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Abstract: Typically, the explanatory variables included in a regression model, in conjunction with
the omitted relevant regressors implied by the usual error term, have both direct and indirect effects
on the dependent variable. Attempts to obtain their separate estimates have been plagued with
simultaneity issues. To circumvent these problems, this paper defines their sum as “total effects”,
develops a time-varying coefficients methodology for their estimation without simultaneity bias, and
applies these techniques to estimate the total effects of commercial bank credit per-capita on real
GDP per-capita in Mauritius. An innovation is the introduction of extraneous variables that act as
“coefficient drivers” chosen on the basis of best predictive performance, as measured by the smallest
value of Theil’s U-statistic we were able to locate in the estimation.

Keywords: total effects; bank credit; economic growth; direct effects; indirect effects; threshold
regression; real GDP; coefficient drivers; Theil’s U statistic

1. Introduction

As is—or should be—known from Pratt and Schlaifer (1984), every regressor included
in a regression equation has both direct and indirect effects on its dependent variable. In
contrast to traditional econometric practice, which side-steps the issue of indirect effects,
we shall follow Pratt and Schlaifer (1984) and account for such direct and indirect effects
by estimating their sum as “total effects.” Since it is unlikely in most economic settings
that the total effects of a given regressor are constant, we generalize the proposed model,
by allowing all of its coefficients to be time-varying, necessitating the use of “modified
generalized least squares.”! Recognizing that available data for the variables included in
our model do not contain sufficient information about the indirect effects of the regressor of
our model, we shall utilize additional information over and above the information already
contained in the specified variables of the model by introducing so-called “coefficient
drivers” without knowing whether this additional information is relevant or not. These
coefficient drivers are variables not actually included in the set of regressors but having an
influence on how the coefficients associated with regressors impact the dependent variable
over time. As a consequence, the coefficients themselves become functions of coefficient
drivers not otherwise in a model but, nevertheless, playing important roles in how the
dependent variable responds to its regressors over time. The choice of such variables is
inductive and should be guided by empiricism which we advocate using Theil’s U-statistic,
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a measure of predictive performance that is invariant to scaling, rather than a Neyman—
Pearson test criterion, to improve the accuracy of results. In all this, we were motivated by
a desire to obtain results that are as precise and empirically relevant as feasible.

The remaining part of this paper is divided into six sections. Section 2 provides the
motivation for the model to be estimated and gives an economic background. In Section 3,
we develop a model with time-varying coefficients. The novelty of this model is that the
coefficient on the regressor included in a regression equation measures the regressor’s total
effect on the dependent variable. Section 4 gives some implications of the model developed
in Section 3 for the relationship between economic growth and financial development.
Section 5 is concerned with the estimation of the total effect of commercial bank credit
(CBC) on real gross domestic (RGDP) for the period 1970-2019 in Mauritius. Section 6 offers
a detailed rationale for our choice of, and need for, estimating a model with time-varying
coefficients. Section 7 concludes.

2. The Economic Background

Early economists, such as Bagehot (1873) and Schumpeter (1912), suggested that
finance leads to economic development. More recent theory on finance and endogenous
growth likewise suggest that more finance can have a positive effect on economic growth;
Greenwood and Jovanovic (1990); Pagano (1993); King and Levine (1993); Berthelemy and
Varoudakis (1996). However, the empirical literature has found mixed evidence of the
effects of finance on growth. A comprehensive review by Levine (2005) found that more
finance tends to be beneficial to the economy, so that countries with a smaller share of
credit to GDP should attempt to increase it to promote investment and growth. In general,
the empirical literature is ambiguous in its conclusions, suggesting a diminishing-returns
non-linear relationship between “financial deepening” and economic growth, in that too
much finance might be harmful for growth (see Deidda and Fattouh 2002; Huang and Lin
2009; Arcand et al. 2012, 2015; Cecchetti and Kharroubi 2012, 2013; Law and Singh 2014).

In the case of Mauritius, empirical studies on finance and growth have generally
found a positive link between GDP (or investment or economic growth) and different
quantitative measures of financial development (FD), such as the ratio of liquid liabilities
of banks to GDP, and private sector credit (see Jouan 2005; Jankee 2006; Seetanah 2008;
Nowbutsing et al. 2010; Muyambiri and Odhiambo 2018). None of these studies considered
the possibility of the time-variability of the total effects of finance on growth. To pursue
this possibility, this paper applies a time-varying coefficient (TVC) model to explore how
the relationship between financial development and economic growth in Mauritius may
have changed over time, possibly as a consequence of changes in economic policies and
structural economic changes in the country since independence in 1968. In contrast to
existing fixed and variable coefficient models,” which ignore the indirect effects of the
regressor on the dependent variable, the TVC model of Swamy and von zur Muehlen (2020)
measures the total effects of bank credit on RGDP from 1970 to 2019.

In this paper, we focus on total bank credit as a measure of financial development,
because the transaction activities of a commercial bank are different from those of other
financial intermediaries, such as an insurance company, in that the former, when trans-
acting with the latter, discharges its payment obligations to the latter by issuing deposits,
whereas when agents belonging to the latter group transact with each other, they do so by
transferring existing deposits. When an insurance company lends to a household, it pays
by transferring money it holds with a bank (an asset to the insurance company), thereby
leaving the total stock of money unaffected. In contrast, when the bank extends a loan to a
household, it discharges its obligation to pay by crediting the household’s account, thereby
increasing the total stock of money (See Werner 2005).

The theoretical background of and interest in the potential role of bank credit in
promoting GDP is the literature inaugurated by Werner (1992), who argued that in order
for GDP to expand, more money is needed to settle those transactions, implying that
when banks create money, credit, and new purchasing power, they contribute to GDP not
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merely sectorally but, more importantly, to the expansion of GDP as a whole. Werner (2012)
argued that it is the portion of bank credit allocated to GDP-type spending as opposed
to financial transactions that drives GDP. If this conjecture is correct, we should expect
a diminishing effect of total bank credit on GDP over time if bank credit in Mauritius
underwent shifts from real to financial spending. In this paper, we focus on the effects of
bank credit on RGDP.

3. A Model with Time-Varying Coefficients

In this section, we describe a relationship between per-capita RGDP and per-capita
CBC utilizing time-varying coefficients and carefully selected coefficient drivers, partic-
ularly to improve predictive performance, where, importantly, these time-varying coef-
ficients are to be taken as random variables. We assert that the total effect of per-capita
x1¢ = per-capita CBC on per-capita y; = RGDP per-capita can be cast in terms of two rela-
tionships, as follows:

First, y; is related to xy; plus an unspecified set of excluded relevant variables, denoted
W, via the following relation with time-varying coefficients, based on the methodology
introduced by Swamy and Tinsley (1980),

Y= &gt + xqpx1p + Wi, (1)

where W; contains the effects of excluded relevant variables. Here W; is written as a scalar
and not potentially a vector, as done by Pratt and Schlaifer (1984).

Second, recognizing that Equation (1) suffers from a simultaneity problem caused by
the correlation of x1; with W;, Pratt and Schlaifer (1984) proposed augmenting (1) with the
stochastic relationship,

Wi= Aot + Aigxiy, )

where Ag; is a random error term and i.i.d. (0, w).

Our contribution is (1) the introduction of time-varying coefficients that (2) are poten-
tially driven by variables not otherwise part of the model.

Substituting the right-hand side of Equation (2) for W; in Equation (1), gives

yi= oo + Xy + (Ao + Aexe) = (oor + Aop) + (1 + Aig) X1y, 3)

where Ay, which is i.i.d. (0, w), is the error term of Equation (3), coefficient «y; is the direct
and the term Ay; represents the indirect effect of x1; on y;.° This indirect effect arises because
x1; affects W; as in (2), and W; affects y; as in (1). The sum of these direct and indirect
effects, (ot1; + Aqy), is the total effect of x1; on y; alluded to in the Introduction.

Pratt and Schlaifer (1984) claim that while the direct effect «; and the indirect effect
A1; are non-unique, their sum (og; + Ay;), called the total effect, is unique. To prove that the
total effect is unique, we need to show in how many ways the total effect can be non-unique
and how we can avoid all these ways. As such, in order to avoid issues in proving the
uniqueness of total effects, we chose to write the effects of excluded relevant regressors
in terms of a scalar W;, compared with Pratt and Schlaifer (1984)*, who write this as the
product of two vectors.’

Note that Equation (3) is free from simultaneity problems because x1; is independent
of Ag;. The case for estimating total effects is further strengthened when one considers two
principal defects of models such as the widely used Kalman filter (Durbin and Koopman
2001): their lack of an i.i.d. error term and their inability to measure the indirect effects
of regressors.

To proceed, re-write the relationship between y; and x1; as

Y= Yor + Y1eX1ts 4)

where vg; = (agr + Agr) and y1; = (1 + Aj¢) = the total effect of x1; on y;.
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In vector form
vi= (1 x1) (Yor Yt )'= Xt Vi

where x; = (1 x1;)isa 1 x 2 vector, y¢ = (vo; Y1¢)' @2 % 1 vector, and from now on all vectors
are denoted by bold symbols. The sample informationis (y; x;),t=1,2,...,T.

As is evident from (1), the information contained in data on y; and xj; is adequate
to estimate direct effects with precision, but it may not be enough to estimate indirect
effects. Therefore, as promised in the Introduction, we now consider additional observable
variables that hopefully contain information about A;. Since we do not know a priori
what information any of these variables may contain, we use a heuristic approach of
experimenting with various candidates that look promising from a theoretical point of
view. We call them coefficient drivers because of the manner in which we shall use them.
Consider two such variables, labelled z;; and zj;, and posit the following two relationships:

Yot= Too + TiZit + Uot, 5)

Y1t= o + TjZjt + U1t (6)

Using appropriate matrix algebraic notation, Equations (5) and (6) can be combined
into the following single equation:

Y = 1z + uy,

oo Toi O

) isa 2 x 3 matrix with
mpo 0 7

where v, is defined in the equation below (4), I = <

Uot
Uit

Note that the assumption of time-variability is key: Equations (5) and (6) would be im-
possible had we treated the coefficients of (4) as constant parameters. Equations (5) and (6)
are new to our time-varying coefficients model. Later, we will check systematically what, if
any, information is contained in these coefficient drivers.

The coefficients of Equations (5) and (6) have further useful interpretations. The
coefficient y(; in Equation (5) is equal to (cp; + Aot) where Ag; is random. The coefficient
driver z; simply acts as an explanatory variable of vy;. When (5) and (6) are inserted into
(4), all the terms on the right-hand side of (6) get multiplied by x1;. Therefore, (i) 719 as
the coefficient on x1; can absorb at least part of the direct-effect component of yy;, and
(ii) 7; becomes the coefficient on the interaction between zj; and xy;. Such a coefficient
cannot absorb the direct-effect component of yy;, but its estimate can indicate whether 7;zj;
absorbs at least a part of the indirect-effect component of yy;. Therefore, the estimate of
the coefficient 71; reveals the strength or weakness of the relationship between the indirect-
effect component of y;; and zj;. If the intercept 7119 of (6) does not completely absorb the
direct-effect component, and if 7j; zj; of the same equation does not completely absorb the
indirect-effect component of y1;, then the term u1; corrects the inaccuracies in both, if the
equality sign of (6) holds.

The sample information and the additional information can be combined by substi-
tuting the right-hand side of the equation y; = I1z¢ + uy, for y; in Equation (4). Doing so
gives y; = x¢I1z + xjue = (2 ® x¢) vec(IT) + x{us where ® denotes the Kronecker product
and vec(IT) is the column stack of IT.

Stacking the equations y; = = x{I1z¢ + xjue, t =1, 2, ..., T, gives y = X,7 + ¢, where
yisa T x 1 vector of observations on y;, Xz is a T x 6 matrix of observations on (z’ @ x{),
7t =vec(II), e =Dxu, eisa T x 1 vector of errors, Dy isa T x 2T diagonal matrix with x’l,
X5, ..., xp along the diagonal, and u is a 2T x 1 vector of the errors of equation which is
below Equation (6) fort=1,2,...,T.

In addition to (4)—(6), we assume that

exclusion restrictions, z¢ = (1 zj; zjt)’ isa3 x 1 vector, and u; = < isa?2 x 1 vector.

ue= (ugt, ugy) = Pup_q +ay, (7)
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where @ is diagonal with ¢gp and ¢y as its diagonal elements, Ea; = 0 and
2A ift—

Eaia = { GaOA iaf if;; ® . This assumption of diagonal @ is required for convergence,

because our estimation procedure of the model in (4)—(7) is an iterative procedure.

If the variance—covariance matrix of the error vector u of Equation & = Dxu is denoted
by 02%,1, then the variance-covariance matrix of & can be shown to be 62DxZy;D%.

The exclusion restrictions imposed on IT can be written as r = Rt + 0. Combining
this equation with y = X,7t + € gives y, = XzeT + € where y, = (y 1)/, Xze = (X, R’)’, and
ge = (¢ 0)’. The variance—covariance matrix of ¢, is singular.

Since the coefficients of (5) and (6) are fixed parameters, they possess consistent es-
timators. We can find them by applying Paige’s (1979) numerically stable algorithm for
the generalized least squares method to equation y, = Xzt + €.. We also find feasible
generalized least squares estimators of 7, see Swamy (1990). From these estimates, we
derive the estimates of u using &€ = Dyu, as in Swamy (1990). Since the coefficients of Equa-
tion (4) are time-varying, they themselves do not possess consistent estimators. However,
substituting the above estimates of 7t and u, and the data on z;; and zj; on the right hand
sides of (5) and (6), respectively, gives the estimates of yo; and yy;, t =1, ..., T. In other
words, given data on z;; and z;;, we find the estimates of 7o, 71;, 7119, and 7135 from their
consistent estimators obtained above and the derived estimates of uy and uy; from & = Dyu,
to obtain the estimates of vy, and y;; from Equations (5) and (6), respectively. However, we
do not know the statistical properties of these estimates.

Since c§2u1 is unknown, we use its estimate in its place. Let .41 denote its estimate.
The Cholesky factorization of %,; can be represented by FF. We denote the Cholesky
factorization of DyX,;1 D as BB'. Paige’s (1979) algorithm for performing the generalized
least squares estimation can be directly applied to y, = Xgze 7 + €e.

After this estimation, we find the feasible version of the generalized least squares
estimator of 7’s by replacing 62X.,; by 62 3. The vector u is replaced by its estimates. We
substitute these feasible versions in place of the unknown coefficients and error terms in
Equations (5) and (6), respectively. In conjunction with our data on coefficient drivers, the
feasible estimates of 7's and u’s in (5) and (6) give the estimates of yy’s and y1;’s. These
estimates are also substituted into Equation (4). The consistency properties of the feasible
generalized least squares estimators of fixed coefficients are known in the econometrics
literature. The consistency of generalized least squares estimators of 7’s are well defined
but not of the time-varying coefficients. The only thing we can claim is that the estimates of
time-varying coefficients are those implied by the consistent estimators of fixed coefficients.®

4. Implications of the Model of above Section for the Relationship between Economic
Growth and Financial Development

Differencing both sides of each of Equations (4)—(6) gives

Ayr= AYor Y1 X1 =Y 1,-1X1,-1FV1,e—1X1t =Y 1,6-1%1¢ (®)
= Ayor+(Ayie) X1e+v1e-1 (Bx1),

where A is the difference operator, and Ay; = y; — y;—1, Ay = mi(Azir) + Augy,
Ayqp =4 (Azjt) + Auyy, and the vector (Aug, Augy) is completely unknown.

In the next section, we will be using the model in (4)—(7) to estimate the total effects
of CBC per capita on RGDP per capita and, therefore, Equation (8) is nothing but an
implication of our model. Dividing both sides of (8) by y;_1 gives a relationship between
financial depth and economic growth, since CBC can be considered as a proxy for financial
depth. Arcand et al. (2012) studied such a relationship and concluded that “there is a
positive and robust correlation between financial depth and economic growth in countries
with small and intermediate financial sectors, but ... [they] also show that there is a
threshold (which ... [they] estimate to be at around 80-100% of GDP) above which finance
starts having a negative effect on economic growth”.
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The relationship between financial depth and economic growth we obtained above
for Mauritius, using the model in (4)—(7), is more general than that of Arcand et al. (2012),
and, notably, the total effects of CBC per capita on RGDP per capita we obtained for
Mauritius are all positive throughout the sample period, 1970-2019, never turning negative.
Since, with our sample and estimates, Arcand et al.’s (2012) threshold is never breached
in Mauritius, we do not expect bank finance to have had a negative effect on economic
growth during 1970-2019, at all.

As a digression, we note that while on the surface, there may be some resemblance
between the so-called hierarchical models and Swamy’s (1971) random coefficient model,
such a similarity is superficial. Hierarchical models, being less general than the model given
by (4)—(7), are not at all applicable to the kind of econometric work being considered here,
because whatever methodological insights such modeling techniques might bring to the
topic, they do not—nor can they—address the principal concern of this paper, which is to
obtain consistent estimators of the total effects of the included regressors on the dependent
variable when observations do not belong to different (hierarchical) clusters.

We came to the preceding conclusion as follows: In Levy’s model, y;; is normally
distributed with random mean y; and fixed variance 0'5. The random mean can be written
as |; = | + b;, where b; is normally distributed with mean 0 and variance O‘i. Combined,
Levy’s modelis y;; = u + b; + ¢;;, where ¢;; is normally distributed with mean 0 and variance
05, i indexes clusters and j indexes observations within each cluster. From this it follows
that two different values of y;; contain the same value of n or b; and different values of
€ijs if the two values of Yij belong to the same cluster and have the same value of u, and
different values of b; and ¢;; otherwise. The fact that the distribution of b; has the property
of countable additivity means that the probabilities implied by the distribution of b; and
¢;j are frequentist, as are the probabilities implied by the distributions of random coeffi-
cients in Swamy’s (1971) random coefficient regression models. Levy (2012) estimates his
hierarchical models using both maximum likelihood and Bayesian posterior distributions.
It should be noted that these Bayes procedures employ frequentist probabilities but not
subjective probabilities, as in Swamy’s (1971) random coefficient and Swamy and Tinsley’s
(1980) stochastic coefficient regression models. To obtain subjective probabilities, Bayesian
statisticians model their knowledge of each fixed parameter as random. Levy’s distribu-
tions of random parameters are not of this type because his distribution of the random
variable p; has countable-additivity but not finite additivity properties.

5. Empirical Estimates and Lessons to Be Drawn

We made an empirical application of the model given by Equations (4)—(7). In this
application, with data for RGDP per capita and CBC per capita for Mauritius, as well as for
various potential coefficient drivers (zj, zjt) for the sample period 1970-2019, we obtained
(i) estimates Vo; and ¥1; of the time-varying coefficients yo; and yq; and in (4), respectively;
(ii) estimates 7o, 7to;, 710, and 7ty of the fixed coefficients in (5) and (6); (iii) estimates
of the diagonal elements ¢gg and ¢y of ® that appears in the process (7); and (iv) an
estimate of the variance—covariance matrix 02A, of the process (7). Except for ¥, and 1;,
these estimates are recorded in Tables 1 and 2 for different pairs of (zj;, zjt). Evidently, the
coefficients of (4) are not constant, unlike the coefficients of (5) and (6). Our experiments
with a chosen set of coefficient drivers (zjt, zjt), showed that some give better out-of-sample
forecasts of y; than the others. The results are shown below:
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Table 1. Estimates of the Coefficients of Equations (5) and (6) and the Variance-Covariance of Process (7) When the Diagonal Parameter Matrix ® of Process (7) is

Restricted to be Zero *.

Coefficient Estimates of Coefficient Estimates of AR Coefficients of Cova-?{ciaalr:eoli/[atrix Covariance Matrix of Equation (7) Theil’s Measure of
Driver of (5) Coefficinets of (5) Driver of (6) Coefficients of (6) Errors of Equation (7) . qu Forecast Accuracy
Cases of of Equation (7)
®=0
A2 A . .
Zy TCoo Thoi Z; Tt1o st Poo bu o, A, U Statistic
78,828.5877 5.785 2.148 00304 52,958, 174.6 136318188
I GFCF (30.340) * (9.840) * CEXTT (0.683) (—0.989) 0 0 1.61575374 136318188 0.561897701x 101 0.47
57,282.9121 26.144 9.128 0.1667 " 0.286771043 x 102! 0.931448686 x 1017
I GFCF (77.329) * (1.461) * OMT (1.742) (—3417)* 0 0 512555742 x 10 0.931448686 x 10-17 0.302539840x 1012 1.62
57971.6075 23.923 ~28.067 0.1695 » 4671467.31 4,725,656.10
v GFCF (79.507) * (10.886) * REEXR (—3.344) * (2.417) % 0 0 35351479 x 10 4725656.10 4,780,473.49 177
55,837.7511 28.594 ~19.113 0.1275 . 0.114075712x 1015 0.220199723 x 1011
v PI (55.558) * (7.895)* CEXPI (—4.958) * (2.865)* 0 0 3.4874377 x 10 0.220199723 x 1011 0.425050323x10~7 1.02
56,892.1517 40422 10159 ~0.18522507 i 333,057, 160 359,975,297
Vi PI (84.735) * (13.236) * OMT (2.169) * (—4221)* 0 0 31687904 x 10 359,975,297 389,068,994 1.53
57,680.9252 36.655 230.707 0.185 - 45,052, 492.5 45,723,771.0
v I (84.488) * (12.039) * REEXR (—-3.914)* (2.833)* 0 0 31374654 x 10 45,723,771.0 46,405, 051.6 0.78
51,618.476 6.834 35319 0.295 i 158,748,760 164,953,937
Vi PC (49.150) * (7.326) * CEXFL (~8.776) * (7.724) % 0 0 93242741 x 10 164,953,937 171,401, 662 1.89
57,387.614 7.647 ~14.804 0.0671 » 27,980,777.2 28,023,306.1
X rc (48.140) * (5.522) * OMT (—1.852) * (1.012) 0 0 1.2701022 % 10 28,023,306.1 28,065,899.7 0.46
57,106.0044 7.865 2.25 ~0.0857 0.191039356 %10~ 0.336970525 x 10~
X PC (48.442) * (5.546) * REEXR (0.196) (—0.845) 0 0 619.238949 0.336970525 x 105 0.594375616x 101 0.69
159,842.9 512,65 1.985 ~0.000018 311,100,912 313,455,083
XI CEXPI (10.948) * (—4.317) * I (16.363) * (=7.119) * 0 0 0.21070 313,455,083 315,827, 069 1227
932021 473.03 9.492 000016 600,047,017 631,200,283
Xit OMT (1.19) (6.265) * I (8.089) * (~5.081) * 0 0 0.32877 631,200,283 663,970,965 8.91
128,722.23 ~612.732 11216 ~0.0002 77 557,628,459 584,797,650
X1 REEXR (4.653) * (—2.564) * PI (7.795) * (—4.932) * 0 0 057717 x 10 —584,797,650 613,290,599 10.96
33,091.9 161.689 13.047 000018 . 0.103723501 x 1010 ~0.113230521 x 10'°
XV CEXPI (@.417)* (3.314)* GFCE ©.17)* (—6.007)* 0 0 0.25716 x 10 —0.113230521 x 10'° 0.527320203 11.96
9689.82 468.194 9.806 000013 B 831,699,126 888, 554, 543
XV OMT (1.261) (6.285) * GFCF 8.277)* (—5.291) * 0 0 0.60319 x 10 888,554, 543 871,140,258 8.71
127,993.07 ~607.771 11581 000016 ~ 769,980, 308 818,999,905
XVl REEXR (4.691) * (—2579)* GFCF (7.976) * (—5.133) * 0 0 0.39494 x 10 —818,999,905 871,140,258 10.70
35,287.53 151.79 11413 —0.00004 . 973,114,924 —0.106389135 x 100
XV CEXPI (4.38)* (2.885) * rc 8.122)* (—4.919)* 0 0 0.31956 x 10 —0.106389135 x 1010 0.116313579 x 1010 1891
8383.01 486.8 8.581 ~0.000029 . 789,283, 708 845,445,226
XVII OMT (1.015) (6.168) * rc (7.466) * (—4.387) * 0 0 0.26532 x 10 845,445,226 905, 602,920 1372
130,269.95 “622.12 1017 ~0.000036 B 750,423, 836 800,984, 254
XIX REEXR (4.505) * (—2.491) * PC (7.217)* (—4.284)* 0 0 0.45244 x 107 800,984, 254 854,951,221 16.80
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Table 2. Estimates of the Coefficients of Equations (5) and (6) and the Variance—Covariance of Process (7) When the Diagonal Parameter Matrix of Process (7) is NOT
Restricted to be zero.

C(?efﬁcient ESt.iIFlateS of qufﬁcient Est'ir.nates of AR Coefﬁcien.ts of Cova-?{ciaalr?creoli/[atrix Covariance Matrix of Equation (7) Theil’s Measure of
Cases of Driver of (5) Coefficinets of (5) Driver of (6) Coefficients of (6) Errors of Equation (7) of Equation (7) Forecast Accuracy
®70 Zat Tt i Z o T oo by gj A U Statistic
n GRE CGimie ooy P Cogan  @eme 095 09 628 x10°7 586064714 5,014, 55155 270
v GRCE  Chyume  asm KR (Gohgy ey 0% 0% 100 10°¢ 7 74094745 7,812.501.7 034
v P TGemge Commy PP Cogg ey 09 oS 221 102 D0 029300750410 1 272
v g Bome da OMT sy @ 0%5 07 303x10 265,973,367 265,874, 98% 225
T R L B S L
S e 1 Y R s s
x e Wb sy OMT omg g 098 oS 275 x 10 Horasis 0112212652103 014
N S S Y e s b L o
x CBPSime Camsns M (ol e 0B 0% 0489425 BT 105 019 10 1 087
. O T B
e S N S T S R T S
W en VS MR go 02 O m owe
R N - L T VSR A N €
W wee S B ga SO W s g om
O R N - mehy  Cisedu
S N T Gpegse  mam
< B A SN TR mas e

* 5% significance level is used in this table, t-ratios are given in parentheses, and they are significant if they are with asterisks.
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The list of pairs of potential drivers appears in Tables 1 and 2 and includes: (GFCF,
CEXPI), (GFCE, OMT), (GFCFE. REEXR), (PI, CEXPI), (PI, OMT), (PI, REEXR), (PC, CEXPI),
(PC, OMT), (PC, REEXR), where GFCF = gross fixed capital formation, PI = private invest-
ment, PC = private consumption, CEXPI = commodities export price index,
OMT = openness of Mauritius trade, and REEXR = real effective exchange rate. Here,
the order in which we use these coefficient drivers is also important. For example, it
matters whether (z, zjt) is equal to (GFCF, CEXPI) or (CEXPI, GFCF). It turns out that some
of these coefficient drivers led to substantial reductions of Theil’s U statistic, while others
did not. To eliminate any arbitrariness in selecting drivers, we deleted 12 observations
at the end of the vector of observations on y; for the period 2008-2019. We then used the
estimated model given by Equations (4)-(6) with and without the estimated Equation (7) to
derive the minimum mean square error linear forecasts of all the deleted observations. We
used both the deleted observations and their minimum mean square error linear forecasts
to compute Theil’s U statistic (Greene 2012, p. 88). In Table 2, the pair (REEXR, GFCF) in
this order yielded the smallest value 0.09 for the U statistic, when ® # 0. Three other pairs
yielded slightly higher but reasonably low U-statistics: 0.1 for (PC, CEXPI), 0.13 for (OMT,
GFCF), and 0.14 for (PC, OMT). Based on the U-statistic, the remaining pairs in Table 1 or
Table 2 can be dismissed as irrelevant.

The results also inform us about the likely transition matrix for the error terms in (6)
and (7), presenting us with a choice. First, when ® is restricted to be 0, the pair (PC, OMT)
generates the smallest value of U (0.46), exceeding the smallest value of U (0.09) obtained
for the pair (REEXR, GFCF) when @ is not restricted to be zero. It made sense, therefore,
not to restrict the first-order transition matrix ® for the errors to be zero, especially when
using the methodology described in footnote 3. Second, suppose we decided to tolerate the
slightly larger smallest value of U (0.47) obtained for the pair (GFCE, CEXPI) when ® =0, as
shown in Table 1. We might be tempted to accept the larger U statistic and more significant
coefficient estimates that result from this choice. However, is doing so necessarily a good
thing? In the next paragraph, we explain why basing our choice on tests of hypotheses,
such as coefficient significance, rather than on the U statistic is not prudent.

Regarding this last point, Swamy and Tinsley (1980) demonstrated that good predic-
tion methods are better connected with reality than Neyman and Pearson (NP) tests of
hypotheses, the reason being that NP tests of hypotheses use appropriate likelihood func-
tions under null and alternative hypotheses, which are model based, even though no model
can be completely trusted. In this sense, NP tests have a poor real-world basis, whereas
the very small forecast errors used in the computation of Theil’s U statistic have a solid
real-world basis; they are, after all, driven by the data themselves. A mental experiment is
to imagine how close the model forecasts will be to the actuals when Theil’s U statistic has
the value of 0.09, as presented in Table 2, vs. some higher value.

A further criticism of NP tests of hypotheses comes from Kiefer (1977), who, in citing
numerous criticisms of NP-style hypothesis tests made by statisticians over time, noted
that “we give an exposition and discussion of a systematic approach to stating statistical
conclusions which, by incorporating a measure of conclusiveness that depends on the
sample, may assuage the uneasiness that some practitioners have with the NP statement of
Type I and II error probabilities and a decision”.

From Table 2 we select the four cases XVI, VIII, XV, and IX, only, because in these cases
the values of U are small: 0.09, 0.10, 0.13, and 0.14, respectively. We reject other cases in
Table 2 and all cases in Table 1 because in these cases the values of U are higher than 0.14.
In the selected cases, VIII, IX, XV, and XVI, the coefficient drivers are (z;, z]-t) = (REEXR,
GFCF), (PC, CEXPI), (OMT, GFCF), and (PC, OMT). For these cases, we include below the
plots of the total effects of CBC on RGDP, which describe the time paths of the estimate
(¥1;) of the total effects (y1;) of CBC on RGDP for Mauritius during the period 1970-2019
(Figures 1 and 2). In cases XV and XVI, the plot of ¥1; remains in the positive quadrant
with much less volatility, unlike the plot of ¥4, in cases VIII and IX.
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Figure 1. Plot of the estimated total effects of CBC on RGDP in different years.

Figure 2 for Cases XV and XVI (from Table 2) shows that the estimate ¥4, first increases
non-monotonically in 1970, reaches a maximum around 1974, and then continues to fall non-
monotonically during the period 1975-2019. For U > 0.14, there are no sizable departures
from this time path of ¥y; as long as the ® of (7) is not equal to zero and ¥;; does not go
below the horizontal axis. When & = 0, the volatility of this time path is very high. For this
reason, we should not restrict the ® of (7) to be equal to zero.

The most important econometric consideration we wish to emphasize in this paper is
one concerning causality. To this point, underlying Equations (4)—(7) is a law which should
be considered observable in light of Pratt and Schlaifer’s (1988) observability condition
that x1; in (4) be independent of 4; in (7). This is the advantage of first addressing the
simultaneity problem associated with (1) raised earlier. We may further write this law using
appropriate “potential-value” notation, as advocated by Rubin (1978) and taken up by Pratt
and Schlaifer (1988). Accordingly, the model in (4)—(7) coincides with its underlying law
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and therefore has causal implications. In this sense, the variable RGDP in (1) is caused by
x1¢, whose causal effect on RGDP is the same as its total effect.

Estimated Total Effect %: Case XV, @ =0 and (Z;,Z)=(OMT,GFCF)
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Figure 2. Plot of the estimated total effects of CBC on RGDP in different years.

6. A Remark on the Estimators of the Fixed Coefficients of (5) and (6) without the
Time-Varying Coefficients of (4)

In the statistics literature, consistent estimators are well-defined for fixed parameters
but not for time-varying coefficients. Therefore, in our case, because vy, and yy; are not
fixed, the statistical notion of consistent estimators does not apply to them. However, the
coefficients of (5) and (6) are fixed, and so consistent estimators can be found for them. For
these reasons, consider what happens if we remove y(; and yy; from (4)—(6). Combining
these equations gives

Y= Too + T0iZit + T0X1¢ + TO1jZjtX1¢ + Uoe + UreXae, )
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where the coefficients vy, and y1; do not appear explicitly. Equation (9) is a fixed-coefficients
model with three regressors having fixed coefficients, one interaction term with a fixed
coefficient, and a heteroscedastic and serially correlated error term. One can easily develop
a generalized least squares estimator based on an estimated error covariance matrix for
the coefficient vector of (9). The sampling properties, including the consistency property,
of this estimator are well known in the econometric literature. Even so, Equation (9) does
not help us. It follows from (6) that to estimate the total effect vy, = 7o + Tzt + uys
of xq; of on y;, we need its generalized least squares estimator. The error term of (9) is
ugt + up¢x1¢. From an estimate of this error term, we cannot get a separate estimate of uy.
However, without a separate estimate of u;; we cannot get a separate estimate of the sum,
M0 + T;Zjt + U1r. This explains the approach outlined in Section 2 and applied in Section 3.

7. Conclusions

The total effect of commercial bank credit on real gross domestic product being the
sum of certain direct and indirect effects, we have developed a new estimator for it in
a model with time-varying coefficients, by exploiting a new concept: that of coefficient
drivers. In applying this estimator to data for the Mauritian economy for the sample period
1970-2019, we found that the total effect is not a constant, since it increases in the initial
years of the sample period and then decreases non-monotonically during the rest of the
sample period in Cases XV and XVI. We report only these two cases and not other Cases in
Table 2 because we consider only these two cases are reasonable.

This paper makes two contributions. The first is econometric: the introduction of
coefficient drivers in the estimation of time-varying coefficients to estimate the total effects
of right-hand variables on a dependent variable in a regression, thereby overcoming
the ancient conundrum of how to sort out the direct and indirect effects that inevitably
contaminate econometric modeling. Our method cuts the Gordian knot by achieving
estimates of total effects, which, after all, is the goal of all regression estimation when
randomization is not possible. In medical and other fields, where randomization is possible,
researchers can follow randomization to reduce indirect effects to zero. In economics where
randomization is not possible, researchers have to worry about total effects.

Our second contribution is empirical: an examination of the relationship between
aggregated bank credit and RGDP in the case of Mauritius. The gradual decline of the total
effects of commercial bank credit per capita on GDP per capita observed in Cases XV and
XVI of Table 2 suggests that banks have increasingly played a weaker role in promoting
investment that supports economic growth in Mauritius. This is a matter of concern and,
therefore, further empirical work should investigate the reasons why banks in Mauritius
have failed to promote productive investment during more recent times.
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Notes

! For derivations and descriptions of the model considered in this paper, see Swamy (1990) and Chang et al. (1992), where it

is apparent that the method of estimating total effects differs from Pratt and Schlaifer’s (1984) methodology, which we found
insufficient for our purposes.

A new category of variable coefficient models known as state space models has emerged during the past two decades to perform
time-varying coefficient estimations. However, state space models are also limited in the sense that it ignores the indirect effects
of the regressor on the dependent variable.

It is unusual for any econometric model to have i.i.d. error term rather than an auto-correlated error term. The combination of
Equations (1) and (2) has such an unusual error term. Pratt and Schlaifer (1988) employed a potential-value notation to state
economic laws, each with i.i.d. error term. Equations (1) and (2) are likewise endowed with this type of error term.

Pratt and Schlaifer (1984, p. 13) write Equation (1) as y = ox + dw, Equation (2) as w = I'x + e, and Equation (3) as y = (o + 8I')x + de
and claim that the coefficient vector (« + 8I') and the error vector de are unique. But, depending on the user, these vectors
and matrices can differ, essentially rendering them non-unique. We maintain that this problem does not arise in our ver-
sion of Equation (3). Our comment is prompted by a suggestion from William Greene that we consider issues raised by
Roger Levy (2012).

The error term, often called a disturbance, can be thought of as the joint effect of some variables (W;) that together with ag; and
x1; suffice to determine the value of y; when the coefficients of x1; and W;, including the intercept oy, are time-varying. While
proposing the concept of omitted relevant regressors, Pratt and Schlaifer (1984) did not consider time-variability of the coefficients.

Full details of these estimations are available in Swamy’s Notes (Swamy 1990) on Paige’s (1979) numerically stable algorithm
for the generalized least squares method. These notes also show how the method is to be applied to our model given by (4)—(7)
without any rank restrictions. Additionally, Chang et al.’s (1992) paper provides a theoretical rationale for applying generalized
least squares to our model with time-varying and fixed coefficients and shows how the extra information provided by the
coefficient drivers (z;;, zj;) is to be used. More specifically, under Assumption I, having data on y:, x1;, zj;, and zj; Swamy’s
modification of Paige’s algorithm for the generalized least squares method was used to estimate both the coefficients and the
error terms of (5) and (6). From these estimates, the estimates of y(; and yy; of (4) are determined. The computer program we
used for these computations was written by I-Lok Chang using Swamy’s mathematical formulas. To develop this program, it
took us several years. We gratefully acknowledge the grants given to us by the Federal Reserve Board and the Comptroller of the
Currency, both of which are located in Washington, DC.
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