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Abstract: In this paper, an autoregressive moving average (ARMA) model with threshold generalized
autoregressive conditional heteroscedasticity (TGARCH) innovations is considered to model Chilean
economic uncertainty time series. Uncertainty is measured through the Business Confidence Index
(BCI) and Consumer Perception Index (CPI). The BCI time series provide useful information about
industry; commerce; the finance, mining, construction, and agricultural sectors; and the global eco-
nomic situation and the general business situation. As a counterpart, the CPI time series measure the
perception of consumers regarding the state of the Chilean economy, evaluating their economic situa-
tion and expectations. The ARMA-TGARCH model is compared with the classical seasonal ARIMA
and threshold AR ones. The results show that the ARMA-TGARCH model explains the regime
changes in economic uncertainty better than the others, given that negative shocks are associated
with statistically significant and quantitatively larger levels of volatility produced by the COVID-19
pandemic. In addition, a diagnostic analysis and prediction performance illustrates the suitability of
the proposed model. Using a cross-validation analysis for the forecasting performance, a proposed
heteroscedastic model may effectively help improve the forecasting accuracy for observations related
to pessimism periods like the social uprising and the COVID-19 crisis which produced volatility in
the Chilean uncertainty indexes.

Keywords: TGARCH; economic uncertainty; time-series analysis; COVID-19 pandemic; Chile

1. Introduction
In financial studies, it is common to model stochastic processes from temporal indexes.

In particular, indexes are related to values created by a company’s actions or a group of
companies included in an index, such as the S&P500 (Vătămănescu et al. 2020). These
examples are based on indexes related to companies, but indexes may also have a more
general scope, such as a country’s macroeconomic information, which includes indexes
such as the unemployment rate and inflation. In addition, these indexes may change due
to announcements, laws, or decrees, which may spark a crisis to be reflected in time-series
behavior, producing more volatility.

Two economic actors are key. One is the business community, or companies, and the
other consumers (Barbu et al. 2021). The interaction between them generates trade. In
Chile, two indexes indicate the behavior of both actors. One is the Business Confidence
Index (BCI), developed by the Center for Studies in Economics and Business of Universi-
dad del Desarrollo (CEEN-UDD) (ICARE 2004). This index is based on a regular survey
of around 300 CEOs, responding to questions about their company and industry and
general economic aspects. The index gauges the business community’s mood, allowing
for estimating possible economic scenarios that enable talk about investments or raise an
early alarm when economic decline is on the horizon. The Consumer Perception Index
(CPI), on the other hand, also created by the CEEN-UDD, involves a survey among around
380 consumers in several Chilean commercial centers (Acuña 2017). This index gauges
consumer perception about the economy, which involves respondents’ current economic
situation, unemployment, expectations on the economic situation, and income.
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Uncertainty indexes are deeply linked to political decisions (Cerda et al. 2016), so
the indexes are assumed to be influential because they capture the relationship between
economics and politics. They served for the interpretation of crises following highly relevant
tax reforms since the return to democracy in 1991. Their implementation was followed by
events that accentuated uncertainty. For example, the social uprising of 2019 (Jara-Labarthé
and Cisneros 2021), the health crisis of 2020–2022 (Mena et al. 2021), the accumulation of
large macroeconomic imbalances in 2021 (Idrovo-Aguirre and Contreras-Reyes 2021b), and
the persistent inflation of 2022. In addition, uncertainty was used to detect construction
investors’ confidence, which decreased permanently starting in 2014 (Idrovo-Aguirre and
Contreras-Reyes 2019). The accumulation of negative shocks to investment has almost
permanently deteriorated investor confidence in the construction sector. Specifically, the
period of a more persistent increase in local uncertainty and the constant loss of business
confidence (measured by the BCI) coincided with the structural change involving a lower
construction investment (CChC 2022). In addition, consumer perception was considered in
the study to better predict US consumption, as reported in Lahiri et al. (2016).

Classical time-series models used for economic uncertainty include the autoregressive
integrated moving average (ARIMA) and self-exciting threshold autoregressive (SETAR)
processes (Tong 1993; Tsay 1989). A SETAR process is the precursor of the threshold
autoregressive one and was considered in several studies. For example, Cao and Tsay
(1992) measured the volatility of stock returns, analyzing the S&P500 from January 1928
to December 1989, comparing the results obtained through a TAR model and with other
models, such as the ARMA and generalized autoregressive conditional heteroscedastic
(GARCH) ones (Bollerslev 1986). They concluded that monthly stock return volatilities
are non-linear and TAR models produce a higher forecast accuracy than ARMA models
(see similar results in Djeddour and Boularouk 2013; Moreno and Nieto 2014). Pérez and
Velásquez (2004) studied the dynamic behavior of Spain’s quarterly GDP from 1970 to 1998
using a TAR model, also concluding this model’s predictions are more accurate than those
of linear models, such as the ARMA ones (see similar results in Gibson and Nur 2011; Uribe
2015). Hansen (2011) carried out a complete literature review on the influence of SETAR
models in economic research.

The present work was motivated by the former, where time-series modeling of eco-
nomic uncertainty was extended to a threshold GARCH (TGARCH) model (Zakoian 1994).
A TGARCH model involves a threshold component defined by regimes and one defined by
the variance modeled conditionally in time. The model was commonly used to study inter-
actions between the information of stock and foreign exchange markets to find asymmetric
reactions of stock returns and the associated variability Yang and Chang (2008), while
Wu (2010) used TGARCH for volatility index modeling as a threshold variable, analyzing
20 stocks of the Major Market Index and concluding that the threshold model with an
exogenous trigger fit the data well. Posteriorly, Korap (2011) modeled inflation for a study
on Turkish economic uncertainty. Because the BCI and CPI define expectation scenarios
related to agents’ future behavior, these scenarios have not been modeled yet based on
Chilean economic uncertainty. It is expected that observations related to pessimism periods
(social uprising and the COVID-19 crisis) produced BCI and CPI volatility. Therefore, two
questions to be answered are as follows: (1) Can the ARMA-TGARCH model adjust well
to periods of economic crisis? (2) How effective can the ARMA-TGARCH model be in
predicting future (optimism/pessimism) periods?

This work attempts to model the behavior of these indicators with a non-linear func-
tional, enabling projections of volatility behavior, and as an alternative of expected scenarios.
In addition, an ARMA-TGARCH model could identify the BCI and CPI regimes, which
must be consistent with financial crises, announcements of tax measures/reforms, and
monetary policy decisions, among others. The volatility of these perceptions could be
explained by the existence of threshold values that produce (non-linear) regime changes
in time series. Finally, it is expected that the ARMA-TGARCH model is more suitable for
these indexes than their competitors (such as the ARIMA or TAR models). Specifically, it
was intended to develop an ARMA-TGARCH model in several steps. In a first instance,
and given the arguments related to the literature review, a classical seasonal ARIMA was
carried out. Subsequently, a TAR model was considered under the assumption of the
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non-linear behavior of observations. A suitable non-linearity test (Tsay 1989) is useful to
support the TAR model. Finally, and given the presence of volatility in the observations,
the ARMA-TGARCH model was considered. Estimates were obtained regarding both
the threshold values and autoregressive orders (produced by volatility). Subsequently,
a residual diagnostic and cross-validation analysis were carried out for the model and
forecasting performances. Importantly, this methodology was not applied to analyze the
behavior of the expectation indicators. In general, they were applied to time series with
past information, such as the GDP and other indicators whose records depend on a lag.

The paper is organized as follows. Section 2 presents a description of the survey and
data related to the BCI and CPI. Section 3 presents the seasonal ARIMA, TAR, TGARCH,
and ARMA-TGARCH models and their main properties (stationarity, estimation methods,
and diagnostics). Section 4 presents the main results from applying the models to the
indexes. Finally, the conclusions and discussions are presented in Section 5.

2. Data

Chilean economic perception time series are measured via the BCI1 and CPI2, both
provided by CEEN-UDD. The BCI measures investors’ confidence in industry, commerce,
finance, mining, construction, and agriculture. BCI time series provide useful information
about these sectors, the global economic and the general business situations. As counterpart,
CPI time series measure the perception of consumers regarding the state of the economy,
evaluating the economic situation and their expectations.

2.1. Business Confidence Index
The BCI is prepared through phone and email surveys among around 300 CEOs

or other high-level executives and business owners. The index seeks to visualize the
proportion of optimistic and pessimistic business actors with respect to some aspects
of their company, industry, and the general economy. The sample has a panel structure
because the individuals surveyed are repeated over time. In addition, it considered business
actors’ economic situation and expectations, classifying answers as optimistic, neutral,
and pessimistic.

Regarding index building, a subindex Xi was generated, corresponding to the sum of
the number of optimistic (OPTi), neutral (NEUi), and pessimistic (PESi) answers, in line
with economic sector and company size (i = 1: small, 2: medium, 3: large), to obtain

Xi =
OPTi − PESi

TOTi
,

where TOTi = OPTi + NEUi + PESi, i = 1, 2, 3. Then, Xi was used for a weighted average
according to company size to obtain subindex Zi that depends on both questions and
economic sector, given by

Zi =
3

∑
j=1

wjXi,

where

wj =

 0.540, for large companies;
0.175, for medium companies;
0.285, for small companies.

A sectorial index Si was obtained by the average of subindexes of questions related to
each economic sector

Si =
1

18

18

∑
j=1

Zj,

where total number 18 is obtained by multiplication of three wj (company sizes) and the six
gj (economic sector3) weights,
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gj =



0.064, for the agricultural sector;
0.201, for the trade sector;
0.142, for the construction sector;
0.112, for the financial sector;
0.240, for the industrial sector;
0.241, for the mining sector.

Finally, monthly BCI was obtained by

BCI =
6

∑
i=1

giSi.

The survey developed in (Acuña 2017) considered the main sector of Chile’s economy
in gj. However, a survey related to small and medium-sized enterprises in economies such
as Europe’s could be developed in terms of other factors (see, e.g., Vătămănescu et al. 2020).
Table 1 illustrates a qualitative interpretation of BCI values, where neutrality is defined
with respect to 0. Optimistic and pessimistic categories are defined on a qualitative scale
based on possible BCI values.

Table 1. Business Confidence Index qualitative scale.

Category Interval
Extraordinarily optimistic ≥45
Very optimistic [35, 45)
Optimistic [25, 35)
Moderately optimistic [15, 25)
Slightly optimistic [5, 15)
Neutral [−5.5)
Slightly pessimistic [−25,−15)
Moderately pessimistic [−35,−25)
Very pessimistic [−45,−35)
Extraordinarily pessimistic <−45

2.2. Consumer Perception Index
This survey is answered in person, that is, a pollster is asking questions and collecting

the answers. The questionnaire measures:
• Current economic situation compared to the previous year: Would you say that your

current economic situation is worse, the same, or better?
• Current unemployment in relation to the previous year: Today, unemployment in the

country is higher, equal, or lower?
• Future economic situation: Would you say that in a year or more your economic

situation will be worse, the same, or better?
• Future unemployment: Would you say that in a year or more unemployment in the

country will be higher, the same, or lower?
• Future income: Do you think your total family income in the next year will be more,

the same, or less?
In addition, socioeconomic characterization questions are included. The calculation

of this index is based on consumer perceptions (optimistic, neutral, pessimistic), so the
percentage is calculated for each question. The result is constructed based on dividing the
number of optimistic consumer responses (OR) by the sum of optimistic and pessimistic
(PR) responses as

IPi =
OR

OR + PR
%,

where i is the ith question. Finally, the five perception indexes are averaged to obtain the
CPI as

CPI =
1
5

5

∑
i=1

IPi.
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In addition, the short-term index is related to the current economic situation, which is
why it is calculated through the average of economic situation and current unemployment
perceptions. The future is considered via the expectations index that is calculated as
the average of perceptions about the future economy, future unemployment, and future
income. Finally, each index is divided by its initial value and multiplied by 100 to obtain
a percentage.

Figure 1 illustrates the BCI and CPI time series with n = 212 observations measured
from May 2005 to June 2022, where CPI values below and above zero are interpreted as
low and high economic optimism. We observed three pessimism events related to the
Euro-zone crisis (2007–2009), change in public policies (2014–2016), and the COVID-19
crisis (2020–2022). A mismatch between the indexes was produced, where BCI typically
anticipated a CPI crisis (Contreras-Reyes 2023).

−50

−25

0

25

2010 2015 2020

B 
C 

I

time (years)
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75

100
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Figure 1. Chilean economic perception from May 2005–June 2022 with BCI (left) and CPI (right)
time series.

3. Statistical Modeling
3.1. ARIMA Model

Let yt be an ARMA(p, q) process (Box et al. 2015) with p autoregressive and q moving
average parameters and innovations εt ∼ RB(0, σ2). Thus, yt is represented by

yt = εt +
p

∑
i=1

φiyt−i +
q

∑
i=1

θiεt−i, (1)

or in equivalent form, Φp(L)yt = Θq(L)εt, where Φp(L) and Θq(L) are the autoregressive
and moving average polynomials, with backshift operator L such as Ldyt = yt−d, d ∈ N. In
particular, εt is independent and identically normal distributed with location 0 and scale
σ2. Stationarity of (1) is given when the roots of Φp(L) are outside the unit circle. This way,
an integrated ARMA model of order (p, d, q) can be expressed as

Φp(L)(1− L)dyt = Θq(L)εt, (2)

where Θq(L) does not have common roots.
An extension of the ARIMA models considered a seasonal component for the AR and

MA parts, the so-called SARIMA models, that include a set of lag parameters related to
process {yt} and the seasonal cycles (Hyndman and Khandakar 2007). We say that {yt}
follows a SARIMA model as it is created by its ARIMA part and the seasonal AR and MA
components as

Φs(Ls)(1− Ls)DΦp(L)(1− L)dYt = δ + Θs(Ls)Θq(L)εt, (3)
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where the polynomial with P seasonal autoregressive parameters is Φs(Ls) and the poly-
nomial with Q seasonal moving average parameters is Θs(Ls). We denoted this model as
SARIMA(p, d, q)× (P, D, Q)s.

3.2. TAR Model
Let yt be a TAR(r; p1, . . . , pr) process (Tong 1993) with a threshold variable zt and r

regimes, defined as

yt = α0,k +
pk

∑
i=1

αi,kyt−i + εk,t, γk−1 ≤ zt−d < γk, (4)

with k = 1, 2, . . . , r, and p1, . . . , pr corresponding to non-negative autoregressive orders
of yt in each regime. On the other hand, εk,t is i.i.d. with location 0 and variance σ2

k .
With respect to threshold values zt−d, we have the ordered values γ0 < γ1 < . . . < γd,
where d regimes of the model are defined. When zt−d is given by lags or functions of the
same process yt, we obtain the SETAR one. TAR processes accomplished stationarity and
ergodicity properties Petruccelli and Woolford (1984), which are crucial for asymptotic
properties of estimators.

3.2.1. Model Identification
In this section, we describe the identification procedure of a TAR model, i.e., if it is able

to model the observations. To do this, the observations must follow non-linear behavior.
The test of non-linearity proposed by Tsay (1989) contrasts the hypothesis

H0 : yt ∼ TAR(1),
H1 : yt ∼ TAR(r), r > 1.

Alternative hypothesis H1 is explained by threshold presence; thus, the test’s statistic
was built through an ordered regression whose parameters are estimated by the Ordinary
Least Square (OLS) error estimation method (see Section 3.4), which considered the pre-
dictive residuals for the test’s statistic. If H0 is rejected (observations follow non-linear
behavior), the next step is identification of structural parameters such as the number of
model regimes (r); the autoregressive orders in each partition (p1, . . . , pr) in which an
AR(pi) process is defined; threshold values (γ1, . . . , γr−1), where each regime is defined;
and lag parameter (d) of threshold variable (zt−d).

3.2.2. Ordinary Least Square Error Estimation Method
In this section, the OLS error estimation method is described for the computation of

structural parameter lag d and threshold values γi. Without loss of generality, the procedure
of Hansen (2011) for a TAR(2, p1, p2) model is presented. The OLS method minimizes the
square error sum, proves the existence of one or more threshold values, and determines the
asymptotic distribution of the coefficients. Under the model

yt =

 X>t Φ1 + σ1εt, if zt−d ≤ γ,

X>t Φ2 + σ2εt, if zt−d > γ,
(5)

where X>t = (1, yt−1, . . . , yt−p), Φ1 = (φ10, φ11, . . . , φ1p1), Φ2 = (φ20, φ21, . . . , φ2p2), it is
assumed that zt−d is stationary. Then, the OLS estimator is

Φ̂i(γ, d) =

( nj

∑
t=1

XtX>t

)−1( nj

∑
t=1

Xty>t

)
, (6)

and

σ̂2
i (γ, d) =

1
ni − pi

nj

∑
t=1

(yt − X>t Φ̂i(γ, d))(yt − X>t Φ̂i(γ, d))>. (7)
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The sum of the residual square is

S(γ, d) = (n1 − p1)σ̂
2
1 (γ, d) + (n2 − p2)σ̂

2
2 (γ, d). (8)

Then, the conditional OLS of γ and d is

(γ̂, d̂) = arg min
γ,d

S(γ, d), (9)

where 1 ≤ d ≤ p and γ ∈ R0.
The asymptotic properties of the OLS estimators were carried out by the consistency

theorem given by Petruccelli (1986), who proved that the estimator for a known γ is con-
sistent and asymptotically normal distributed. If γ is unknown, the estimator consistency
under certain regularity conditions is proved.

3.3. TGARCH Model
Let yt be a TGARCH(p, q) process (Zakoian 1994), defined as

yt = σtεt, (10)

σt = α0 +
q

∑
i=1

{
α+i y+t−i − α−i y−t−i

}
+

p

∑
j=1

β jσt−j, (11)

where (α+i ), (α
−
i ), i = 1, . . . , q, and (β j), j = 1, . . . , p, is a sequence of real scalars. In

addition, εt is i.i.d., and independently of yt−1, for all t, with E[εt] = 0 and Var[εt] = 1. σt
is based on the GARCH model developed by Bollerslev (1986).

The TGARCH approach is closely related to the TAR one of Tong (1993) on conditional
mean modeling. As an advantage, TGARCH considered a model for the σt scalar instead of
conditional variance. Thus, some restrictions about positivity are not needed because the
conditional variance of σt is non-negative by construction. Therefore, we obtain a simpler
specification for the inferential procedure. However, if σt is non-positive, the inference is
hard to develop, so Zakoian (1994) provides the following certain positivity conditions:

α0 > 0, α+i ≥ 0, α−i ≥ 0, β j ≥ 0, ∀i, j. (12)

The simplest case is the TGARCH(1, 1) model defined by

σt = α0 + α+1 y+t−1 − α−1 y−t + βσt−1 , (13)

under conditions (12). Model (19) allows to rewrite (19) to obtain an AR(1) process
for σt with a random component that depends on Z, say σt = α0 + B(zt−1σt−1), with
B(zt−1) = α+1 z+t−1 − α−1 z−t−1β. This relationship is used to solve problems related to strong
stationarity. Nelson (1990) proved the existence of a strong stationary solution for (19) that
depends on the sign of σt.

3.3.1. Quasi-Maximum Likelihood Estimation

Let Ω = [ϕ, ω>] be a parametric subspace in R2q+p+1, with ω> = {α0, α+1 , . . . ,
α+q , α−1 , . . . , α−q , β1, . . . , βp}. The log-likelihood function for a sample with T observations
(ignoring constants) is

`(θ) = −
T

∑
t=q+1

log σt −
1
2

T

∑
t=q+1

(
yt

σt

)2
. (14)

Comparing with the GARCH model, function `(θ) is continuous in θ and differentiable
with respect to ω but not always with respect to ϕ, given the threshold presence. The
maximum likelihood θ̂ of θ is thus a particular case of the M-estimator based on the
continuous function and differentiable by the right. Under certain regularity conditions, θ̂
is consistent and asymptotically normal,
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√
T(θ̂ − θ)

D→ N(0, J−1),

where

J = E0

[
∂+`(θ0; Y)

∂θ

∂+`(θ0; Y)
∂θ>

]
=

[
∂

∂θ
E0

[
∂+`(θ0; Y)

∂θ

]]
θ=θ0

,

and ∂+/∂θ denotes the right derivation, component by component, `(θ; Y) is the log-

likelihood of Yt conditional to Yt−1, and “ D→” means convergence in distribution.

3.3.2. ARMA-TGARCH Model with Skew-t Innovations
Another model is the so-called ARMA-TGARCH one, which models {yt} as an

ARMA (1), and residuals {εt} are modeled through a TGARCH (10) and (11) to obtain

yt =
p

∑
i=1

φiYt−i +
q

∑
j=1

θjεt−j + εt, εt ∼i.i.d. N(0, 1), (15)

εt = σtνt, (16)

σt = α0 +
qg

∑
i=1
{α+i ε+t−i − α−i ε−t−i}+

pg

∑
j=1

β jσt−j, (17)

which is denoted ARMA(p, q)-TGARCH(pg, qg), and innovations {νt} could be normal
distributed. However, in high-volatility data (outliers), innovations could be heavy-
tailed and asymmetrically distributed. Thus, we considered here the skew-t distribution
(Abid et al. 2021) with mean 0, scale 1, asymmetry parameter λ ∈ R, and m > 2 degrees of
freedom, denoted as ST(0, 1, λ, m), with probability density function (pdf) given by

tλ(x; ν) = 2t(x; m)T

(
λx
√

m + 1
m + x2 ; m + 1

)
,

where

t(x; m) =
Γ(m+1

2 )√
mπΓ(m

2 )

(
1 +

x2

m

)−(m+1)/2

,

is the Student-t pdf and T(·; m + 1) their respective cumulative density function. Without
loss of generality, the quasi-log-likelihood function (14) is based on normal innovations;
thus, this function could change when the skew-t distribution is selected for the innovations.

3.4. Model Selection Criteria
Akaike Information Criterion (AIC) is considered as selection model. Let {Mk},

k = 1, 2, . . . , K, be a set of competing models indexed by k. AIC defined over {Mk} is

AIC(Mk) = −2 `(θ̂k) + 2r, (18)

where r is the number of parameters of the Mk model with estimated set of parameters θ̂k.
We selected as best model among {Mk}, the model with smallest AIC value.

3.5. Computational Implementation
Models were implemented with R software (R Core Team 2022). Augmented Dickey–

Fuller (ADF) test (Dickey and Fuller 1979) was carried out with adf.test function of aTSA
package. ADF test considered a null hypothesis of a unit root in the time series. ARIMA
models were carried out with auto.arima function of forecast package. This function
considered the AIC and Bayesian Information Criterion (BIC) in an automatized algorithm
to select the best ARIMA model.

Non-linearity test of Section 3.2.1 was carried out with thr.test, and uTAR.est func-
tion computed TAR model estimates with multiple regimes. Both functions were imple-
mented in the NTS package. The ugarchfit function of rugarch package (Ghalanos 2022)
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allows to fit, among other models, the TGARCH and ARMA-TGARCH ones and with
skew-t innovations.

4. Results
The time series were first tested through an ACF test on the unit root presence. For

the CPI, the p-value was 0.116, indicating the null hypothesis of stationarity was rejected;
thus, the CPI is a non-stationary time series. The BCI p-value was 0.514, and hence the null
hypothesis was rejected, indicating that the BCI is a non-stationary time series. This result
led us to consider integrated processes such as the ARIMA or SARIMA, as follows.

4.1. ARIMA and SARIMA Models
Considering the smallest AIC value (Section 3.4), the best models for the BCI and CPI

time series were the SARIMA(1, 0, 1)× (0, 0, 2)12 and ARIMA(1, 0, 1), respectively. Table 2
shows the estimated parameters where, for both indexes, the estimated autoregressive
parameters were close to 1, indicating invertibility problems. Hence, this kind of model
is not the most adequate for the indexes. The next section covers the TAR models that
consider threshold variables.

Table 2. Estimates and standard errors (in parentheses) for SARIMA and ARIMA models for BCI and
CPI, respectively.

Parameter BCI Estimates CPI Estimates
φ1 0.926 (0.030) 0.965 (0.019)
θ1 −0.189 (0.075) −0.400 (0.067)
θs

1 0.097 (0.074) –
θs

2 −0.202 (0.077) –

4.2. TAR Model
The first step was the non-linearity test for the BCI and CPI time series, where the

p-values 0 (statistic = 7.787) and 0.002 (statistic = 6.223) were obtained, respectively. The
null hypothesis related to the TAR(1) was rejected for both time series; hence, the BCI and
CPI can be represented by a TAR(r) model with r > 1. The second step was the definition of
an adequate number of partitions for the time series. A useful technique is the change-point
detection in the time series, where a generic approach was considered. Here, the Breaks
For Additive Seasonal and Trend (BFAST) technique proposed by Verbesselt et al. (2010)
was used. This method detects structural changes in the seasonal series and the trend, and
the other time-series components.

For the BCI time series, two breakpoints, and hence partitions, were detected. As
in the ARIMA models, the number of autoregressive parameters in each partition was
determined using the AIC for a maximum of five, indicating that the best BCI model is the
TAR(2; 1, 5) (Table 3) with a third partition (p3). However, for the CPI, two partitions were
detected using the BFAST technique. As is observed in Table 3, the CPI was fitted for a
maximum of five autoregressive parameters for the second partition. The best TAR model
also required five parameters; thus, the best CPI one was a TAR(1; 5). This means the BCI
and CPI were modeled with a high number of autoregressive parameters and could be
higher, indicating that the data volatility makes it difficult to estimate and determine the
best model. A heteroscedastic model that involves threshold variables is considered in the
next section to summarize the information of the time series.
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Table 3. AIC for TAR models fitted to BCI and CPI time series. The bold entries highlight the smallest
AIC values for each model.

BCI CPI
p1 p2 p3 AIC p1 p2 p3 AIC p1 p2 AIC
1 1 1 736.6063 2 1 1 735.6555 1 1 849.3376
1 1 2 738.6053 2 1 2 737.6545 1 2 842.3831
1 1 3 736.4068 2 1 3 735.4560 1 3 831.2180
1 1 4 731.8181 2 1 4 730.8673 1 4 828.2918
1 1 5 729.6451 2 1 5 728.6943 1 5 826.5194
1 2 1 737.2708 2 2 1 736.3200 2 1 845.1154
1 2 2 739.2698 2 2 2 738.3190 2 2 844.0723
1 2 3 737.0713 2 2 3 736.1205 2 3 832.9071
1 2 4 732.4827 2 2 4 731.5319 2 4 829.9810
1 2 5 730.3096 2 2 5 729.3588 2 5 828.1809

4.3. ARMA-TGARCH Models
Comparing the AIC values in Table 4, it was determined that the ARMA(1, 1)-

TGARCH(1, 1) and ARMA(1, 1)-TGARCH(2, 2) were the optimal models for the BCI
and CPI, respectively. They considered the ARMA(1, 1) and normal innovations as the
base model and distribution for the BCI time series, respectively, because this combination
generated the smallest AIC values. However, for the CPI time series, the skew-t distribution
was considered for the innovation because it produced a smaller AIC (7.2523) than the
normal one (7.2869).

Table 4. AIC for ARMA-TGARCH models fitted to BCI and CPI time series. The bold entries highlight
the smallest AIC values for each model.

BCI CPI
pg qg AIC pg qg AIC pg qg AIC pg qg AIC
1 1 6.6832 3 5 6.7260 1 1 7.3196 3 5 7.3439
1 2 6.6842 4 1 6.7270 1 2 7.3305 4 1 7.3415
1 3 6.6956 4 2 6.7265 1 3 7.3405 4 2 7.3180
1 4 6.7073 4 3 6.7323 1 4 7.3501 4 3 7.3621
1 5 6.7126 4 4 6.7426 1 5 7.3163 4 4 7.3396
2 1 6.7034 4 5 6.7466 2 1 7.3018 4 5 7.3646
2 2 6.7048 5 1 6.7467 2 2 7.2869 5 1 7.3607
2 3 6.7257 5 2 6.7475 2 3 7.3249 5 2 7.3389
2 4 6.7279 5 3 6.7513 2 4 7.2992 5 3 7.3743
2 5 6.7328 5 4 6.7616 2 5 7.3103 5 4 7.3609
3 1 6.7051 5 5 6.7611 3 1 7.3258 5 5 7.3698
3 2 6.7039 3 2 7.3046
3 3 6.7095 3 3 7.3345
3 4 6.7220 3 4 7.3190

Ghalanos (2022) proposed a reparameterized version of the TGARCH model for σt in
Equation (11), given by

σt = α0 +
q

∑
j=1

αjσt−j|ut−j|+
p

∑
j=1

β jσt−j, (19)

where |ut−j| is related to the threshold values of the TAR representation (4), i.e., γk−1 ≤
ut−d < γk. Thus, we have the ordered values γ0 < γ1 < . . . < γd, where d regimes of the
model are defined. We considered representation (19) of σt for the ARMA-TGARCH model
results in Table 5.

Table 5 gives the estimated parameters, where for the BCI time series the significant
parameters were φ1, θ1, α1, and β1. This means autoregressive, heteroscedastic, and
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threshold components were present in the model and suitable to model the BCI time
series. For the CPI time series, the parameters φ1, θ1, β1, λ, and ν were significant for a
95% confidence level. This indicated that asymmetry and heavy-tails were present in the
innovations and autoregressive and heteroscedastic components in the model. In addition,
ν ≈ 5 indicated the presence of atypical innovations, so a normal distribution was not
suitable for the residuals. Note that α1 and α2 were not significant for a 95% confidence level,
indicating that the CPI time series do not require a threshold component. Therefore, the CPI
time series could be fitted by the simplest model, such as the ARMA(1, 1)-GARCH(0, 2)
one (Ramírez-Parietti et al. 2021).

Table 5. Estimated parameters of ARMA(1, 1)-TGARCH(1, 1) and ARMA(1, 1)-TGARCH(2, 2) mod-
els for BCI and CPI time series, respectively.

Parameter Estimation Std. Error t-Value p-Value
BCI φ1 0.940 0.034 28.014 0.001

θ1 −0.162 0.084 −1.924 0.054
α0 0.497 0.332 1.499 0.134
α1 0.081 0.033 2.422 0.016
β1 0.857 0.066 12.939 0.001

CPI φ1 0.994 0.009 106.930 0.001
θ1 −0.411 0.059 −6.920 0.001
α0 0.005 0.061 0.075 0.940
α1 0.001 0.001 0.007 0.994
α2 0.031 0.021 1.437 0.151
β1 0.931 0.001 3972.814 0.001
β2 0.001 0.012 0.001 0.999
λ 0.888 0.076 11.645 0.001
m 4.951 1.505 3.290 0.001

The Ljung–Box test (Ljung and Box 1978) was considered for several lags to check
if the residuals of the fitted models are white noise. Table 6 shows that at a 95% confi-
dence level, both the standardized and standardized squared residuals of the ARMA(1, 1)-
TGARCH(1, 1) and ARMA(1, 1)-TGARCH(2, 2) models for the BCI and CPI time series
were white noise, respectively. In addition, Figures 2 and 3 indicate that the autocorrelation
functions were within Bartlett’s bands (Contreras-Reyes and Palma 2013), indicating that
the residuals of the models fitted to the BCI and CPI time series were not correlated from
1 to 25 lags. The histograms illustrate that well-fitted normal and skew-t distributions
form the empirical distribution of the innovations related to the BCI and CPI, respectively.
Therefore, these diagnostics indicated a good performance of the fitted models.

Table 6. Ljung–Box test for standardized and standardized squared residuals of ARMA(1, 1)-
TGARCH(1, 1) and ARMA(1, 1)-TGARCH(2, 2) models for BCI and CPI time series.

Standardized Residuals Standardized Squared Residuals
Lag Statistic p-Value Lag Statistic p-Value

BCI 1 0.170 0.681 1 1.674 0.196
5 2.260 0.887 5 2.571 0.491
9 3.834 0.729 9 3.978 0.593

CPI 1 0.351 0.553 1 0.817 0.366
5 1.468 0.998 11 6.085 0.424
9 2.592 0.943 19 9.299 0.528
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Figure 2. Histogram and ACF of standardized residuals of the ARMA-TGARCH model for BCI time
series. Red lines correspond to Bartlett’s bands related to 95% confidence level.
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Figure 3. Histogram and ACF of standardized residuals of the ARMA-TGARCH model for CPI time
series. Red lines correspond to Bartlett’s bands related to 95% confidence level.

Finally, a cross-validation study analyzed the predictions of the fitted models. Specifi-
cally, the first 75% of the observations were taken to predict one observation with one pre-
diction horizon (one step ahead). The prediction performance (an observation–prediction
comparison) was summarized using the root square mean error (RMSE). The results ap-
pear in Figure 4, where in general the last 25% of the observations were well predicted.
Only for the observations related to the months of pessimism (the COVID-19 crisis) did a
small difference emerge between the original observations and the predictions, where the
observations increased the variability and produced volatility in the time series. The BCI
and CPI RMSE was 13.092 and 31.224, respectively.
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Figure 4. Predictions for ARMA-TGARCH models for BCI (left) and CPI (right) time series.

5. Discussion and Conclusions
In this paper, we modeled Chilean economic perception time series using three kinds

of models. The first was the simplest linear model, the ARIMA (or SARIMA) one, which
presented stationarity problems given that the autoregressive polynomial was not invert-
ible. The second model, the TAR one, considered an autoregressive model in each partition
separated by regimes, whose results produced the problem of finding a suitable number of
autoregressive parameters. The third model, the ARMA-TGARCH (or ARMA-GARCH),
considered an ARMA process for the economic index and a TGARCH for the residuals.
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This model performed best in terms of the AIC values, i.e., for the determination of a
small number of parameters with respect to the ARIMA (or SARIMA) and TAR mod-
els. In addition, the diagnostics showed good model performance in terms of the white
noise and autocorrelated residuals. The predictions of both indexes were close to the
original observations.

The results indicate that the volatility and structural changes in the time series were
better modeled by an ARMA-TGARCH (or ARMA-GARCH) model, assuming normal
(or skew-t) innovations. This was mainly produced by the volatility of the time series
related to the political, economic, and sanitary crises affecting Chile. These features pro-
duced asymmetry and heavy-tails on innovations (Lyu et al. 2017; Maleki et al. 2020; Shum
2020), leading to considerations to use new models with skew-t errors. In addition, a
cross-validation analysis for the forecasting performance was performed, showing that the
pessimism periods produced by the 2019 social uprising and the 2020-2022 COVID-19 crisis
increased the bias between the original observations and the predictions. However, the
RMSE is relatively small because the proposed heteroscedastic model leads with observa-
tions that produced volatility in the uncertainty indexes. In addition, the proposed models
could be useful for decision making related to public policies based on microeconomic
indicators, such as construction (Idrovo-Aguirre and Contreras-Reyes 2019; Idrovo-Aguirre
et al. 2021) and natural resources (Idrovo-Aguirre and Contreras-Reyes 2021a) figures. It is
expected that the estimation and prediction performance of the proposed heteroscedastic
model detects uncertainty in the construction sector, specifically for the periods when a lot
of business confidence measured by the BCI was lost, and thus of a lower sector investment
(CChC 2022; Idrovo-Aguirre and Contreras-Reyes 2019).

Further research could involve implementing a cross-sample entropy for the synchro-
nization of the BCI and CPI indexes (Ramírez-Parietti et al. 2021). With respect to the
proposed models, further studies might focus on other indexes, such as a daily S&P500
index, the Hang–Seng index (Shum 2020), foreign exchange rates (Ramírez-Parietti et al.
2021), or another time series. Moreover, economic uncertainty could be modeled by a
multivariate approach (Arnold and Günther 2001; Contreras-Reyes 2022). The proposed
models may be applied to similar economies of other Latin American countries by adapting
the relevant variants, such as the external factors. We encourage researchers to consider the
proposed models for the study of economic uncertainty in other countries, especially those
affected by similar crises (Kliestik et al. 2020).
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Notes
1 A methodological note about building this index is available at https://ceen.udd.cl/estudios-y-publicaciones/ice/ (accessed on

12 November 2022).
2 A methodological note about building this index is available at https://ceen.udd.cl/estudios-y-publicaciones/ipeco/ (accessed

on 12 November 2022).
3 Constructed through the percentage of participation with respect to each sector’s GDP.

https://github.com/percepcioneseconomicas/indices/find/main
https://github.com/percepcioneseconomicas/indices/find/main
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