∣∣∣
p=150

−2.63% 2.62% 0.15% −0.14% −2.48%

ra,t − r(e)a,t

∣∣∣
p=200

−2.87% 2.87% −0.53% 0.52% −3.40%

ra,t − r(e)a,t

∣∣∣
p=300

−1.87% 1.87% 0.41% −0.41% −1.47%

ra,t − r(e)a,t

∣∣∣
p=400

−2.05% 2.04% −2.23% 2.23% −4.27%

ra,t − r(e)a,t

∣∣∣
p=500

−1.37% 1.37% −1.08% 1.07% −2.45%

ra,t − r(e)a,t

∣∣∣
p=600

−2.38% 2.38% −2.38% 2.38% −4.76%

ra,t − r(e)a,t

∣∣∣
p=700

−3.64% 3.64% −3.64% 3.64% −7.28%

The comparison shows that the hit ratios from the direct prediction values of the
AR-GARCH-FD models for the return index are better than the hit ratios from the direct
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prediction values of the AR-FD model for the return index. It means that when it comes to
the hit ratios, the AR-GARCH-FD models are better than the AR-FD models.

Eighth, a comparison between the hit ratios from the ARDL-CRG-FD and ARDL-CRG-
GARCH-FD models was carried out.

Table 18 has listed the comparative results of the hit ratios between the results from the
indirect ARDL-CRG-FD model and the results from the indirect ARDL-CRG-GARCH-FD
model.

Table 18. Comparison of hit ratios between the results from the ARDL-CRG-FD models and the
ARDL-CRG-GARCH-FD models.

Condition {rt ≥ 1}∩{χ ≥ 1} {rt ≥ 1}∩{χ < 1} {rt < 1}∩{χ < 1} {rt < 1}∩{χ ≥ 1} Total Ratio

Hit Ratio (1) (2) (3) (4) (1) + (3)

µb,t − µb,t 0.00% 0.00% 0.00% 0.00% 0.00%

rb,t − r(e)b,t

∣∣∣
p=3

−2.33% 2.31% 2.70% −2.67% 0.36%

rb,t − r(e)b,t

∣∣∣
p=50

−3.83% 3.80% 3.05% −3.03% −0.78%

rb,t − r(e)b,t

∣∣∣
p=100

−2.64% 2.68% 1.56% −1.59% −1.08%

rb,t − r(e)b,t

∣∣∣
p=150

−2.66% 2.70% 1.83% −1.87% −0.83%

rb,t − r(e)b,t

∣∣∣
p=200

−3.29% 3.25% 0.40% −0.36% −2.89%

rb,t − r(e)b,t

∣∣∣
p=300

−2.58% 2.54% 0.59% −0.55% −1.99%

rb,t − r(e)b,t

∣∣∣
p=400

−2.19% 2.14% −0.51% 0.55% −2.68%

rb,t − r(e)b,t

∣∣∣
p=500

−2.20% 2.25% −0.45% 0.40% −2.66%

rb,t − r(e)b,t

∣∣∣
p=600

−2.65% 2.60% −2.01% 2.06% −4.66%

rb,t − r(e)b,t

∣∣∣
p=700

−2.96% 3.03% −2.49% 2.42% −5.45%

The comparison shows that the hit ratios from the indirect prediction values of the
ARDL-CRG-GARCH-FD models for the cumulative return index are better than the hit
ratios from the indirect prediction values of the ARDL-CRG-FD models for the cumulative
return index. It means that when it comes to the hit ratios, the ARDL-CRG-GARCH-FD
models are better than ARDL-CRG-FD models.

6.3. RMSE Tests

We will analyze the average values of the root mean square error (RMSE) for the four
kinds of models.

Table 19 has listed the values of the RMSE including the prediction values from
the direct prediction AR-FD and AR-GARCH-FD models for the return index and the
indirect prediction ARDL-CRG-FD and ARDL-CRG-GARCH-FD models for the cumulative
return index.

The RMSE is focused on summarizing the average values of the root mean square
error (RMSE). The ideal criterion is that the smaller value is the better value.

In considering the ideal criterion of the RMSE, it is clear that the higher level lags of
the second-order probability variable d2qt−p led to a smaller RMSE value than the lower
level lags of the second-order probability variable d2qt−p for all of the four kinds of models
including AR-FD, AR-GARCH-FD, ARDL-CRG-FD and ARDL-CRG-GARCH-FD.

Table 20 lists the comparison results between the RMSE values resulting from the
AR-FD, AR-GARCH-FD, ARDL-CRM-FD, and ARDL-CRM-GARCH-FD models.
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Table 19. RMSE of the return index prediction values from the AR-FD, AR-GARCH-FD, ARDL-CRM-
FD, ARDL-CRM-GARCH-FD models.

Variable RMSE Variable RMSE Prediction RMSE Prediction RMSE

µa,t 0.009521 µb,t 0.009553 µa,t 0.009521 µb,t 0.009553

ra,t|p=3 0.009531 rb,t
∣∣

p=3 0.009489 r(e)a,t

∣∣∣
p=3

0.009556 r(e)b,t

∣∣∣
p=3

0.009513

ra,t|p=50 0.009352 rb,t
∣∣

p=50 0.009332 r(e)a,t

∣∣∣
p=50

0.009430 r(e)b,t

∣∣∣
p=50

0.009394

ra,t|p=100 0.008994 rb,t
∣∣

p=100 0.009018 r(e)a,t

∣∣∣
p=100

0.009078 r(e)b,t

∣∣∣
p=100

0.009067

ra,t|p=150 0.008783 rb,t
∣∣

p=150 0.008780 r(e)a,t

∣∣∣
p=150

0.008887 r(e)b,t

∣∣∣
p=150

0.008856

ra,t|p=200 0.008649 rb,t
∣∣

p=200 0.008685 r(e)a,t

∣∣∣
p=200

0.008761 r(e)b,t

∣∣∣
p=200

0.008760

ra,t|p=300 0.008334 rb,t
∣∣

p=300 0.008364 r(e)a,t

∣∣∣
p=300

0.008449 r(e)b,t

∣∣∣
p=300

0.008440

ra,t|p=400 0.007197 rb,t
∣∣

p=400 0.007227 r(e)a,t

∣∣∣
p=400

0.007388 r(e)b,t

∣∣∣
p=400

0.007383

ra,t|p=500 0.006279 rb,t
∣∣

p=500 0.006235 r(e)a,t

∣∣∣
p=500

0.006385 r(e)b,t

∣∣∣
p=500

0.006332

ra,t|p=600 0.005482 rb,t
∣∣

p=600 0.005415 r(e)a,t

∣∣∣
p=600

0.005870 r(e)b,t

∣∣∣
p=600

0.005612

ra,t|p=700 0.004127 rb,t
∣∣

p=700 0.004063 r(e)a,t

∣∣∣
p=700

0.004408 r(e)b,t

∣∣∣
p=700

0.004544

Table 20. Comparison between RMSE values from the AR-FD, AR-GARCH-FD, ARDL-CRM-FD,
and ARDL-CRM-GARCH-FD models.

ra,t rb,t r(e)a,t r(e)b,t
RMSE RMSE RMSE RMSE

(1) (2) (3) (4) (2)–(1) (1)–(3) (2)–(4) (4)–(3)

µa,t µb,t µa,t µb,t 0.000032 0.000000 0.000000 0.000032

ra,t|p=3 rb,t
∣∣

p=3 r(e)a,t

∣∣∣
p=3

r(e)b,t

∣∣∣
p=3

−0.000042 −0.000025 −0.000024 −0.000043

ra,t|p=50 rb,t
∣∣

p=50 r(e)a,t

∣∣∣
p=50

r(e)b,t

∣∣∣
p=50

−0.000020 −0.000078 −0.000062 −0.000036

ra,t|p=100 rb,t
∣∣

p=100 r(e)a,t

∣∣∣
p=100

r(e)b,t

∣∣∣
p=100

0.000024 −0.000084 −0.000049 −0.000011

ra,t|p=150 rb,t
∣∣

p=150 r(e)a,t

∣∣∣
p=150

r(e)b,t

∣∣∣
p=150

−0.000003 −0.000104 −0.000076 −0.000031

ra,t|p=200 rb,t
∣∣

p=200 r(e)a,t

∣∣∣
p=200

r(e)b,t

∣∣∣
p=200

0.000036 −0.000112 −0.000075 −0.000001

ra,t|p=300 rb,t
∣∣

p=300 r(e)a,t

∣∣∣
p=300

r(e)b,t

∣∣∣
p=300

0.000030 −0.000115 −0.000076 −0.000009

ra,t|p=400 rb,t
∣∣

p=400 r(e)a,t

∣∣∣
p=400

r(e)b,t

∣∣∣
p=400

0.000030 −0.000191 −0.000156 −0.000005

ra,t|p=500 rb,t
∣∣

p=500 r(e)a,t

∣∣∣
p=500

r(e)b,t

∣∣∣
p=500

−0.000044 −0.000106 −0.000097 −0.000053

ra,t|p=600 rb,t
∣∣

p=600 r(e)a,t

∣∣∣
p=600

r(e)b,t

∣∣∣
p=600

−0.000067 −0.000388 −0.000197 −0.000258

ra,t|p=700 rb,t
∣∣

p=700 r(e)a,t

∣∣∣
p=700

r(e)b,t

∣∣∣
p=700

−0.000064 −0.000281 −0.000481 0.000136

When we compare the results of the RMSE prediction values between the four kinds
of models, there are four results.
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First, we make a comparison between both the AR-FD and AR-GARCH-FD models.

The RMSE of the AR-FD model is defined as
√

∑t (rt − ra,t)
2. The RMSE of the AR-GARCH-

FD model is defined as

√
∑t (rt − r(e)a,t )

2
. The comparison between the RMSE values of√

∑t (rt − ra,t)
2 and

√
∑t (rt − r(e)a,t )

2
shows that the RMSE values of

√
∑t (rt − ra,t)

2 are

less than the RMSE values of

√
∑t (rt − r(e)a,t )

2
. It means that the RMSE values between the

return index rt and the prediction values ra,t from the AR-FD model for the return index
are less than the RMSE values between the return index rt and the prediction values r(e)a,t
from the AR-GARCH-FD model for the return index. It means that the GARCH model has
little impact on the decrease in the RMSE value, or it means that when the finite difference
method is used, the GARCH model cannot improve the prediction accuracy by a lot.

Second, we made a comparison between both the ARDL-CRG-FD and ARDL-CRG

-GARCH-FD models. The RMSE of the ARDL-CRG-FD model is defined as
√

∑t (rt − rb,t)
2.

The RMSE of the ARDL-CRG -GARCH-FD model is defined as

√
∑t (rt − r(e)b,t )

2
. The

comparison between the RMSE values of
√

∑t (rt − rb,t)
2 and

√
∑t (rt − r(e)b,t )

2
shows that

the RMSE values of
√

∑t (rt − rb,t)
2 are less than the RMSE values of

√
∑t (rt − r(e)b,t )

2
. It

means that the RMSE values between the return index rt and the prediction values rb,t
from the ARDL-CRG-FD model for the cumulative return index are less than the RMSE
values between the return index rt and the prediction values r(e)b,t from the ARDL-CRG
-GARCH-FD model for the cumulative return index. It means that the GARCH model has
little impact on the decrease in the RMS value, or it means that when the finite difference
method is used, the GARCH model cannot improve the prediction accuracy by a lot.

Third, we made a comparison between both the AR-FD and ARDL-CRM-FD models.

The RMSE of the AR-FD model is defined as
√

∑t (rt − ra,t)
2. The RMSE of the ARDL-CRM-

FD model is defined as
√

∑t (rt − rb,t)
2. The comparison between the RMSE values of both

the AR-FD and ARDL-CRM-FD models shows that mostly the values of
√

∑t (rt − rb,t)
2

are less than the values of
√

∑t (rt − ra,t)
2. It means that mostly the RMSE values between

the return index rt and the prediction values rb,t from the ARDL-CRG-FD model for the
cumulative return index are less than the RMSE values between the return index rt and
the prediction values ra,t from the AR-FD model for the return index. It means that the
ARDL-CRG-FD model has a higher impact on the decrease in the RMSE value than the
AR-FD model, or it means that the ARDL-CRG-FD model can improve the prediction
accuracy more than the AR-FD model.

Fourth, we made a comparison between both the AR-GARCH-FD and ARDL-CRG-

GARCH-FD models. The RMSE of the AR-GARCH-FD model is defined as

√
∑t (rt − r(e)a,t )

2
.

The RMSE of the ARDL-CRG-GARCH-FD model is defined as

√
∑t (rt − r(e)b,t )

2
. The com-

parison between the RMSE values of both the AR-GARCH-FD and ARDL-CRG-GARCH-FD

models shows that mostly the RMSE values of

√
∑t (rt − r(e)b,t )

2
are less than the RMSE

values of

√
∑t (rt − r(e)a,t )

2
. It means that, for the most part, the RMSE values between the

return index rt and the prediction values r(e)b,t from the ARDL-CRG-GARCH-FD model for
the cumulative return index are less than the RMSE values between the return index rt and
the prediction values r(e)a,t from the AR-GARCH-FD model for the return index. It means
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that the ARDL-CRG-GARCH-FD model has a higher impact on the decrease in the RMS
value than the AR-GARCH-FD model, or that the CRG model can improve the prediction
accuracy by a lot.

7. Conclusions

The empirical analysis results of ARDL-CRG-FD models have approved that im-
proving the difference order of the probability variables can improve the determinate
correlations of FD models; also when the difference order of the probability variables are
fixed in second, third, or fourth order, improving the lag-order of the probability variable
can improve the determinate correlations of FD models. When the FD model is fixed on
the second-order finite difference regression model, after testing the lags of the probability
variable d2qt(ab), the ARDLCRG-FD models and ARDL-CRG-GARCH-FD models have got
three similar results: first, when the lag-order increases, the determinate coefficient for the
regression model will increase; second, when the lag-order increases, the correlations be-
tween the real return index and its prediction values will increase; third, a higher lag-order
prediction model can create a higher approximated result between the real return index and
its prediction value. Thirdly, when compare the correlations between the real and predicted
returns from the four kinds of models, it has approved: first, the CRG model can improve
the prediction accuracy; second, the GARCH model has little impact on prediction values.
Fourthly, when compare the hit ratios from the four different models, it has approved:
first, the higher level of the lag-order has led to a higher hit ratio than the lower level
of the lag-order when both of the return index and the prediction values are upward or
downward together; second, the ARDL-CRG-FD model is better to improve the hit ratios
than AR-FD models; third, the ARDL-CRG-GARCH-FD model on the hit ratios is similar
to AR-GARCH-FD model; fourth, the AR-GARCH-FD models on the hit ratios is better
than AR-FD models; fifth, the ARDL-CRG-GARCHFD models on the hit ratios is better
than ARDL-CRG-FD models. Fifthly, when compare the RMSE test results from the four
different models, it has approved: first, when the finite difference method is used, GARCH
model cannot improve the prediction accuracy a lot; second, ARDL-CRGFD model can
improve the prediction accuracy than AR-FD model; third, ARDL-CRG-GARCH-FD model
has higher impact on the decrease of RMSE value than AR-GARCH-FD model; fourth, the
CRG model can improve the prediction accuracy a lot.
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Notes
1 Based on the assumed variables, the variable r(c,gap)

t represented the cumulative return gap and can be defined as a formula as:

r(c,gap)
t = r(c)t − r(c,ave)

t = ∏t
t=1 rt − (r(ave)

T )
t
= ∏t

t=1 rt − ((r(c)T )
1
T
)

t

= ∏t
t=1 rt − (∏T

t=1 rt)
t
T .

2 AR, MA, ARMA, ARIMA and ARDL models and so on.
3 CAR is the cumulative abnormal return, where the variable rt is the return index of the risk asset, E(rt) is the expected return

index of the sample asset, CAR is equal to the difference between the sum of the real return and the sum of the expected return,
CARt = ∑t

t=1 rt −∑t
t=1 E(rt).
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4 BHAR is the cumulative excess return of a buy-and-hold investment, which is equal to the difference between the real cumulative
return of a buy-and-hold investment and the cumulative expected return of a buy-and-hold investment, BHARt = ∏t

t=1 rt −
∏t

t=1 E(rt).
5 This paper focuses on the presentation of the methodology, and we wanted to minimize the impact of COVID-19. Thus, the data

were chosen more conservatively. Period of 2016 was riddled with oil price shock due to oil prices falling below $27 a barrel in
January 2016 (Yoshino and Taghizadeh-Hesary 2016). This is followed by Covid19 and as such we have excluded the period from
2016 onwards for the analysis. Excluding 2016 and then including 2017 and 2018 would be confusing in terms of explanation
and discussion with not much benefit outcomes of the study. However, model is valid and uses data for the period 2010 to 2016
providing sufficient length of period and number of observations for the model validity and tractability to draw meaningful
analysis and conclusion. Including 2017 and 2018 for analysis will add complexity to the model without much benefit to the
overall objective of the study.

6 If we can predict the value of the long-term cumulative return index r(c)t , it will be easy to obtain the predicted value of the

stock price pt when p1 = p0 as pt = pt−1rt = · · · = p0r1r2 . . . rt = p0r(c)t . In addition, the logarithm cumulative return ln r(c)t

can be represented by the logarithms of the return index as ln r(c)t = ln (r1r2 . . . rt) = ln r1 + ln r2 + · · · + ln rt, or ln r(c)t =
ln p1

p0
+ ln p2

p1
+ · · ·+ ln pt

pt−1
, which is perfectly matched with the logarithm return ln rt between the time intervals t ∈ [0, t].

7 Because the cumulative risk premium r(c,gap)
t represents the cumulative excess return during a long-term period, it is au-

tocorrelation and time-varying. The model AR(p) can be used to model the time-varying variable r(c,gap)
t as r(c,gap)

t =

α0 + ∑
p
i=1 αir

(c,gap)
t−i + a(c,gap)

t . Here, variable a(c,gap)
t represents the residual of the AR(p) model. The AR(p) model can be

used as a prediction model for the cumulative excess return r(c,gap)
t . If variable µ

(c,gap)
t represents the mean of the AR(p) model, it

can be represented as µ
(c,gap)
t = E(r(c,gap)

t

∣∣∣Ft−1) = α0 + ∑
p
i=1 αir

(c,gap)
t−i . Here, the information set Ft−1 includes any information

that relates to the time t ∈ [0, t− 1]. When we assume the residual is a(c,gap)
t , it includes the relation of E(a(c,gap)

t ) = 0.
8 The unconditional volatility for the residual variable at is defined as σ2 = ω

1−(α+β)
. Here, α is the coefficient of the ARCH item, β

is the coefficient of the GARCH item, and there is a limitation that the three parameters should satisfy the relations: ω > 0, α ≥ 0,
β ≥ 0, α + β < 1, ω + α + β ≤ 1. The GARCH model can be used to calculate and predict the volatility of the cumulative risk

premium r(c,gap)
t .
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