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Abstract: This study explores the dependency structure of S&P 500 survivor stocks. Using a hand-
collected sample of stocks that survived in the S&P 500 since March 1957, we employ rescaled/range
analysis to investigate survivors. First, we find nonlinearities in the return processes of survivor
stocks due to Paretian tails. Second, the return processes of very long-lived outliers exhibit long-term
memories with Hurst exponents that significantly exceed one half on average. Third, sample-split
tests reveal that the memory on average has virtually not changed over time—that is, survivor stocks
do not forget. Fourth, and last, the long-term memory of survivor stocks appears to be unrelated to
their exposures to traditional asset pricing risk factors.
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1. Introduction

The S&P 500 stock index is widely considered to be an important indicator of both
the U.S. economy and the world economy. Constituent companies must pass strict criteria
imposed by the Index Committee:1 (1) primarily U.S. based, (2) market capitalization
exceeding USD 8.2 billion, (3) highly liquid shares2, (4) public trading of 50% or more of
its outstanding shares, (5), positive earnings in the most recent quarter, and (6) a positive
sum for the previous four quarters’ earnings. Only very successful companies can fulfill
these requirements. Chen and Lin (2018) observed that member companies benefit from
reductions in financial constraints and a lower cost of equity. Other potential advantages
are a reduction in information asymmetry due to greater scrutiny by investors, increased
investor recognition as an industry leader, and a decrease in shadow costs (Denis et al.
2003; Chen et al. 2004; Cai 2007; Baran and King 2012; Chan et al. 2013). Over time, most
constituent companies eventually do not pass these criteria and are dropped from the
index. Relevant to the present study, Standard & Poor’s published, on 2 March 2007, a
list of companies that have been in the S&P 500 index since the index was launched in
March 1957.

It is noteworthy that only 17% of the original constituent firms have survived over
50 years. According to West (2017), approximately half of U.S. publicly traded companies
disappear within 10 years. Additionally, based on power laws, the mortality curve showed
that the number of companies that have “died” after 50 years is virtually 100%.3 Hence,
it can be argued that companies that survive more than 50 years are outliers. West (2017)
inferred that these long-lived outliers afford an opportunity to better understand the aging
of companies. The fact that S&P 500 long-term survivor companies not only survived
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periods of severe economic stress over time but remained constituent S&P 500 firms
is extraordinary.

Despite their exceptional survival ability, few studies have examined the general char-
acteristics of these long-lived outliers. One study by Siegel and Schwartz (2006) investigates
the long-term returns of the original S&P 500 constituent companies from March 1957 to
December 2003. They find that their buy-and-hold returns outperformed those of the
continuously updated S&P 500 index used by investment professionals. Another more
recent study by Grobys (2022), based on a sample from March 1957 to December 2019,
examines the risk-adjusted average excess return of a portfolio of S&P 500 survivor stocks
by applying Fama and French (2015, 2018) multifactor models. The author finds that the
portfolio of S&P 500 survivor stocks outperformed the S&P 500 index even after controlling
for well-established asset pricing risk factors, which strongly supports the findings of Siegel
and Schwartz (2006). Moreover, Grobys (2022) documents that, relative to the S&P 500
index, survivor companies tend to be, on average, small value stocks that exhibit high
profitability and conservative capital investment. Paradoxically, further findings indicate
that the returns of the survivor stocks portfolio are negatively correlated with momentum
factor returns, which suggests that their returns more closely mimic losers rather than
winners in momentum portfolios. Investigating the volatility process of the portfolio of
S&P 500 survivor stocks provided evidence that, despite the fact that the general index
consists of considerably more companies, the portfolio of survivor stocks is less exposed to
extreme events compared to the general index.

Motivated by West (2017), who recommends future research on the aging process
of long-lived outlier firms, the present paper explores the memory of return processes of
S&P 500 survivor stock companies. Examining dependency structures across financial
asset returns has been the subject of intense academic research. Unfortunately, as pointed
out from Mandelbrot (2008), correlation-based methods perform poorly in the presence
of Paretian tails and other nonlinearities. For this reason, we follow Mandelbrot (2008)
by employing rescaled range (R/S) analysis to investigate the dependency structures of
S&P 500 survivor stocks. While efficient stock markets typically exhibit Hurst exponents
of H ≈ 0.50, statistically significant deviations from this benchmark can provide novel
insights on the dependency structure and memory features of the return processes of these
long-lived outliers.

We contribute to the scant literature in this area in a number of important ways. First,
we hypothesize that firm survival is a function of the complex interaction of multiple factors.
Whereas earlier studies focus on abnormal returns (Siegel and Schwartz 2006) and derive
portfolio-level characteristics from factor loadings for well-established risk factors (Grobys
2022), we examine the dependency structures in the return processes of these long-lived
companies. Assuming that markets are efficient, strategic enterprise management decisions
should be reflected in the memory of a company’s return generating process. Second, most
studies in finance-related research use correlation-based methods to examine potential
dependency structures of financial assets. As Mandelbrot (2008) notes, the Nobel prize
in Economics has been awarded half a dozen of times for finance research based on the
concept of correlation. However, a problem exists in applying correlation-based methods,
especially in the presence of nonlinearities. Lux and Alfarano (2016) document that Paretian
tails appear to be a stylized fact for financial market data. More specifically, financial assets
typically exhibit Paretian tails with power-law exponents close to α ≈ 3. The authors
argue that the approximate cubic form of the power law of returns appears to be accepted
as a universal feature of practically all types of financial markets, including equity and
futures markets as well as foreign exchange (FX) and precious metal markets. This study
contributes to this literature by: (1) examining whether these long-lived outliers exhibit
Paretian tails; and (2) estimating the economic magnitude of power-law exponents. In this
respect, statistically significant Paretian tails would suggest the presence of nonlinearities
and, subsequently, invalidate the application of correlation-based methods to assess the
dependency structures of financial assets.
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Using a sample on long-term survivors from September 1934 until December 2019, we
find that the returns of survivor stocks exhibit Paretian tails. Further results indicate that the
cross-sectional Hurst exponent of survivor stocks exceeds H = 0.5 by a substantial margin,
which suggests that price persistence appears to be a stylized fact of these long-lived
outliers. Third, subsample analyses provide evidence that cross-sectional price persistence,
as measured by the cross-sectional Hurst exponent, is virtually invariant across time (i.e.,
high reliability in this metric). Fourth, and last, we do not find any clear link between
price persistence and exposures of survivors’ returns to traditional asset pricing risk factors.
While Hurst exponents are invariant over time, changes in factor loadings suggest that
survivor stocks experienced higher distress risk in the second subsample.

The next section reviews our data. Section 3 provides background discussion. Section 4
presents the results of our statistical analyses. The last section provides the conclusion.

2. Background Discussion

In his seminal study, entitled “Portfolio selection”, published in the Journal of Finance,
Markowitz (1952) proposes a methodology to construct optimal portfolios. To provide an
illustrative example, let us consider two assets A and B. Denoting the return-generating
processes of A and B at time t as RetA

t and RetB
t , and provided RetA

t ∼ N
(
µA, σ2

A
)

and

RetB
t ∼ N

(
µB, σ2

B
)
, the correlation of these assets denoted as ρ

(
RetA

t , RetB
t

)
is calculated

by using the following equation:

ρ
(

RetA
t , RetB

t

)
=

COV
(

RetA
t , RetB

t

)
√

VAR
(

RetA
t

)√
VAR

(
RetB

t

)
Note that the variance is an integral part of this metric. In a recent study, Grobys

(2023) points out that variances, covariances, and correlations are commonly used in
finance studies for point estimation, hypothesis testing, portfolio optimization, risk man-
agement, etc. For example, in portfolio diversification the lack of correlation is important
for minimizing portfolio risk. Modern portfolio theory, in the spirit of Nobel prize laureate
Markowitz (1952), argues that the expectation of portfolio P consisting of assets A and B is
calculated with

E
(

RetP
t

)
= wµA + (1− w)µB,

where w denotes the weight of wealth invested in A, and µA (µB) is the expected return of
asset A (B). The portfolio variance, denoted as VAR

(
RetP

t

)
, is then

VAR
(

RetP
t

)
= w2VAR

(
RetA

t

)
+ (1− w)2VAR

(
RetB

t

)
+2w(1− w)COV

(
RetA

t , RetB
t

)
.

According to Markowitz’s approach to portfolio selection for any given VAR
(

RetA
t

)
and VAR

(
RetB

t

)
, portfolio variance VAR

(
RetP

t

)
decreases as COV

(
RetA

t , RetB
t

)
decreases,

and assuming there are no negatively correlated assets, the portfolio risk is minimized if
ρ
(

RetA
t , RetB

t

)
= 0. In his seminal study, this methodological framework is extended by

accounting for multiple assets. In this regard, Mandelbrot (2008) observes:

“Thus, with Markowitz’s math, for each level of risk you contemplate you can
devise an efficient portfolio that will yield the highest possible profit. And for
each level of profit you target, there is an efficient portfolio with the lowest
possible risk. If you plot all these portfolios on a graph, they form a smooth,
rising curve: go-go and risky portfolios towards the top, boring and safe ones
down below”. (Mandelbrot 2008, p. 65)
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There are, of course, advancements in the correlation-based approach pioneered by
Markowitz (1952). For instance, Hatemi-J and El-Khatib (2015) argue that Markowitz’s
approach is successful in finding a portfolio that offers a minimum level of risk in the set
comprising all available portfolios. The authors argue that this approach might not result in
maximizing the expected return per unit of risk and, hence, propose an alternative approach
for finding the necessary weights for portfolio diversification based on maximizing the
risk adjusted return subject to the budget constraint. Their findings indicate that the
resultant portfolio generates about a 1% increase in the risk adjusted return compared to
the traditional approach. Whereas Hatemi-J and El-Khatib (2015) provide a closed form
solution for a portfolio that consists of only two assets, Hatemi-J et al. (2022) extend their
work by deriving an exact solution for the risk adjusted return of a portfolio that consists of
any potential number of assets subject to the budget restriction. Applying their approach
to total share prices indices for the three largest financial markets in the world—that is, the
US, the Euro area, and China covering the period January 1999 to April 2019—the authors
show that their approach is superior to benchmark models.4

The different approaches to portfolio optimization share one important commonality:
correlation must be defined. The concept of correlation is not only used for portfolio opti-
mization but for measuring (co)dependencies in the time dimension of assets. Often-used
statistical tests are, for instance, (i) the Ljung–Box test for estimating the autocorrelation
of returns (Ljung and Box 1978), (ii) the variance ratio test (Lo and Mackinlay 1988), (iii)
the automatic variance test (AVR) (Choi 1999), and (iv) the BDS test (Broock et al. 1996).
In his seminal 1963 study, Mandelbrot showed that the variance is not defined for cotton
price changes. As shown previously, an undefined variance implies that the correlation is
not defined; hence, methodologies based on correlation are not applicable. Even though
Lux and Alfarano (2016) documented that the pertinent literature gradually converged
to the insight that for most financial assets the tail exponents are about α ≈ 3, which
implies that the theoretical variance exists, Taleb (2020) conjectured that, if the kurtosis is
undefined, the second moment is unstable. A key manifestation of an undefined kurtosis is
sample-specificity of reported research findings. Consequently, we cannot work with the
variance even if it exists in the theoretical distribution.

Whereas correlation-based methodologies deliver sample-specific results, Mandelbrot
(2008) contends that one of the principal virtues of the R/S statistic is that, unlike many
common statistical tests, “ . . . it makes no assumption about how the original data are
organized—a critical point when studying something like stock prices for which evidence
abounds that the conventional assumptions are flatly wrong”. (Mandelbrot 2008, p. 298)
Hence, using the R/S statistic to assess dependency structures of financial assets should
yield more reliable results as opposed to correlation-based methodologies.

3. Data

Following Grobys (2022), we gathered Standard & Poor’s list of survivor companies
in the S&P 500 index from March 1957 to March 2007. The list of these survivors is publicly
available on the internet.5 Details of data collection are discussed in Grobys (2022). Our total
sample consists of 92 original constituent companies.6 Using these companies, we collected
CRSP monthly return series for all survivor companies with data available from September
1934 to December 2019 (i.e., 1024 consecutive monthly returns). This data restriction enables
sufficient monthly observations for implementing R/S analysis to derive Hurst exponents.
Overall, 34 out of 92 original constituent companies met these data requirements.7

4. Statistical Analyses

In this section, we conduct empirical analyses of sample firms to test for the presence
of Paretian tails, memory of these long-lived outliers, and impacts of exposures to asset
pricing factors on long-term memory.
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4.1. Do the Returns on Long-Lived S&P 500 Outliers Exhibit Paretian Tails?

To estimate the economic magnitudes of the Paretian tails, we employed a data-driven
method by Clauset et al. (2009). We began by estimating the following power-law function:

p(x) = Cy−α, (1)

where C = (α− 1)yα−1
MIN with α ∈ {R+|α > 1}, y = |x| denotes the respective absolute

return of a survivor stock provided y ∈ {R+|yMIN ≤ y < ∞}, yMIN is the minimum
absolute return value that is governed by the power law process, and α is the magnitude
of the firm-specific tail exponent.8 To simplify notation, we avoided using an index i to
reference survivor stock i. Next, following White et al. (2008) and Clauset et al. (2009),
who pointed out that maximum likelihood estimation (MLE) performs best for estimating
power law exponents, tail exponents are estimated as:

α̂ = 1 + N
(

∑N
i=1 ln

(
yi

yMIN

))−1
, (2)

where α̂ denotes the MLE estimator, N is the number of observations exceeding yMIN ,
and other notation is as before. As Clauset et al. (2009) observed, an essential issue is
how to determine the corresponding values for α and the cutoff to accurately estimate the
probability density functions.

Based on Equation (2), the MLE estimator depends on the chosen cutoff and, subse-
quently, there are different MLE estimators from which to choose. In this regard, the authors
comment that it is common practice to employ the α̂/yMIN-plot and choose the value for
yMIN beyond which α̂ is stable. However, this approach is somewhat subjective and can
be sensitive to noise or fluctuations in the tail of the distribution. For this reason, the
authors proposed a data-driven method relying on optimizing the Kolmogorov–Smirnov
(KS) distance equal to the maximum distance between the cumulative density functions
(CDFs) of the data and the fitted model:

D = MAXy≥yMIN |S(y)− P(y)|, (3)

where S(y) is the CDF of the data for the observation with value at least yMIN , and P(y)
is the CDF for the power law model that best fits the data in the region y ≥ yMIN .9 The
estimate ŷMIN is the value of yMIN that minimizes D. The question arises whether the
selected values for α̂ are statistically plausible. To answer this question, we employed a
goodness-of-fit (GoF) test by Clauset et al. (2009). Specifically, these authors developed a
GoF test that minimizes the distance between the power-law model and empirical data.
Employing the parameter vector (α̂, ŷMIN) to optimize D, their GoF test generated a p-
value that quantifies the plausibility of the power-law null hypothesis. Specifically, this
test compares D with distance measurements for comparable synthetic data sets drawn
from the hypothesized model, and the p-value is defined as the fraction of the synthetic
distances that are larger than the empirical distance. Given a significance level of 5%, the
power law null hypothesis is not rejected as the difference between the empirical data and
the model can be attributed to statistical fluctuations.

Our results for 1024 monthly observations from September 1934 to December 2019
are reported in Table A1 in the Appendix A. As shown there, the estimated power-law
exponents of survivor stocks vary between α̂ = 3.09 and α̂ = 5.94. Moreover, GoF tests
reject the power-law null hypothesis for only three stocks in our sample (p-values < 0.05);
however, the vast majority of survivor stocks are subject to Paretian tails.10 Furthermore,
the percentage of sample observations governed by power-law processes varies between
5% and 32%. Specifically, for 4 out of 34 stocks, more than 20% of sample observations, are
governed by some power-law process generating fat tails in the return distributions and
thus allowing for extreme events.
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Because Clauset et al. (2009) showed that power-law exponents are normally dis-
tributed, the cross-sectional sample average of the power-law exponents must also be

normally distributed. Here, the cross-sectional sample average is estimated at
−
α̂ = 4.20

with a t-statistic of 29.52 indicating statistical significance at any level. The 99% confidence

interval is estimated at
−
α ∈ [3.84; 4.57]. Due to the presence of Paretian tails indicating

nonlinearities, we infer that applications of correlation-based methods to examine potential
dependency structures in return processes are questionable.

4.2. Is the Memory of Long-Lived Outliers Different from the Overall Equity Market?
4.2.1. Re-Scaled Range Analysis for the Overall Data Sample

Mandelbrot (2008) argues that one of the principal virtues of the R/S statistic is that,
in contrast to many common statistical tests, “ . . . it makes no assumption about how the
original data are organized—a critical point when studying something like stock prices for
which evidence abounds that the conventional assumptions are flatly wrong”. (Mandelbrot
2008, p. 298) The R/S statistic is defined as

R/Sk =
MAX1≤k≤T∑k

j=1

(
xj −

−
xT

)
−MIN1≤k≤T∑k

j=1

(
xj −

−
xT

)
[

1
T ∑j

(
xj −

−
xT

)2]1/2 , (4)

where average return
−
xT is calculated over the entire sample period T. For each subsam-

ple cluster j, the adjusted range MAX1≤k≤T∑k
j=1

(
xj −

−
xT

)
− MIN1≤k≤T∑k

j=1

(
xj −

−
xT

)
is divided by the standard deviation

[
1
T ∑j

(
xj −

−
xT

)2]1/2

. This difference is computed

for k ∈ {4, 8, 16, 32, 64, 128, 256, 512}. Specifically, the estimate of the range from peak to
trough in the accumulated deviations is simply computed by the differences between the
corresponding maximum and minimum for each given k, which is the numerator in the
above equation. The denominator is simply the standard deviation in the entire time series.
Using Equation (4), we can estimate the Hurst exponent measuring the memory of an asset
as follows:

ln (
R
S
)

k
= ln (C) + Hln (k) + u, (5)

where u ∼ I ID(0, σu). Hence, the estimated Hurst exponent Ĥ is obtained using log–log
regression. Since there are T = 1024 observations and eight clusters for k, the reference test
statistic is distributed as t(6) with critical value for a 5% significance level corresponding
to 1.94. According to Mandelbrot (2008), if the data were independent, the ratio between
numerator and denominator should correspond to a Hurst exponent of H = 0.50. Moreover,
H > 0.50 implies long-term dependence; that is, a long memory of the stochastic process in
which the data are persistent. On the other hand, H < 0.50 implies anti-persistence, which
is characterized by the tendency to revert back at a faster pace. For each survivor company,
we tested the following hypothesis: H0 : H = 0.50 versus H1 : H > 0.50.

The results of the long-term dependence tests for the overall sample are reported in
Table 1, whereas the corresponding tests for subsamples are reported in Tables 2 and 3.
Hurst exponents in bold figures indicate statistical significance at the 5% level. We ob-
served from Table 1 that 30 out of 34 survivor companies exhibit Hurst exponents that
are statistically significantly greater than 0.50. As mentioned earlier, from a more general
perspective, we can compute the average Hurst exponent across all survivor stocks. We

find that the cross-sectional sample average is estimated at
−
Ĥ = 0.597. In Table 4, we

report the corresponding descriptive statistics for the cross-sectional Hurst exponent. We
cannot reject the null hypothesis that the cross-sectional Hurst exponent is distributed
as normal, i.e., the p-value of the Jarque–Bera test statistic equals 0.67. Additionally, the
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99% confidence interval for is estimated at
−
H ∈ [0.582; 0.612]. Testing the hypothesis that

H0 :
−
H = 0.50 versus H1 :

−
H > 0.50, the corresponding test statistic is λ̂ = 16.95 > 1.65

(p-value 0.0000). Using a significance level of 5%, we clearly reject the null hypothesis

that
−
H = 0.50 for the universe of survivor companies, which implies statistical long-term

dependence manifested in the return processes of survivor stocks.11 This interesting finding
is in line with earlier research on high-tech stocks. As Mandelbrot discusses:

“ . . . Peters of Pan Agora, reported in 1994 what appeared to be a complete, logical
system of variation of H by asset type. High-tech stocks had high dependence and
H values; stable utility shares had H values closer to those of a random walk. That
meant the high-tech stocks were more volatile than conventional analysis tells us.
Peters went on to argue that, for an investor, that made them a better bet because
their price trends could be more easily perceived”. (Mandelbrot 2008, p. 263)

Consistent with Peters, it could be argued that survivor companies are better bets for
investors simply due to the fact that their price trends are more prominent than those for
other stocks.

Table 1. Estimated Hurst exponents of S&P 500 survivor firms: evidence from the sample September
1934 to December 2019.

No. 1 2 3 4 5 6 7 8 9 10

H 0.57 0.56 0.61 0.67 0.63 0.63 0.53 0.61 0.61 0.63
Std. Dev 0.02 0.02 0.02 0.01 0.01 0.01 0.03 0.02 0.02 0.01
t-statistic 3.36 2.80 5.05 15.64 10.44 12.02 1.07 6.94 6.46 9.67

No. 11 12 13 14 15 16 17 18 19 20

H 0.54 0.64 0.60 0.63 0.61 0.54 0.55 0.57 0.59 0.58
Std. Dev 0.03 0.01 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02
t-statistic 1.38 13.18 3.86 7.49 6.28 1.89 1.69 3.66 4.62 3.51

No. 21 22 23 24 25 26 27 28 29 30

H 0.61 0.63 0.60 0.59 0.58 0.64 0.60 0.60 0.55 0.59
Std. Dev 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.03 0.02
t-statistic 6.74 15.13 5.96 3.86 4.14 14.71 8.37 5.85 1.74 5.92

No. 31 32 33 34

H 0.57 0.64 0.61 0.59
Std. Dev 0.02 0.00 0.02 0.01
t-statistic 2.99 28.37 4.76 6.51

Using Standard & Poor’s press release form for 2 March 2007, wherein the index
provider published a list of survivor companies in the S&P 500 index from March 1957 to
March 2007, 34 survivor stock companies where identified as having available monthly
stock return data in the CRSP database from September 1934 to December 2019. Using
1024 monthly observations, the Hurst exponents of these stock companies are estimated by
using the R/S statistic defined as:

R/Sk =
MAX1≤k≤T∑k

j=1

(
xj −

−
xT

)
−MIN1≤k≤T∑k

j=1

(
xj −

−
xT

)
[

1
T ∑j

(
xj −

−
xT

)2]1/2 ,

where average return
−
xT is calculated over the whole sample period T. For each subsample

cluster, the difference between variance xj over that period and average return
−
xT is

calculated while keeping a running total of all the differences as the time period lengthens
to period k. This difference value is computed for k ∈ {4, 8, 16, 32, 64, 128, 256, 512} and
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then the maximum of all differences (MAX) is identified. The estimate of the range from
peak to trough in the accumulated deviations is computed by the differences between the
corresponding maximum and minimum, which is the numerator of the equation above.
The denominator is simply the standard deviation of the overall time series. If the data
are independent, the ratio between numerator and denominator according to Mandelbrot
(2008) should be 1:2, which corresponds to a Hurst exponent of H = 0.50. Moreover,
H > 0.50 implies long-term dependence; that is, a long memory of the stochastic process in
which the data are persistent. On the other hand, H < 0.50 implies anti-persistence, which
is characterized by the tendency to keep back on themselves. The theory posits:

ln (
R
S
)

k
= ln (C) + Hln (k) + u,

where u ∼ I ID(0, σu). Hence, the estimated Hurst exponent H is obtained using log–log
regression. This table reports the estimated Hurst exponents (H) for each survivor company
and the test statistic for the corresponding hypothesis test:

H0 : H = 0.50 versus H1 : H > 0.50.

Since we have T = 1024 observations and eight clusters for k, the reference test statistic
is distributed as t(6) with a critical value for a 5% significance level corresponding to 1.94.
Hurst exponents in bold figures indicate statistical significance on at least a 5% level.

4.2.2. Re-Scaled Range Analysis for Two Nonoverlapping Subsamples

To explore whether the memory in the universe of survivor companies has been subject
to change over time and related reliability of this metric, we split the overall subsample into
two nonoverlapping subsamples of equal length. Specifically, the first subsample is from
September 1934 to May 1977, whereas the second subsample is from June 1977 to December
2019. Again, we use the R/S statistic as in Equation (4) with ∈ {4, 8, 16, 32, 64, 128, 256}.
Since there are T = 512 observations and seven clusters for k, the reference test statistic
is distributed as t(5) with critical value for a 5% significance level corresponding to 2.02.
For each subsample and the return process of every survivor stock, we test the hypothesis
H0 : H = 0.50 versus H1 : H > 0.50.

From the results shown in Table 2 (Table 3) we see that 33(34) out of 34(34) survivor
stocks exhibit estimated Hurst exponents that are significantly larger than 0.50 in the first
(second) subsample. In unreported results to conserve space, the second subsample’s Ĥ
estimate for 21 out of 34 stocks falls into the 95% confidence interval for the corresponding
estimates of the first subsample. As before, from a more general perspective, we estimated
the cross-sectional Hurst exponents for both subsamples. The cross-sectional sample

average for the first subsample is estimated at
−
Ĥ = 0.626. From Table 4, we observed

that the null hypothesis that the cross-sectional Hurst exponents are normally distributed
cannot be rejected for both subsamples, as p-values for the Jarque–Bera test statistics are
estimated at 0.45 and 0.42, respectively. For the first subsample, the 99% confidence interval

is estimated at
−
H ∈ [0.608; 0.643]. The cross-sectional sample average for the second

subsample is estimated at
−
Ĥ = 0.604. For the second subsample, the 99% confidence

interval for is estimated at
−
H ∈ [0.593; 0.615]. Even if the point estimate for the second

subsample (viz.,
−
Ĥ = 0.604) does not fall into the confidence interval for the first subsample,

we see that both confidence intervals are overlapping to a relatively high degree. We
interpret this evidence to mean that the memory of the population of survivor companies
has virtually not changed over time.
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Table 2. Estimated Hurst exponents of S&P 500 survivor firms: evidence from the sample September
1934 to May 1977.

No. 1 2 3 4 5 6 7 8 9 10

H 0.60 0.61 0.67 0.70 0.68 0.67 0.56 0.61 0.60 0.64
Std. Dev 0.02 0.02 0.01 0.01 0.01 0.01 0.03 0.03 0.02 0.01
t-statistic 5.07 4.45 19.95 16.69 25.15 25.98 2.22 4.14 4.57 9.79

No. 11 12 13 14 15 16 17 18 19 20

H 0.58 0.66 0.64 0.66 0.66 0.57 0.59 0.60 0.65 0.62
Std. Dev 0.03 0.01 0.02 0.02 0.01 0.03 0.03 0.02 0.01 0.02
t-statistic 3.22 12.87 8.03 9.00 19.97 2.57 3.39 4.91 11.95 6.71

No. 21 22 23 24 25 26 27 28 29 30

H 0.61 0.68 0.61 0.62 0.56 0.68 0.64 0.61 0.61 0.60
Std. Dev 0.02 0.01 0.02 0.02 0.04 0.01 0.02 0.02 0.03 0.03
t-statistic 5.23 21.88 5.96 5.53 1.59 21.05 8.32 7.01 4.18 2.90

No. 31 32 33 34

H 0.60 0.67 0.66 0.56
Std. Dev 0.02 0.01 0.01 0.03
t-statistic 4.34 26.41 11.39 2.32

Using Standard & Poor’s press release form for 2 March 2007, wherein the index
provider published a list of survivor companies in the S&P 500 index from March 1957 to
March 2007, 34 survivor stocks companies where identified having available monthly stock
return data in the CRSP database from September 1934 to May 1977. Using 512 monthly
observations, the Hurst exponents of these stock companies are estimated by using the R/S
statistic defined as:

R/Sk =
MAX1≤k≤T∑k

j=1

(
xj −

−
xT

)
−MIN1≤k≤T∑k

j=1

(
xj −

−
xT

)
[

1
T ∑j

(
xj −

−
xT

)2]1/2 ,

where average return
−
xT is calculated over the whole sample period T. For each subsample

cluster, the difference between variance xj over that period and average return
−
xT is

calculated while keeping a running total of all the differences as the time period lengthens
to period k. This difference value is computed for k ∈ {4, 8, 16, 32, 64, 128, 256} and then
the maximum of all differences (MAX) is identified. The estimate of the range from peak
to trough in the accumulated deviations is computed by the differences between the
corresponding maximum and minimum, which is the numerator of the equation above.
The denominator is simply the standard deviation of the overall time series. If the data
are independent, the ratio between numerator and denominator according to Mandelbrot
(2008) should be 1:2, which corresponds to a Hurst exponent of H = 0.50. Moreover,
H > 0.50 implies long-term dependence; that is, a long memory of the stochastic process in
which the data are persistent. On the other hand, H < 0.50 implies anti-persistence, which
is characterized by the tendency to keep back on themselves. Theory posits:

ln (
R
S
)

k
= ln (C) + Hln (k) + u,

where u ∼ I ID(0, σu). Hence, the estimated Hurst exponent H is obtained using log–log
regression. This table reports the estimated Hurst exponents (H) for each survivor company
and the test statistic for the corresponding hypothesis test:

H0 : H = 0.50 versus H1 : H > 0.50.
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Since we have T = 1024 observations and eight clusters for k, the reference test statistic
is distributed as t(5) with critical value for a 5% significance level corresponding to 1.94.
Hurst exponents in bold figures indicate statistical significance on at least a 5% level.

Table 3. Estimated Hurst exponents of S&P 500 survivor firms: evidence from the sample June 1977
to December 2019.

No. 1 2 3 4 5 6 7 8 9 10

H 0.58 0.58 0.63 0.60 0.62 0.62 0.58 0.61 0.63 0.64
Std. Dev 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01
t-statistic 4.47 3.96 10.01 7.41 8.71 7.63 3.23 7.28 6.39 9.79

No. 11 12 13 14 15 16 17 18 19 20

H 0.58 0.62 0.64 0.55 0.62 0.57 0.62 0.57 0.59 0.62
Std. Dev 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02
t-statistic 4.46 6.15 6.46 2.08 7.20 2.71 6.46 2.69 3.44 6.71

No. 21 22 23 24 25 26 27 28 29 30

H 0.65 0.58 0.58 0.62 0.62 0.62 0.58 0.63 0.60 0.60
Std. Dev 0.02 0.02 0.03 0.02 0.01 0.02 0.02 0.02 0.02 0.03
t-statistic 7.39 3.69 2.85 5.61 11.69 6.68 4.57 8.51 3.94 2.90

No. 31 32 33 34

H 0.59 0.62 0.62 0.60
Std. Dev 0.03 0.01 0.03 0.02
t-statistic 3.76 11.49 3.71 6.39

Using Standard & Poor’s press release form for 2 March 2007, wherein the index
provider published a list of survivor companies in the S&P 500 index from March 1957 to
March 2007, 34 survivor stocks companies where identified having available monthly stock
return data in the CRSP database from June 1977 to December 2019. Using 512 monthly
observations, the Hurst exponents of these stock companies are estimated by using the R/S
statistic defined as

R/Sk =
MAX1≤k≤T∑k

j=1

(
xj −

−
xT

)
−MIN1≤k≤T∑k

j=1

(
xj −

−
xT

)
[

1
T ∑j

(
xj −

−
xT

)2]1/2 ,

where average return
−
xT is calculated over the whole sample period T. For each subsample

cluster, the difference between variance xj over that period and average return
−
xT is

calculated while keeping a running total of all the differences as the time period lengthens
to period k. This difference value is computed for k ∈ {4, 8, 16, 32, 64, 128, 256} and then
the maximum of all differences (MAX) is identified. The estimate of the range from peak
to trough in the accumulated deviations is computed by the differences between the
corresponding maximum and minimum, which is the numerator of the equation above.
The denominator is simply the standard deviation of the overall time series. If the data
are independent, the ratio between numerator and denominator according to Mandelbrot
(2008) should be 1:2, which corresponds to a Hurst exponent of H = 0.50. Moreover,
H > 0.50 implies long-term dependence; that is, a long memory of the stochastic process in
which the data are persistent. On the other hand, H < 0.50 implies anti-persistence, which
is characterized by the tendency to keep back on themselves. Theory posits:

ln (
R
S
)

k
= ln (C) + Hln (k) + u,
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where u ∼ I ID(0, σu). Hence, the estimated Hurst exponent H is obtained using log–log
regression. This table reports the estimated Hurst exponents (H) for each survivor company
and the test statistic for the corresponding hypothesis test:

H0 : H = 0.50 versus H1 : H > 0.50.

Since we have T = 1024 observations and eight clusters for k, the reference test statistic
is distributed as t(5) with critical value for a 5% significance level corresponding to 1.94.
Hurst exponents in bold figures indicate statistical significance on at least a 5% level.

Table 4. The cross-sectional distribution of Hurst exponents.

Sample Whole Sample First Subsample Second Subsample

Mean 0.60 0.63 0.60
Median 0.60 0.62 0.61

Maximum 0.67 0.70 0.65
Minimum 0.53 0.56 0.55
Std. Dev. 0.03 0.04 0.02
Skewness −0.20 0.07 −0.29
Kurtosis 2.37 1.94 2.06

Jarque–Bera 0.80 1.62 1.72
p-value 0.67 0.45 0.42

This table reports the descriptive statistics for cross-sectional Hurst exponents esti-
mated for 34 survivor stocks in the S&P 500 index. The sample period is from September
1939 to December 2019. First and second subsample periods are from September 1939 to
May 1977 and from June 1977 to September 2019. The reported p-values correspond to the
Jarque–Bera test statistic, which assumes normality under the null hypothesis.

4.3. Is the Long-Term Memory Manifested in Exposures to Asset Pricing Risk Factors?

Lastly, we provide tests of whether the documented long-term memory of survivor
stocks is reflected in exposures to well-known asset pricing risk factors. Following standard
practice, we estimated factor risk exposures to the market factor (MKT), size factor (SMB),
value factor (HML), and momentum factor (MOM) by regressing the excess returns for each
survivor stock (Rex

i ) on the Carhart (1997) four-factor model that adds a momentum factor
to the Fama and French (1992) three-factor model:

Rex
i,t = ai + bi MKTex

t + ciSMBt + di HMLt + ei MOMt + εit, (6)

where εit is an IID-distributed error term. Data were downloaded from Kenneth French’s website.
Panel A of Table A2 reports the descriptive statistics for the cross-sectional point

estimates for the first subsample (September 1939−May 1977), and Panel B reports the
results for the second subsample (June 1977−September 2019). Panel A shows that the
sample average of the intercept term equals 0.37% per month (or 4.4% per year), which
is economically meaningful. Hence, the risk factors do not explain a significant portion
of the excess returns of survivor stocks. This finding confirms Grobys (2022), who finds
that survivor companies generate significant excess returns after risk-adjusting the payoffs
using various well-known asset pricing factor models. Depending on the factor model, in
the sample period July 1963 to December 2019, survivors exhibited between 0.21% and
0.43% risk-adjusted monthly average payoffs.

It is noteworthy that the beta risk exposure with respect to the market risk factor is 1.00.
Thus, on average, survivor stocks generated excess returns without being leveraged against
the market risk factor. Additionally, the results from the first subsample indicate that, with
the exception of the market factor, survivor stocks are not significantly exposed to any asset
pricing risk factor. Contrary to these findings, the results in the second subsample suggest
that survivor stocks exhibit, on average, a high book-to-market ratio. In this regard, the
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significant positive exposure (i.e., d̂ = 0.29) to this factor implies that survivor stock returns
positively co-move with value stock returns as opposed to growth stock returns. Some
researchers have conjectured that value stocks have relatively higher distress risk than other
stocks (e.g., see Griffin and Lemmon 2002). If so, we infer that survivor stocks experienced
higher distress risk in the second subsample due to changing economic conditions. The
lower intercept term in the second subsample (i.e., lower risk-adjusted) is consistent with
this explanation.

We should point out that estimates obtained from the regression model in Equation (6)
are derived from the concept of correlation, which requires linear dependency structures
to deliver reliable results. As an example, let us consider the point estimator for bi from
Equation (6), which we can rewrite as follows:

bi =
COV(MKTex

t , Rex
it )

VAR(MKTex
t )

=
ρMKTex

t ,Rex
it

√
VAR(Rex

it )√
VAR(MKTex

t )
, (7)

where ρMKTex
t ,Rex

it
denotes the correlation between excess market factor returns and excess

stock returns for the ith survivor stock. Since the results in Table A1 suggest that survivor
stocks are exposed to Paretian tails, or nonlinearity, the concept of correlation is unreliable.
Hence, it is not surprising that no clear pattern emerges on how long-term memory, as
measured by the Hurst exponent, is reflected in some risk factor exposures. Whereas
exposures to risk factors change across subsamples, the average Hurst exponent lacks this
kind of serious variation across samples and therefore provides a higher level of reliability.

4.4. Limitations

This study employs Mandelbrot’s (2008) R/S analysis, which is based on earlier
works published in Mandelbrot (1963, 1969, 1971, 1972) and Mandelbrot and Wallis (1969).
However, other related methodologies are available in the literature. For instance, Peng
et al. (1994) proposed detrended fluctuation analysis (DFA), which is designed to effectively
detect the long memory of signals with polynomial trend. Reviews of other methods for
estimating long range dependencies are provided in Taqqu et al. (1995), Montanari et al.
(1999), and Serinaldi (2010). However, as mentioned earlier, a major advantage of R/S
statistic is that, in contrast to many common statistical tests, no assumption is made about
how the original data are organized. Even though R/S analysis is a well-established and
often-used methodology, future research is encouraged to replicate our findings using other
methodologies. Since these analyses are beyond the scope of this paper, they are left for
future research.

5. Conclusions

This study examined the dependency structures of the return processes of S&P 500
survivor stocks. To do this, we employed rescaled/range analysis proposed by Mandelbrot
(2008). Unlike correlation-based methodologies, R/S analysis is a valid approach for
measuring dependencies regardless of how the data are organized.

We found that survivor stock returns are organized in a non-linear manner, which
is manifested in Paretian tails. Survivor stock returns exhibited, on average, long-term
memory as evidenced by an average Hurst exponent significantly greater than one half.
Splitting the overall subsample into two subsamples revealed that long-term memory was
stable across time. We interpret this finding to mean that “survivor stocks do not forget”.
By contrast, exposures to traditional asset pricing risk factors were not stable across time.
This instability is not surprising in view of the way stock return data are organized. As
observed by Mandelbrot (2008), Peters of Pan Agora found that high-tech stocks had high
dependence manifested in higher H values than other stocks, which makes them a better
bet for investors due to more readily perceived price trends. Similarly, this study showed
that survivor stocks exhibit high dependence manifested in H values. Consistent with
Siegel and Schwartz (2006) and Grobys (2022), these findings help explain why they have
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been a good bet for investors. Given the fact that they remained in the S&P 500 index for
more than 50 years, their excess risk-adjusted stock returns are partially attributable to their
long memory.
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Appendix A

Table A1. Estimated power-law exponents for survivor stocks.

No. 1 2 3 4 5 6 7 8 9 10

α̂ 4.17 4.07 3.52 3.92 4.09 4.82 3.89 4.39 3.19 4.54
yMIN 0.12 0.11 0.17 0.08 0.10 0.09 0.10 0.08 0.09 0.11

p-value GoF 0.09 0.06 0.61 0.00 0.66 1.00 0.23 0.19 0.02 0.26
% (N) 0.09 0.14 0.13 0.15 0.08 0.06 0.17 0.13 0.28 0.10

No. 11 12 13 14 15 16 17 18 19 20

α̂ 4.32 3.80 3.19 3.09 4.05 4.01 4.91 3.50 3.10 4.75
yMIN 0.13 0.08 0.07 0.11 0.09 0.11 0.19 0.06 0.07 0.11

p-value GoF 0.19 0.32 0.69 0.50 0.76 0.12 0.91 0.00 0.00 0.70
% (N) 0.10 0.20 0.21 0.15 0.18 0.13 0.05 0.29 0.32 0.08

No. 21 22 23 24 25 26 27 28 29 30

α̂ 4.56 3.87 5.94 4.54 7.25 4.44 3.48 3.70 4.20 3.99
yMIN 0.19 0.09 0.18 0.17 0.13 0.14 0.08 0.12 0.12 0.10

p-value GoF 0.69 0.06 0.83 0.88 0.98 0.65 0.06 0.18 0.76 0.87
% (N) 0.07 0.16 0.03 0.04 0.03 0.10 0.18 0.16 0.13 0.16

No. 31 32 33 34

α̂ 4.51 5.27 4.45 3.38
yMIN 0.16 0.13 0.19 0.11

p-value GoF 0.85 0.81 0.51 0.82
% (N) 0.06 0.06 0.07 0.18

To estimate power-law exponent that govern Paretian tails of survivor stocks, we use
the following power-law function:

p(y) = Cy−α,

where C = (α− 1)yMIN
α−1 with α ∈ {R+|α > 1}, y = |x| denotes the respective absolute

return of a survivor stock provided y ∈ {R+|yMIN ≤ y < ∞}, yMIN is the minimum
absolute return value that is governed by the power law process, and α is the magnitude of
the specific tail exponent. Following White et al. (2008) and Clauset et al. (2009), maximum
likelihood estimation (MLE) is used for estimating power law exponents:

α̂ = 1 + N
(

∑N
i=1 ln

(
yi

yMIN

))−1
,

where α̂ denotes the MLE estimator, N is the number of observations exceeding yMIN . The
cutoff is determined by optimizing the Kolmogorov–Smirnov (KS) distance. Specifically,
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the Kolmogorov–Smirnov (KS) distance is the maximum distance between the cumulative
density functions (CDFs) of the data and the fitted model as defined by:

D = MAXy≥yMIN |S(y)− P(y)|,

where S(y) is the CDF of the data for the observation with value at least yMIN , and P(y)
is the CDF for the power law model that best fits the data in the region y ≥ yMIN . The
estimate ŷMIN is the value of yMIN that minimizes D. This table reports the estimated
power-law exponent for absolute monthly returns for our sample of survivor stocks from
September 1934 to December 2019, the corresponding minimum value yMIN , the p-value for
the GoF test of the power-law null hypothesis, and the percentage of sample observations
governed by some power-law process. Power-law exponents in bold figures indicate
statistical significance on at least a 5% level.

Table A2. Estimated risk factor exposures for survivor stocks.

Panel A. Regression Estimates for the First Subsample

Point
Estimate a b c d e

Mean 0.37 *** 1.00 *** 0.07 0.02 −0.03 *
(t-statistic) (8.25) (26.24) (1.14) (0.06) (−1.68)

Median 0.39 1.00 −0.02 −0.02 −0.06
Maximum 0.81 1.45 0.86 0.89 0.31
Minimum −0.21 0.52 −0.61 −0.56 −0.19
Std. Dev. 0.26 0.22 0.37 0.36 0.11
Skewness −0.20 −0.08 0.49 0.58 0.94
Kurtosis 2.52 2.43 2.79 3.04 3.93

Jarque–Bera 0.55 0.50 1.41 1.94 6.20
p-value 0.76 0.78 0.49 0.38 0.04

Panel B. Regression Estimates for the Second Subsample

Point
Estimate a b c d e

Mean 0.22 *** 0.91 *** −0.11 * 0.29 *** −0.08 *
(t-statistic) (3.91) (16.09) (−1.85) (6.39) (−1.85)

Median 0.24 0.91 −0.19 0.30 0.03
Maximum 0.91 1.72 1.32 0.97 0.17
Minimum −0.45 0.33 −0.48 −0.41 −0.94
Std. Dev. 0.32 0.33 0.34 0.27 0.26
Skewness −0.35 0.24 2.34 0.10 −1.54
Kurtosis 2.61 2.67 10.24 3.82 5.08

Jarque–Bera 0.91 0.49 105.23 1.01 19.59
p-value 0.64 0.78 0.00 0.60 0.00

Note: *** statistically significant on a 1% level. * statistically significant on a 10% level.

We estimate risk factor exposures of survivor stocks to the excess market factor
(MKTex

t ), size factor (SMBt), value factor (HMLt), and momentum factor (MOMt) by
regressing the excess returns for each survivor stock i (Rex

i,t ) on the Fama and French (1992)
three-factor model:

Rex
i,t = ai + bi MKTex

t + ciSMBt + di HMLt + ei MOMt + εit,

where εit is an IID-distributed error term. Data were downloaded from Kenneth French’s
website. Panel A reports the descriptive statistics for the cross-sectional point estimates
for the first subsample from September 1939 to May 1977. Panel B reports the correspond-
ing figures for the second subsample from June 1977 to September 2019. The reported
p-values correspond to the Jarque–Bera test statistic which assumes normality under the
null hypothesis.
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Notes
1 As of February 2019 guidance.
2 The value of a stock’s market capitalization traded annually should be at least a quarter million dollars of its shares in each of the

previous six months.
3 West (2017) uses the term death in the context of companies that do not report sales anymore. Using this definition, companies

can die due to various reasons, including mergers, splits, and liquidation.
4 Another recent study is by Zhang et al. (Zhang et al.), who study the dynamic portfolio allocation problem using an interval

type-2 fuzzy set to express and manipulate uncertainty. In doing so, the decision strategy with competitive-cum-compensatory
is embedded in optimization. Their findings indicate that their proposed approach is more accurate than classical fuzzy sets
in describing the uncertainty of asset information. Available at: https://www.globalpapermoney.com/s-p-releases-list-of-86
-companies-in-the-s-p-500-since-1957-cms-1023 (accessed on 15 January 2023).

5 See https://www.globalpapermoney.com/s-p-releases-list-of-86-companies-in-the-s-p-500-since-1957-cms-1023 (accessed on 15
January 2023).

6 As detailed in Grobys (2022), in the data collection process, the survivor list of company names is matched to ticker symbols and
stock returns in the CRSP database.

7 Note that the goal with respect to the data collection is to identify those companies that have been in the index since the index
was launched in 1957. Identifying survivor stocks is per se a challenge due to spin-offs, mergers, acquisitions, etc. (see Siegel
and Schwartz 2006). Here we follow Grobys (2022) in selecting survivor stocks identified by the index provider S&P. The
index provider published a press release in 2007 wherein the original constitute companies were listed. From this list, we used
the approach detailed in Grobys (2022) to identify and match the sample of firms listed on S&P’s release with corresponding
stock companies, which resulted in a sample of 92 survivor stocks. From this sample of survivor stocks, we identified 34 stock
companies with available data over 1024 consecutive months starting in September 1934.

8 Note that the main objective for choosing the power-law function given by Equation (1) is to identify whether the return processes
exhibit Paretian tails. In this regard, we follow previous literature. For instance, Lux and Alfarano (2016) highlighted that:
“Focusing on absolute returns, |ret|, . . . [is] one of its most frequently analyzed manifestations”. (Lux and Alfarano 2016, p.
5). We consider this analysis as a necessary presumption for choosing R/S analysis as opposed to correlation-based methods.
For modeling the overall return-generating process, Mandelbrot (2008) proposed a multifractal model of asset returns (MMAR).
Modelling the entire stock return dynamics is outside the scope of our study and therefore left for future studies.

9 Note that the selection of proper cutoffs is somewhat ambiguous as various estimation techniques can deliver different results.
In this regard, Lux (2000) commented: “In view of these problems of implementations, the recent development of methods for
data-driven selection of the tail sample constitutes an important advance”. (Lux 2000, p. 646) In our study, we follow Lux by
adopting a data-driven approach. While he used optimized mean squared error functions, we employed KS-distances, which
offers the benefit of implementing a directly-related GoF test as proposed by Clauset et al. (2009).

10 Taleb (2010) points out that a long time is needed for some fractal processes to reveal their properties, such that theoretical means
are underestimated in finite samples. Hence, even though we do not find evidence for Paretian tails for some of the stocks
in-sample, it is possible that Paretian tails will be manifested in subsequent out-of-sample samples.

11 To explore the Hurst exponent for the overall U.S. equity market, for the sample period from September 1934 to December 2019,
we downloaded 30 equal-weighted industry portfolios from Kenneth French’s website (see https://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html, accessed on 15 January 2023). Subsequently, we constructed an equal-weighted
market index based on an equal-weighted portfolio of industry portfolios. The estimated Hurst exponent for this sample is exactly
Ĥ = 0.50. This result is in line with earlier research that finds the returns of efficient equity markets are independently distributed.
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