Estimation and Inference for the Threshold Model with Hybrid Stochastic Local Unit Root Regressors
Abstract
:1. Introduction
2. The Model and Estimators
3. Asymptotic Properties for the Estimators
- (i).
- if ,
- (ii).
- if ,
4. Heuristic Arguments and an Illustrative Example
5. Test for the Linearity
6. Monte Carlo Studies
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Lemma
Appendix B. Proof of Theorem
Appendix B.1. Proof of Theorem 1
Appendix B.2. Proof of Theorem 2
Appendix B.3. Proof of Theorem 3
1 | For more reference on how compound Poisson process can be approximated by two-sided Brownian motion, see Yu and Phillips (2018). |
2 | This is the limiting case when the finite is involved in the local neighborhood of the true threshold level. If , we have infinite information, and if , , we have zero information provided in the local neighborhood of . |
References
- Bai, Jushan. 1997. Estimation of a Change Point in Multiple Regression Models. Review of Economics and Statistics 79: 551–63. [Google Scholar] [CrossRef]
- Caner, Mehmet, and Bruce E. Hansen. 2001. Threshold Autoregression with a Unit Root. Econometrica 69: 1555–96. [Google Scholar] [CrossRef] [Green Version]
- Caner, Mehmet, and Bruce E. Hansen. 2004. Instrumental Variable Estimation of a Threshold Model. Econometric Theory 20: 813–43. [Google Scholar] [CrossRef]
- Chan, Kung-Sik. 1993. Consistency and Limiting Distribution of the Least Squares Estimator of a Threshold Autoregressive Model. The Annals of Statistics 21: 520–33. [Google Scholar] [CrossRef]
- Chen, Chaoyi, and Thanasis Stengos. 2021. The Democracy-Growth Nexus: A Smoothed GMM Linear Index Threshold Model Approach. In SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Chen, Chaoyi, Thanasis Stengos, and Yiguo Sun. 2021. Endogeneity in Semiparametric Threshold Regression Model with Two Threshold Variables. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Chen, Haiqiang. 2014. Robust Estimation and Inference for Threshold Models With Integrated Regressors. Econometric Theory 31: 778–810. [Google Scholar] [CrossRef] [Green Version]
- Chen, Haiqiang, Terence Tai-Leung Chong, and Jushan Bai. 2012. Theory and Applications of TAR Model with Two Threshold Variables. Econometric Reviews 31: 142–70. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo, Jesús, and Jean-Yves Pitarakis. 2012. Regime-Specific Predictability in Predictive Regressions. Journal of Business & Economic Statistics 30: 229–41. [Google Scholar]
- Hansen, Bruce E. 1996. Inference When a Nuisance Parameter Is Not Identified Under the Null Hypothesis. Econometrica 64: 413–30. [Google Scholar] [CrossRef]
- Hansen, Bruce E. 2000. Sample Splitting and Threshold Estimation. Econometrica 68: 575–603. [Google Scholar] [CrossRef] [Green Version]
- Heckman, James J. 1979. Sample Selection Bias as a Specification Error. Econometrica 47: 153–61. [Google Scholar] [CrossRef]
- Kejriwal, Mohitosh, and Pierre Perron. 2008. The limit distribution of the estimates in cointegrated regression models with multiple structural changes. Journal of Econometrics 146: 59–73. [Google Scholar] [CrossRef]
- Kourtellos, Andros, Thanasis Stengos, and Chih Ming Tan. 2016. Structural Threshold Regression. Econometric Theory 32: 827–60. [Google Scholar] [CrossRef] [Green Version]
- Kourtellos, Andros, Thanasis Stengos, and Yiguo Sun. 2021. Endogeneity in Semiparametric Threshold Regression. Forthcoming to Econometric Theory. [Google Scholar] [CrossRef]
- Lieberman, Offer, and Peter C. B. Phillips. 2017. A multivariate stochastic unit root model with an application to derivative pricing. Journal of Econometrics 196: 99–110. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, Offer, and Peter C. B. Phillips. 2020. Hybrid stochastic local unit roots. Journal of Econometrics 215: 257–85. [Google Scholar] [CrossRef]
- Miao, Ke, Liangjun Su, and Wendun Wang. 2020. Panel threshold regressions with Latent Group structures. Journal of Econometrics 214: 451–81. [Google Scholar] [CrossRef]
- Phillips, Peter C. B., and Jun Yu. 2011. Dating the timeline of financial bubbles during the subprime crisis. Quantitative Economics 2: 455–91. [Google Scholar] [CrossRef] [Green Version]
- Phillips, Peter C. B., Yangru Wu, and Jun Yu. 2011. Explosive Behavior in the 1990s NASDAQ: When Did Exuberance Escalate Asset Values? International Economic Review 52: 201–26. [Google Scholar] [CrossRef] [Green Version]
- Seo, Myung Hwan, and Oliver Linton. 2007. A smoothed least squares estimator for threshold regression models. Journal of Econometrics 141: 704–35. [Google Scholar] [CrossRef] [Green Version]
- Seo, Myung Hwan, and Yongcheol Shin. 2016. Dynamic panels with threshold effect and endogeneity. Journal of Econometrics 195: 169–86. [Google Scholar] [CrossRef] [Green Version]
- Yang, Lixiong, Chingnun Lee, and I-Po Chen. 2021. Threshold model with a time-varying threshold based on Fourier approximation. Journal of Time Series Analysis 42: 406–30. [Google Scholar] [CrossRef]
- Yu, Ping, and Peter C. B. Phillips. 2018. Threshold regression asymptotics: From the compound Poisson process to two-sided Brownian motion. Economics Letters 172: 123–26. [Google Scholar] [CrossRef] [Green Version]
- Yu, Ping, and Xiaodong Fan. 2020. Threshold regression with a threshold boundary. Journal Of Business & Economic Statistics 39: 953–71. [Google Scholar]
- Yu, Ping, Qin Liao, and Peter C. B. Phillips. 2021. New Control Function Approaches in Threshold Regression with Endogeneity. New York: Mimeo. [Google Scholar]
Panel A: | |||||||||
n | Bias | MSE | Std | Bias | MSE | Std | Bias | MSE | Std |
300 | −0.0367 | 0.0635 | 0.2494 | −0.0270 | 0.0595 | 0.2425 | −0.0204 | 0.0473 | 0.2166 |
500 | −0.0179 | 0.0448 | 0.2109 | −0.0175 | 0.0353 | 0.1870 | −0.0119 | 0.0299 | 0.1727 |
1000 | −0.0099 | 0.0170 | 0.1300 | −0.0029 | 0.0129 | 0.1136 | −0.0021 | 0.0095 | 0.0977 |
Panel B: | |||||||||
n | Bias | MSE | Std | Bias | MSE | Std | Bias | MSE | Std |
300 | −0.0228 | 0.0532 | 0.2297 | −0.0197 | 0.0493 | 0.2212 | −0.0243 | 0.0399 | 0.1982 |
500 | −0.0163 | 0.0292 | 0.1700 | −0.0093 | 0.0235 | 0.1531 | −0.0105 | 0.0180 | 0.1338 |
1000 | −0.0059 | 0.0101 | 0.1004 | −0.0053 | 0.0089 | 0.0942 | −0.0037 | 0.0058 | 0.0758 |
Panel C: | |||||||||
n | Bias | MSE | Std | Bias | MSE | Std | Bias | MSE | Std |
300 | −0.0141 | 0.0339 | 0.1835 | −0.0077 | 0.0250 | 0.1580 | −0.0167 | 0.0234 | 0.1519 |
500 | −0.0119 | 0.0174 | 0.1316 | −0.0094 | 0.0114 | 0.1062 | −0.0047 | 0.0077 | 0.0879 |
1000 | −0.0018 | 0.0039 | 0.0624 | −0.0012 | 0.0023 | 0.0476 | −0.0022 | 0.0017 | 0.0417 |
Panel A: | |||||||||
n | Bias | MSE | Std | Bias | MSE | Std | Bias | MSE | Std |
300 | −0.1519 | 0.2711 | 0.4981 | −0.1304 | 0.2649 | 0.4980 | −0.1448 | 0.2501 | 0.4788 |
500 | −0.1380 | 0.2550 | 0.4859 | −0.1201 | 0.2344 | 0.4691 | −0.1109 | 0.2160 | 0.4514 |
1000 | −0.1347 | 0.2494 | 0.4810 | −0.1077 | 0.2241 | 0.4611 | −0.1148 | 0.1951 | 0.4267 |
Panel B: | |||||||||
n | Bias | MSE | Std | Bias | MSE | Std | Bias | MSE | Std |
300 | −0.1450 | 0.2502 | 0.4788 | −0.1350 | 0.2311 | 0.4615 | −0.1001 | 0.2066 | 0.4435 |
500 | −0.1195 | 0.2264 | 0.4607 | −0.1106 | 0.2149 | 0.4504 | −0.1076 | 0.1894 | 0.4218 |
1000 | −0.1100 | 0.1947 | 0.4274 | −0.0640 | 0.1518 | 0.3845 | −0.0675 | 0.1391 | 0.3669 |
Panel C: | |||||||||
n | Bias | MSE | Std | Bias | MSE | Std | Bias | MSE | Std |
300 | −0.1095 | 0.2001 | 0.4338 | −0.0841 | 0.1686 | 0.4021 | −0.0723 | 0.1372 | 0.3633 |
500 | −0.0644 | 0.1389 | 0.3671 | −0.0619 | 0.1255 | 0.3489 | −0.0452 | 0.0902 | 0.2970 |
1000 | −0.0422 | 0.0779 | 0.2759 | −0.0211 | 0.0526 | 0.2285 | −0.0203 | 0.0433 | 0.2070 |
Panel A: | |||||||||
n | Bias | MSE | Std | Bias | MSE | Std | Bias | MSE | Std |
300 | −0.1903 | 0.3193 | 0.5322 | −0.1859 | 0.3105 | 0.5254 | −0.1629 | 0.2868 | 0.5102 |
500 | −0.2009 | 0.3091 | 0.5185 | −0.1798 | 0.3019 | 0.5194 | −0.1731 | 0.2886 | 0.5087 |
1000 | −0.1615 | 0.2859 | 0.5099 | −0.1524 | 0.2853 | 0.5121 | −0.1553 | 0.2712 | 0.4972 |
Panel B: | |||||||||
n | Bias | MSE | Std | Bias | MSE | Std | Bias | MSE | Std |
300 | −0.1549 | 0.2930 | 0.5188 | −0.1527 | 0.2804 | 0.5071 | −0.1541 | 0.2586 | 0.4848 |
500 | −0.1483 | 0.2831 | 0.5111 | −0.1551 | 0.2639 | 0.4899 | −0.1233 | 0.2385 | 0.4727 |
1000 | −0.1470 | 0.2549 | 0.4831 | −0.1201 | 0.2324 | 0.4670 | −0.1126 | 0.2162 | 0.4513 |
Panel C: | |||||||||
n | Bias | MSE | Std | Bias | MSE | Std | Bias | MSE | Std |
300 | −0.1494 | 0.2624 | 0.4901 | −0.1175 | 0.2288 | 0.4638 | −0.1168 | 0.2038 | 0.4361 |
500 | −0.1326 | 0.2229 | 0.4533 | −0.0834 | 0.1782 | 0.4139 | −0.0742 | 0.1512 | 0.3818 |
1000 | −0.0786 | 0.1449 | 0.3725 | −0.0633 | 0.1132 | 0.3305 | −0.0468 | 0.0783 | 0.2759 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Stengos, T. Estimation and Inference for the Threshold Model with Hybrid Stochastic Local Unit Root Regressors. J. Risk Financial Manag. 2022, 15, 242. https://doi.org/10.3390/jrfm15060242
Chen C, Stengos T. Estimation and Inference for the Threshold Model with Hybrid Stochastic Local Unit Root Regressors. Journal of Risk and Financial Management. 2022; 15(6):242. https://doi.org/10.3390/jrfm15060242
Chicago/Turabian StyleChen, Chaoyi, and Thanasis Stengos. 2022. "Estimation and Inference for the Threshold Model with Hybrid Stochastic Local Unit Root Regressors" Journal of Risk and Financial Management 15, no. 6: 242. https://doi.org/10.3390/jrfm15060242
APA StyleChen, C., & Stengos, T. (2022). Estimation and Inference for the Threshold Model with Hybrid Stochastic Local Unit Root Regressors. Journal of Risk and Financial Management, 15(6), 242. https://doi.org/10.3390/jrfm15060242