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Abstract: A new two-parameter model is proposed using the Kavya–Manoharan (KM) transforma-
tion family and Burr X (BX) distribution. The new model is called the Kavya–Manoharan–Burr X
(KMBX) model. The statistical properties are obtained, involving the quantile (QU) function, moment
(MOs), incomplete MOs, conditional MOs, MO-generating function, and entropy. Based on simple
random sampling (SiRS) and ranked set sampling (RaSS), the model parameters are estimated via the
maximum likelihood (MLL) method. A simulation experiment is used to compare these estimators
based on the bias (BI), mean square error (MSER), and efficiency. The estimates conducted using
RaSS tend to be more efficient than the estimates based on SiRS. The importance and applicability of
the KMBX model are demonstrated using three different data sets. Some of the useful actuarial risk
measures, such as the value at risk and conditional value at risk, are discussed.

Keywords: KM transformation family; Burr X distribution; moments; entropy; approach of maximum
likelihood

1. Introduction

Burr (1942) proposed twelve types of cumulative distribution functions (cdfs) for
modeling lifespan data. The most common of these distributions are the BX and Burr type
XII distributions. The fact that the BX distribution has a declining and growing hazard
function is one of its key characteristics. The BX distribution has been used extensively in
reliability research, agriculture, biology, and medicine. It may also be used to successfully
represent strength data as well as to general lifespan data. Many researchers have examined
several features of the BX distribution in recent years; for example, Surles and Padgett
(2001) proposed a scaled BX distribution inference for reliability and stress–strength mea-
surements. Aludaat et al. (2008) studied BX distribution parameter estimates for grouped
data. Furthermore, Raqab and Kundu (2006) created a two-parameter BX distribution that
is a closed variant of the generalized Rayleigh distribution and utilized it to simulate ball
bearing data. Algarni et al. (2021) proposed the type I half-logistic Burr XG family and the
bivariate Burr X generator of distributions, which were investigated by El-Morshedy et al.
(2020). Bantan et al. (2021) discussed the truncated Burr X-G family of distributions. The
cdf of the BX distribution is provided via the following equation:

G BX
(x, α, β) =

[
1− e−(αx)2]β

, x, α, β > 0, (1)

where α and β are positive scale and shape parameters, respectively. The associated density
function (pdf) and hazard rate function (hrf) are respectively supplied with:

g BX
(x, α, β) = 2βα2xe−(αx)2[

1− e−(αx)2]β−1
. (2)
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and

h BX
(x, α, θ) =

2βα2xe−(αx)2
[
1− e−(αx)2

]β−1

[
1− e−(αx)2

]β
(3)

Depending on the shape parameter, the hrf of a BX distribution could be either a
bathtub function or an increasing function. When β ≤ 1

2 , the hrf is a bathtub shape,
and when β > 1

2 , the hrf is growing. Surles and Padgett (2005) demonstrated that the
two-parameter BX distribution may be employed in modeling both strength and general
lifespan data.

Statistical and applied academics are increasingly interested in constructing flexible
lifespan models to improve the modeling of survival data. As a result, substantial work
has been performed to generalize several well-known lifespan models, which have been
successfully applied to difficulties in a wide range of scientific fields of study. Despite
the fact that extra parameters give greater freedom, they also increase the complexity of
the parameter estimation. Kumar et al. (2015) proposed a DUS (Dinesh–Umesh–Sanjay)
transformation to produce a new parsimonious class of distributions to acquire new lifetime
distributions. If G(x) is the baseline cdf, the DUS transformation yields the new cdf F(x), as
shown below.

F(x) =
eG(x) − 1

e− 1
. (4)

The merit of using this transformation is that the resulting distribution retains the
attribute of being parameter-sparse because no more parameters are added. Kavya and
Manoharan (2020) proposed a generalized lifespan model based on the DUS transformation.
The generalized DUS (GDUS) transformation’s cdf is provided via the following equation:

F(x; α, ζ) =
exp(Gα(x; ζ))− 1

e− 1
, x > 0, (5)

where α > 0. The associated pdf is supplied with:

f (x; α, ζ) =
αg(x; ζ)Gα−1(x; ζ) exp(Gα(x; ζ))

e− 1
(6)

where G(x; ζ) is the baseline distribution and g(x; ζ) is the parent pdf in the GDUS fam-
ily. Because it is obviously a transformation rather than a generalization, it will yield
a parsimonious distribution in terms of the computation and interpretation because it
never contains any additional parameters other than those involved in the baseline distri-
bution. Alotaibi et al. (2022b) proposed bivariate step stress accelerated life tests for the
Kavya–Manoharan exponentiated Weibull model under a progressive censoring scheme.
Alotaibi et al. (2022a) proposed the Kavya–Manoharan inverse-length biased exponential
distribution under a progressive stress model based on progressive type-II censoring.

Recently, Kavya and Manoharan (2021) introduced a new transformation family, called
the KM transformation family of distributions. The cdf is provided via:

F KM (x) =
e

e− 1

(
1− e−G(x)

)
, x > 0. (7)

The associated pdf is supplied with:

fKM(x) =
e

e− 1
g(x)e−G(x), (8)

and the hrf is:

hKM(x) =
g(x)e1−G(x)

e1−G(x) − 1
. (9)
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Using a given baseline distribution, this family generates new lifespan models or distri-
butions. They do not add any extra parameters to the model to keep it tuned to the current
uncertainty, instead focusing on modeling the lifetime with a process that produces correct
parsimonious findings. They chose the exponential and Weibull distributions as baseline
distributions because they are widely used in reliability theory and survival analyses.

As our object in this article, we propose a new extension of the BX model based on the
KM transformation family called the Kavya–Manoharan BX (KMBX) model. A battery of
general features of the KMBX model is discussed. The KMBX model is developed using
the maximum likelihood (ML) technique. It is applied to fit three data sets of biomedical
and financial data. Using standard benchmarks, we reveal that it performs better than
the selected competing models. The section of actuarial measures concerns useful risk
measures, with a focus on the value at risk and conditional value at risk.

The remainder of the article is as follows. The second section presents the KMBX
distribution as well as the density function expansion. Section 3 derives the QU function,
median, MOs, incomplete MOs, MO-generating function, conditional MOs, mean residual
lifetime, and Rényi entropy. Section 4 employs MLL estimates under SiRS and RaSS. In
the same section, the simulation experiment is used to compare these estimators based
on the BI, MSER, and efficiency. In Section 5, we highlight the significance of the existing
model by studying real data applications to convey its efficiency and applicability. Some
useful actuarial risk measures, such as the value at risk and conditional value at risk, are
discussed in Section 6. Finally, the concluding remarks are mentioned in Section 7.

2. Kavya-Manoharan Burr X Distribution

We consider G(x) in Equation (7) to be the cdf of the Burr type X distribution given in
Equation (1), so that the cdf of the KMBX distribution can be expressed as:

F KMBX
(x; α, β) =

e
e− 1

(
1− e−[1−e−(αx)2 ]

β
)

. (10)

The corresponding pdf and hrf are provided via:

f KMBX
(x; α, β) =

2eβα2

e− 1
xe−(αx)2[

1− e−(αx)2]β−1
e−[1−e−(αx)2 ]

β

, (11)

and:
h KMBX

(x; α, β) =
2eβα2

e−1 xe−(αx)2
[
1− e−(αx)2

]β−1
e−[1−e−(αx)2 ]

β

× 1
e

e−1

(
1−e−[1−e−(αx)2 ]

β) . (12)

Using the generalized binomial (1− z)b−1 = ∑∞
j=0 (−1)j

(
b− 1
j

)
zj, |z| < 1 and

e−x = ∑∞
i=0

(−x)i

i! , the expansion of the pdf in (11) may be expressed as below:

f KMBX
(x; α, β) =

∞

∑
i,j=0

vi,jxe−(j+1)(αx)2
, (13)

where:

vi,j =
2eβα2

e− 1
(−1)i+j

i!

(
θ(i + 1)− 1
j

)
. (14)

Hereafter, a random variable X that has the pdf from (11) is symbolized by X v
KMBX(α, β). Figures 1 and 2 show the curves for the pdf and hazard rate function of the
KMBX distribution.
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3. Statistical Measures

In this section, we give some important statistical properties of the KMBX distribu-
tion, such as the QU function, median, MOs, incomplete MOs, MO-generating function,
conditional MOs, mean residual lifetime, and Rényi entropy.

3.1. Quantile Function

The pth QU function of the KMBX distribution is supplied with:

xp = Q(p) = − 1
α

log
{

1−
[
−log

(
1− p

(
1− e−1

))] 1
β

} 1
2

, (15)
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where p ∈ (0, 1). Additionally, when we put p = 0.5, we can get the median as below:

Median = − 1
α

log
{

1−
[
− log

(
1− 0.5

(
1− e−1

))] 1
β

} 1
2

(16)

3.2. Moments and Incomplete Moments

The statistical moments of different orders are important to define the uncertainty
characteristics of the distributions. Using the expansion of (13), the rth MO of X is pro-
vided via:

µ′r =
∫ ∞

−∞
xr f (x)dx =

∞

∑
i,j=0

vi,j

∫ ∞

0
xr+1e−(j+1)(αx)2

dx (17)

setting y = (j + 1)(αx)2, after using algebra, the rth MOs is provided with:

µ′r =
∞

∑
i,j=0

vi,j
Γ
( r

2 + 1
)

2αr+2(j + 1)
r
2+1

. (18)

Individually, the first four moments are obtained by setting r = 1, 2, 3, and 4 in (18).
Additionally, the rth central moment (µr) of X is given by:

µr = E(X− µ′1)
r
=

r

∑
i=0

(−1)i
(

r
i

)
(µ′1)

i
µ′r−i. (19)

The skewness (SK) and kurtosis (Ku) are defined by:

SK =
µ3

µ
3/2
2

, Ku =
µ4

µ2
2

. (20)

The sth incomplete MO of the KMBX distribution is expressed by:

ηs(t) = E(Xs|X < t) =
∫ t

0
xs f (x)dx (21)

We can write the following equation from Equation (12):

ηs(t) =
∞

∑
i,j=0

vi,j

γ
(

s
2 + 1, (j + 1)(αt)β

)
2αs+2(j + 1)

s
2+1

, (22)

where γ(s, t) =
∫ t

0 xs−1e−xdx is the lower incomplete gamma function.

3.3. Conditional Moments

For the KMBX distribution, it is easy to note that the conditional MOs E(Xs|X〉t) can
indeed be expressed as:

E(Xs|X〉t) = 1
F(t)

Hs(x), (23)

where:
Hs(x) =

∫ ∞
t xs f (x)dx

=
∞
∑

i,j=0
vi,j

Γ
(

s
2+1,(j+1)(αt)β

)
2αs+2(j+1)

s
2 +1 ,

(24)

and Γ(s, t) =
∫ ∞

t xs−1e−xdx is the upper incomplete gamma function. An important
application of the conditional MOs is the mean residual life (MRL) function. It is very
important in terms of reliability and survival analyses, and it is used to model the burn-in
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and conservation of the component. For the KMBX distribution, the MRL function in terms
of the first conditional MO is:

µ(t) = E((X− t)|X〉t) = 1
F(t)

H1(x)− t, (25)

where H1(x) is the first complete MOs following from (24) with s = 1. Another application
is the mean deviations about the mean µ and the median. They are used to measure the
spread in a population from the center. The mean deviations about the mean and about the
median are defined by δµ = 2µ F (µ)− 2µ + 2H1(µ) and δM = 2H1(M) − µ, respectively,
where F(µ) is evaluated from (10), H1(µ) and H1(M) can be obtained from (24).

3.4. Moment-Generating Functions

The MO-generating function of the KMBX distribution can indeed be expressed as:

MX(t) = E
(
etX) = ∫ ∞

0 etx f (x)dx =
∞
∑

r=0

tr

r! µ′r

=
∞
∑

i,j,r=0

tr

r! vi,j
Γ( r

2+1)
2αr+2(j+1)

r
2 +1 .

(26)

3.5. Rényi Entropy

The Rényi entropy is provided via:

I R(δ) =
1

1− ζ
log
[∫ ∞

0
f δ(x)dx

]
, ρ > 0, ρ 6= 1. (27)

The Rényi entropy of X can indeed be expressed as:

I R(δ) =
1

1− δ
log


(

eβα2

e− 1

)δ ∞

∑
i,j=0

2δ−1(−1)i+jΓ
(

δ+1
2

)
i![(j + δ)α2]

δ+1
2

. (28)

4. Parameter Estimation

The MLL estimate of the KMBX model parameters is derived in this part using RaSS
and RaSS. A simulation study is also carried out to compare the behavior of the estimators
for both approaches.

4.1. MLL Approach under SiRS

We use the MLL estimates (MLLEs) approach to estimate the unknown parameters of
the KMBX distribution in this part. We assume that x1, . . . , xn is an n-th random sample
(RS) from the KMBX distribution provided by (11). The KMBX distribution’s log-likelihood
(log-LL) (L) function is provided via

L = nlog
( 2e

e−1
)
+ nlog(β) + 2nlog(α) +

n
∑

i=1
log(xi)− α2

n
∑

i=1
xi

−∑n
i=1

[
1− e−(αxi)

2
]β

+ (β− 1)∑n
i=1 log

[
1− e−(αxi)

2
]
.

(29)

Differentiating Equation (29) partially with regard to α and β to equate the results to 0,
we get the following:

∂L
∂α = 2n

α − 2α
n
∑

i=1
(xi)− 2αβ

n
∑

i=1
x2

i e−(αxi)
2
[
1− e−(αxi)

2
]β−1

+

(β− 1)
n
∑

i=1

2αx2
i e−(αxi)

2

1−e−(αxi)
2 ,

(30)
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and:
∂L
∂β

=
n
β
−

n

∑
i=1

[
1− e−(αxi)

2]β
log
[
1− e−(αxi)

2]
+

n

∑
i=1

log
[
1− e−(αxi)

2]
. (31)

The MLLEs of parameters α and β symbolized by α̂ and β̂, respectively, are investigated
by solving the above non-linear system of equations simultaneously. As a result, we
cannot get specific confidence ranges for the parameters. The large sample approximation
must be used. It is known that the asymptotic distribution of the MLE ϕ̂ is (ϕ̂ − ϕ)
→ N

(
0, I−1(ϕ)

)
, where I−1(ϕ), and the inverse of the observed information matrix of

the unknown parameters ϕ = (α, β) is:

I−1(ϕ) =

[
∂2L
∂ϕ2

]−1

(α,β)=(α̂, β̂) (32)

and whose elements are given in the Appendix A.

4.2. MLL Approach under RaSS

We assume X(i)ic, i = 1 . . . m and c = 1 . . . k is an RaSS from the KMBX model, which
has sample size n = mk, where k is the number of cycles and m is the set size. We consider
Yic = X(i)ic for simplicity, and for a given c, Yic is independent, with the pdf being equal to
the pdf of the ith order statistics. The sample’s LL function y1c, y2c, . . . ,ymc:

`1 =
k

∏
c=1

m
∏
i=1

m!
(i−1)!(m−i)! [F(yic)]

i−1 f (yic)[1− F(yic)]
m−i

=
k

∏
c=1

m
∏
i=1

m!
(i−1)!(m−i)!

[
e

e−1

(
1− e−[Qic ]

β
)]i−1 2eβα2

e−1 yic

e−[(αyic)
2+[Qic ]

β ][Qic]
β−1
[
1− e

e−1

(
1− e−[Qic ]

β
)]m−i

,

(33)

where Qic = 1− e−(αyic)
2
. The log-LL function of the KMBX distribution under RaSS is

provided via:

ln `1 = ln c + mk ln β + 2mk ln α +
k
∑

c=1

m
∑

i=1
ln(yic)−

k
∑

c=1

m
∑

i=1

[
(αyic)

2 + [Qic]
β
]
+ (β− 1)

k
∑

c=1

m
∑

i=1
ln(Qic)

+
k
∑

c=1

m
∑

i=1
(i− 1)ln

[
1− e−[Qic ]

β
]
+

k
∑

c=1

m
∑

i=1
(m− i)ln

[
1− e

e−1

(
1− e−[Qic ]

β
)]

.
(34)

Differentiating Equation (34) partially with regard to α and β and equating the results
to 0, we can solve the non-linear system of equations simultaneously. Then, we can get the
MLLEs of parameters α and β symbolized by α̂ and β̂, respectively, using the Mathematica
(10) software program.

4.3. Numerical Outcomes

This subsection describes the numerical investigation used to derive the MLLEs of
the population parameters for the KMBX distribution using RaSS and SiRS. A comparative
study is carried out by comparing estimates in terms of the MSERs, biases, and relative
efficiency (REEF). The following algorithm describes the simulation techniques.

First procedure: The RS measuring n = 50, 150, 250, 500, and 1000 with m = n, k = n
are generated from KMBX model, where n2 = m× k. After this, we rank one observation
from each cycle.

Second procedure: The numerical values of the parameter are chosen.
Third procedure: The MLLEs are calculated under SiRS and RaSS for the given set of

parameters and each n.
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Fourth procedure: We repeat the above procedures from the first to third N times
representing various samples, where N = 1000. After this, the BIs, MSERs, and REEF = MSER
(RaSS)/MSER (SiRS) of the estimates are investigated.

Fifth procedure: Tables 1–6 provide the numerical results.

Table 1. The MLLEs, BIs, MSER, and REEF of the KMBX model under SiRS and RaSS at α = 0.9, β = 0.5.

n
SiRS RaSS

REEF
MLLE BI MSER MLLE BI MSER

50
0.96494 0.06494 0.02302 0.91408 0.01408 0.00364 0.15794

0.56663 0.06663 0.02905 0.50424 0.00424 0.00272 0.09348

150
0.92564 0.02564 0.01394 0.89715 −0.00286 0.00096 0.06905

0.49715 −0.00285 0.00801 0.49692 −0.00308 0.00080 0.09998

250
0.91592 0.01592 0.00439 0.90013 0.00013 0.00019 0.04265

0.50587 0.00587 0.00286 0.50162 0.00162 0.00015 0.05289

500
0.90698 0.00698 0.00227 0.89978 −0.00022 0.00017 0.07597

0.51065 0.01065 0.00179 0.49973 −0.00027 0.00014 0.07568

1000
0.89338 −0.00662 0.00087 0.89998 −0.00002 0.00003 0.03759

0.49586 −0.00415 0.00052 0.50036 0.00036 0.00003 0.05376

Table 2. The MLLEs, BIs, MSER, and REEF of the KMBX model under SiRS and RaSS at α = 0.7, β = 1.2.

n
SiRS RaSS

REEF
MLLE BI MSER MLLE BI MSER

50
0.71199 0.01198 0.01641 0.69496 −0.00504 0.00204 0.12425

1.23371 0.03371 0.07765 1.18874 −0.01126 0.01465 0.18867

150
0.70128 0.00128 0.00412 0.70341 0.00341 0.00052 0.12526

1.21843 0.01843 0.05381 1.21744 0.01744 0.00486 0.09033

250
0.71035 0.01035 0.00281 0.69710 −0.00290 0.00014 0.05060

1.21397 0.01397 0.01423 1.19018 −0.00982 0.00157 0.11022

500
0.70168 0.00168 0.00132 0.69931 −0.00070 0.00005 0.04155

1.22349 0.02349 0.01004 1.19994 −0.00006 0.00076 0.07581

1000
0.70055 0.00055 0.00037 0.69965 −0.00036 0.00003 0.08976

1.21896 0.01896 0.00504 1.20106 0.00106 0.00029 0.05743

Considering Tables 1–6, the relevant points should be noted:

• The BIs and MSERs for the estimations depending on SiRS are greater than the compa-
rable values depending on RaSS;

• In most scenarios, the BIs and MSER decrease as the n rises for both sampling strategies;
• In most cases, the efficiency of the estimates rises as the sample numbers grow;
• The MLLEs depending on RaSS have lower MSER values than the corresponding values

depending on SiRS.
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Table 3. The MLLEs, BIs, MSER, and REEF of the KMBX model under SiRS and RaSS at α = 1.2, β = 0.8.

n
SiRS RaSS

REEF
MLLE BI MSER MLLE BI MSER

50
1.23291 0.03291 0.04986 1.22258 0.02258 0.00777 0.15578

0.82114 0.02113 0.03598 0.82070 0.02070 0.00601 0.16693

150
1.20390 0.00390 0.02785 1.18876 −0.01124 0.00255 0.09166

0.79966 −0.00034 0.01355 0.78934 −0.01066 0.00161 0.11864

250
1.23491 0.03491 0.00737 1.19494 −0.00506 0.00047 0.06430

0.84220 0.04220 0.00967 0.79098 −0.00902 0.00064 0.06587

500
1.20088 0.00088 0.00600 1.19423 −0.00577 0.00034 0.05708

0.79162 −0.00838 0.00618 0.79611 −0.00389 0.00029 0.04713

1000
1.19978 −0.00022 0.00228 1.19724 −0.00276 0.00010 0.04262

0.81249 0.01249 0.00163 0.79893 −0.00107 0.00009 0.05454

Table 4. The MLLEs, BIs, MSER, and REEF of the KMBX model under SiRS and RaSS at α = 0.5, β = 0.5.

n
SiRS RaSS

REEF
MLLE BI MSER MLLE BI MSER

50
0.50285 0.00285 0.00512 0.50386 0.00386 0.00073 0.14321

0.49913 −0.00087 0.01764 0.51884 0.01884 0.00570 0.32300

150
0.50529 0.00529 0.00230 0.50698 0.00698 0.00031 0.13363

0.52127 0.02127 0.01639 0.51885 0.01885 0.00181 0.11041

250
0.51010 0.01010 0.00172 0.49867 −0.00133 0.00006 0.03632

0.52292 0.02292 0.00740 0.49353 −0.00647 0.00037 0.04959

500
0.50559 0.00559 0.00056 0.50038 0.00037 0.00004 0.06248

0.49469 −0.00531 0.00275 0.50102 0.00102 0.00018 0.06560

1000
0.50033 0.00033 0.00018 0.50046 0.00046 0.00001 0.06492

0.50108 0.00108 0.00064 0.50163 0.00163 0.00008 0.12523

Table 5. The MLLEs, BIs, MSER, and REEF of the KMBX model under SiRS and RaSS at α = 1.5, β = 1.2.

n
SiRS RaSS

REEF
MLLE BI MSER MLLE BI MSER

50
1.59446 0.09446 0.11720 1.53348 0.03348 0.01638 0.13979

1.35838 0.15838 0.15340 1.22161 0.02161 0.01185 0.07722

150
1.58630 0.08630 0.03646 1.47738 −0.02262 0.00338 0.09269

1.26562 0.06562 0.03414 1.17926 −0.02074 0.00304 0.08898

250
1.52835 0.02836 0.01687 1.50914 0.00914 0.00086 0.05073

1.22796 0.02796 0.01695 1.21189 0.01189 0.00083 0.04872

500
1.49492 −0.00508 0.00549 1.50226 0.00226 0.00058 0.10633

1.18883 −0.01117 0.00662 1.20171 0.00171 0.00045 0.06753

1000
1.49477 −0.00523 0.00323 1.50460 0.00460 0.00017 0.05218

1.20018 0.00018 0.00260 1.20380 0.00380 0.00015 0.05880
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Table 6. The MLLEs, BIs, MSER, and REEF of the KMBX model under SiRS and RaSS at α = 0.8, β = 0.8.

n
SiRS RaSS

REEF
MLLE BI MSER MLLE BI MSER

50
0.88857 0.08857 0.02169 0.80473 0.00472 0.00224 0.10323

0.85532 0.05532 0.03941 0.80765 0.00765 0.00443 0.11247

150
0.80340 0.00340 0.00942 0.80461 0.00461 0.00067 0.07145

0.84545 0.04545 0.03142 0.80745 0.00745 0.00218 0.06927

250
0.82881 0.02881 0.00474 0.80171 0.00171 0.00015 0.03126

0.82289 0.02289 0.01406 0.80072 0.00072 0.00064 0.04558

500
0.79461 −0.00539 0.00298 0.80089 0.00089 0.00008 0.02542

0.79290 −0.00710 0.00643 0.80203 0.00203 0.00029 0.04512

1000
0.79628 −0.00372 0.00055 0.80068 0.00068 0.00005 0.09571

0.79694 −0.00306 0.00153 0.79923 −0.00077 0.00020 0.13225

5. Application to Real Data Sets

Here, in this section, we demonstrate the usefulness of the KMBX model by using three
data sets. Numerous researchers have utilized these data to demonstrate the applicability of
competing models. We additionally offer a formative assessment of the models’ goodness
of fit and draw comparisons with other continuous models that have one, two, three, four,
five, and six parameters. The goodness of fit measures comprise the Akaike information
criterion (INC) (M1), consistent Akaike INC (M2), Bayesian INC (M3), and Hannan–
Quinn INC (M4), which are calculated in order to compare the fitted models. The smaller
the values of these statistics, generally the superior the match to both data sets.

The First Data Set: Survival Times Data

The first data set was studied by Bjerkedal in 1960, representing the survival times
(in days) of 72 guinea pigs infected with virulent tubercle bacilli. For these data, shall
compared the ts of the KMBX distribution with the exponential (E), Marshall–Olkin
E (MOLE), Burr X-E (BXE), Kumaraswamy E (KE), beta E (BE), Kumaraswamy MOLE
(KMOLE), generalized MOLE (GMOLE), MOL Kumaraswamy E (MOLKE), and moment
E (ME) models (see Refaie 2018).

The Second Data Set: Relief Times Data

This set of data contained only the relief times of 20 patients who received an analgesic
(Gross and Clark 1975). For these data, we compared the KMBX distribution with the
MOLE, BXE, KE, BE, KMOLE, GMOLE, Ailamujia (A) (Lv et al. 2002), inverse A (IA)
(Aijaz et al. 2020), E, McDonald (MC) log-logistic (MCLOL) (Tahir et al. 2014), MCWeibull
(MCW) (Cordeiro et al. 2014), beta (B) generalized inverse Weibull geometric distribution
(BGIWG) (Elbatal et al. 2017), B transmuted (TR) Weibull (BTRW) (Afify et al. 2017), new
modified Weibull (NMW) (Almalki and Yuan 2013), TR complementary Weibull-geometric
(TRCWG) (Afify et al. 2014), B Weibull (BW) (Lee et al. 2007), exponentiated TR generalized
Rayleigh (ETRGR) (Ahmed et al. 2015), Weibull–Lomax (WL) (Tahir et al. 2015), TR Weibull–
Lomax (TRWL) (Afify et al. 2015), Burr XII, Kumaraswamy–Weibull–exponential (KWE)
(ZeinEldina and Elgarhyc 2018), Weibull (W), gamma-Chen (CH) (GCH) (Alzaatreh et al.
2014), beta-CH (BCH) (Eugene et al. 2002), Marshall–Olkin CH (MOCH) (Jose 2011), TR
Chen (TRCH) (Khan et al. 2013), TR exponentiated CH (TRECH) (Khan et al. 2016), and
CH distributions.

The Third Data Set: Financial Data

The third data set was studied by Mead in 2014, containing actual monthly tax rev-
enues from Egypt from January 2006 to November 2010. For these data, we compared
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the KMBX distribution with the BX, E, MOLE, exponentiated Weibull (EW), odd Weibull
exponential (OWE), and Weibull (W) models. The profile log-likelihood plots are shown in
Figures 3–5.
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The estimated parameters along with their Ser values and the statistics for the fitted
models are provided in Tables 7–12. We note from Table 8, Table 10, and Table 12 that the
KMBX gives the smallest values of M1, M2, M3, and M4 as compared to the other
competitive models. Therefore, the KMBX distribution provides the best t for the three data
sets. More information can be found in Figures 6–8.

Table 7. Numerical values of MLLEs and (SErs) for the first data set.

Models MLLEs and SErs

KMBX (α, β) 0.443
(0.038) 1.081 (0.153)

KMOLE (α, µ, τ, β) 0.373
(0.136) 3.478 (0.862) 3.306 (0.781) 0.299 (1.113)

BXE (θ, β) 0.475
(0.06) 0.206 (0.012)

GMOLE (λ, α, β) 0.179
(0.07) 47.640 (44.90) 4.47 (1.33)

BE (µ, τ, β) 0.807
(0.70) 3.461 (1.003) 1.3311 (0.8551)

KE (µ, τ, β) 3.304
(1.1061) 1.1 (0.76) 1.037 (0.614)

MOLKE (α, µ, τ, β) 0.01
(0.002) 2.7162 (1.3158) 1.99 (0.784) 0.099 (0.05)

MOLE (α, β) 8.778
(3.555) 1.3788 (0.1929)

ME (β) 0.925
(0.077)

E (β) 0.540
(0.06)
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Table 8. Numerical values ofM1,M2,M3, andM4 for the first data set.

Models M1 M2 M3 M4

KMBX 193.494 194.2 193.209 195.307

KMOLE 207.82 216.94 208.42 211.42

BXE 235.30 239.90 235.50 237.10

GMOLE 210.54 217.38 210.89 213.24

BE 207.38 214.22 207.73 210.08

KE 209.42 216.24 209.77 212.12

MOLKE 209.44 218.56 210.04 213.04

MOLE 210.36 214.92 210.53 212.16

ME 210.40 212.68 210.45 211.30

E 234.63 236.91 234.68 235.54

Table 9. Numerical values of MLLEs and (SErs) for the second data set.

Models MLLEs and (SErs)

KMBX (α, β) 0.655 (0.085) 3.563 (2.431) - - -

BGIWG (α, γ, θ, p, µ, τ) 19.187
(33.03)

20.597
(43.24)

1.435
(0.84)

9.85
(2.001)

39.231 × 10−5

(63.25)
5.802
(4.35)

MOLE (α, β) 54.474
(35.581) 2.32 (0.374)

BXE (θ, β) 1.164
(0.33) 0.321 (0.030)

KE (µ, τ, β) 83.76
(42.361) 0.57 (0.326) 3.333 (1.188)

GMOLE (λ, α, β) 0.52
(0.256) 89.462 (66.28) 3.169 (0.772)

BE (µ, τ, β) 81.633
(120.41) 0.542 (0.327) 3.514 (1.410)

KMOLE (α, µ, τ, β) 8.87
(9.15) 34.83 (22.31) 0.299 (0.24) 4.90 (3.18)

A (β) 0.95
(0.15)

IA (β) 3.45
(0.55)

E (β) 0.53
(0.12)

KWE (µ, τ, α, β, λ) 7.820 (3.992) 21.52 (0.10) 1.47 (1.022) 0.402 (0.362) 0.005 (0.002)

BTRW(α, β, µ, τ, λ) 5.619
(9.35)

0.531
(0.15)

53.344
(111.45)

3.568
(4.27)

−0.772
(3.894) -

MCLOL (α, β, µ, τ, c) 0.881
(0.11)

2.07
(3.69)

19.23
(22.34)

32.03
(43.08)

1.93
(5.17) -

MCW (α, β, µ, τ, c) 2.7738
(6.38)

0.3802
(0.188)

79.108
(119.131)

17.8976
(39.511)

3.0063
(13.968) -

TRECH (α, β, µ, τ) 300.01 (587.04) 0.50 (0.56) 2.43 (1.08) 0.34 (0.11)
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Table 9. Cont.

Models MLLEs and (SErs)

TRCWG (α, β, γ, λ) 43.663
(45.46)

5.127
(0.814)

0.282
(0.042)

−0.271
(0.66) - -

CH (µ, τ) 0. 14
(0.05) 0.95 (0.09) - -

ETRGR(α, β, λ, δ) 0.103
(0.44)

0.692
(0.09)

−0.342
(1.97)

23.54
(105.37) - -

TRWL(µ, τ, β, θ, λ) 8.619
(42.83)

6.215
(4.501)

0.248
(0.67)

0.226
(0.202)

0.697
(0.338)

WL(µ, τ, θ, λ) 14.74
(64.67)

5.585
(3.84)

0.263
(0.67)

0.22
(0.184)

BXII (λ, θ) 0.016 (0.038) 103.60 (245.14)

NMW (α, β, γ, δ, θ) 0.122
(0.06)

2.784
(20.37)

8.23 ×
10−5(0.151)

0.0003
(0.025)

2.79
(0.43) -

W (λ, θ) 0.0021 (0.0004) 1.435 (0.0602)

GCH (α, β, µ, τ) 7.59 (2.09) 1.99 (0.46) 5.00 (1.07) 0.53 (0.003)

BW (α, β, µ, τ) 0.831
(0.954)

0.613
(0.34)

29.95
(40.413)

11.632
(21.9)

BCH (α, β, µ, τ) 85.87
(103.13) 0.48 (0.51) 2.01 (0.69) 0.55 (0.20)

MOLCH (α, µ, τ) 400.01
(488.06) 2.32 (0.64) 0.43 (0.08)

TRCH (α, µ, τ) 0.75 (0.28) 0.07 (0.03) 1.02 (0.09)

Table 10. Numerical values ofM1,M2,M3, andM4 for the second data set.

Model M1 M2 M3 M4

KMBX 39.283 39.989 37.885 39.671

BGIWG 43.854 48.14 40.359 44.826

MOLE 43.51 45.51 44.22 43.90

BXE 48.10 50.10 48.80 48.50

KE 41.78 44.75 43.28 42.32

GMOLE 42.75 45.74 44.25 43.34

BE 43.48 46.45 44.98 44.02

KMOLE 42.80 46.84 45.55 43.60

A 54.32 55.31 54.54 54.50

IA 53.653 53.888 52.954 53.847

E 67.67 68.67 67.89 67.87

KWE 41.8619 46.1476 42.8337 46.8405

BTRW 43.662 50.124 39.468 44.828

MCLOL 43.051 47.337 39.556 44.023

MCW 43.854 48.14 40.359 44.826

TRECH 39.56 42.227 36.764 40.338

TRCWG 51.173 55.459 47.678 52.145

CH 53.14 53.846 51.742 53.529
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Table 10. Cont.

Model M1 M2 M3 M4

ETRGR 42.396 45.063 39.6 43.174

TRWL 47.804 52.09 44.309 48.776

WL 47.261 49.928 44.465 48.039

BXII 46.414 47.12 45.016 46.803

NMW 43.907 48.193 40.412 44.879

W 45.1728 45.8786 45.5615 47.1642

GCH 46.35 49.017 43.554 47.128

BW 41.607 44.274 38.811 42.385

BC 40.51 43.177 37.714 41.288

MOLCH 44.88 46.38 42.783 45.463

TRCH 53.63 55.13 51.533 54.213

Table 11. Numerical values of MLLEs and (SErs) for the third data set.

Models MLLEs and SErs

KMBX (α, β) 0.061
(0.006) 1.204 (0.195)

BX (α, β) 0.0644
(0.006) 1.0310 (0.184)

EW (α, β, a) 1.548
(0.913) 0.471 (0.131) 88.690 (8.407)

OWE (α, a, b) 0.016 (0.019) 6.616 (5.444) 1.547 (1.563)

MOLE (α, a) 0.209
(0.031) 11.565 (5.202)

W (α, β) 0.007 (0.003) 1.822 (0.134)

E (β) 0.074 (0.010)

Table 12. Numerical values ofM1,M2,M3, andM4 for the third data set.

Models M1 M2 M3 M4

KMBX 394.464 394.678 394.006 396.086

BX 399.393 399.607 403.548 401.015

EW 538.535 538.979 544.716 540.942

OWE 404.876 405.313 411.109 407.309

MOLE 552.738 552.956 556.859 554.343

W 398.593 398.808 402.749 400.215

E 611.935 612.006 613.995 612.737

Based on the numerical results acquired in Table 8, Table 10, and Table 12, we found
that our model had the lowest values for M1, M2, M3, and M4. Figures 6–8 all
supported these numerical results, showing that the KMBX model is the best model for
fitting the three data sets.
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6. Actuarial Measures

In this part, we compute certain key risk measures for the recommended distribu-
tion, such as the value at risk and conditional value at risk, which are vital for strategy
optimization despite uncertainty.

6.1. Value at Risk

If X ∼ KMBX denotes a random variable with the cdf from (10), then its value at risk is:

RVν = − 1
α

log
{

1−
[
−log

(
1− ν

(
1− e−1

))] 1
β

} 1
2

. (35)

6.2. Conditional Value at Risk

Instead of using the value at risk, Artzner (1997, 1999) suggested using the conditional
value at risk. The conditional value at risk is typically used to calculate the mean loss in
cases where the value at risk exceeds the nominal values by a significant amount. The next
expression serves as its definition:

CRVν =
1
ν

∫ ν

0
RVνdν, 0 < ν < 1. (36)

The conditional value at risk of the KMBX is provided via:

CRVν =
1
ν

∫ ν

0
= − 1

α
log
{

1−
[
−log

(
1− ν

(
1− e−1

))] 1
β

} 1
2

dν, 0 < ν < 1. (37)

7. Conclusions

In this research, we investigated the Kavya–Manoharan–Burr X (KMBX) model, which
has two parameters. Its statistical and mathematical features (QU function, median, MOs,
incomplete MOs, MO-generating function, conditional MOs, mean residual lifetime, and
Rényi entropy) were derived. Based on SiRS and RaSS, the model parameters were es-
timated using the MLL method. A simulation experiment was used to compare these
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estimators based on the BI, MSER, and efficiency. The relevance and flexibility of the KMBX
model were demonstrated using three real data sets. The new suggested model was supe-
rior to some well-known models in the modeling of the proposed data. We compared our
model with twenty-nine other models, and our model gave the best fit for the data. Some
useful actuarial risk measures, such as the value at risk and conditional value at risk, were
also discussed.
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Appendix A

The second-order partial derivatives of the log-likelihood function of the KMBX with
respect to α, β are given by:

∂2L
∂α2 = −2n

α2 − 2
n
∑

i=1
xi − 2β

n
∑

i=1
x2

i e−(αxi)
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[
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2
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2
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and:
∂2L
∂β2 =

−n
β2 −

n

∑
i=1

[
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2]β(
log
[
1− e−(αxi)
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