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Abstract: In this study, we analyze the volatility of volatility indices and estimate the Hurst parameter
using data from five international markets. For our analysis, we consider daily data from VIX (CBOE),
VXN (CBOE Nasdaq 100), VXD (DJIA), VHSI (HSI), and KSVKOSPI (KOSPI). The period of analysis
is from January 2001 to December 2021 and incorporates various market phases, such as booms
and crashes. The novelty here is the use of recent methodology, including different range-based
estimators for volatility analysis. We apply the Hurst exponent to the volatility measures Vi s, Vi 1,
Vis,t,and Vi, and then estimate the volatility of volatility indices through the GARCH(1, 1) model.
Based on the values of the Hurst exponent, we analyze the trace of the behavior of three trading
strategies, i.e., the momentum-based strategy, the random walk, and the mean-reversion strategy.
The results are highly recommended for financial analysts dealing with volatility indices as well as
for financial researchers.

Keywords: fractional Brownian motion; persistent series; financial markets; volatility measures;
trading strategies; Adjusted Rescaled Range Analysis; variability analysis

1. Introduction

Volatility is one of the most important factors for modeling in the financial market.
It measures the rate of fluctuation of security prices over time. Using volatility, we can
estimate price risk, which indicates the level of risk associated with changing prices. Further,
factors that affect the curve of price dynamics are included as events of stochastic volatility,
which involves each of the random elements of a financial market. This is part, for example,
of the preferences of market practitioners, the financial sense of some institutions, or general
random factors in a society that have an impact on price dynamics through transaction
processes or trading size. These are consequences, actions, and behaviors associated with
one of the most important phenomena of our world: uncertainty. This phenomenon has
many potential paths, and its measures are wide-ranging. The conclusion determines how
important the structure of price data is for each volatility-research model.

Several volatility models use different types of price data. For instance, we consider
the well-known models of generalized autoregressive conditional heteroskedasticity and
stochastic volatility, i.e., the GARCH model by Engle (1982) and Bollerslev (1986) (Engle
1982) and the SV model developed by Taylor (1986), (Hwang and Satchell 2000). There
is also an alternative approach related to volatility measures based on the research of
(Decreusefond and Suleyman 1998), (Gallant et al. 1999), (Parkinson 1980), (Garman and
Klass 1980), (Rogers and Satchell 1991), and (Rogers et al. 1994). That is the work of
Alizadeh et al. (2002), (Gallant et al. 1999), (Parkinson 1980), (Garman and Klass 1980),
and (Rogers et al. 1994). In this paper, we examine the trace of volatility indices and the
volatility of volatility indices from January 2001 to December 2021 from five international
volatility markets: VIX (CBOE), VXN (CBOE Nasdaq 100), VXD (DJIA), VHSI (HSI), and
KSVKOSPI (KOSPI). In addition, we apply the Hurst exponent to these data as a measure
of long-term memory of the time series.
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The Hurst exponent (H) is directly connected to the momentum-based strategy, ran-
dom walk, and mean-reversion strategy. It expresses price trend dynamics, and then
investors try to take advantage of the continuous trends in the market. The random walk
indicates an uncorrelated (random) time series, and the mean-reversion strategy expresses
that asset price volatility will return to the long-term level after an extreme event. An
example of a mean-reverting process is the Ornstein-Uhlenbeck process, i.e., the tendency
of a time series to return to its mean value over time. For example, (Schoebel and Zhu
1999) examined the approach of (Stein and Stein 1991) and at the same time extended
the stochastic volatility model in the case where the volatility satisfies a mean-reversion
Ornstein—Uhlenbeck process. In addition, (Garcia and Requena 2019) studied different
methodologies and uses of the Hurst exponent, i.e., examining the long term-memory of a
time series. (Domino 2011) exa mined the use of the Hurst exponent in predicting changes
in trends in the Stock Exchange. Hence, these three strategies are directly connected to the
estimation of the Hurst exponent. For this reason, we use the Hurst exponent method to
test the behavior of volatility indices and the volatility of volatility indices, i.e. we examine
the behavior of the aforementioned strategies.

There are different methodologies for estimating the Hurst exponent, including aggre-
gate variance, absolute moments, discrete variations, centered moving average, Lyadpunov
exponent, geometric procedures, and wavelets methodology. For more details about these
methodologies, their comparisons, and a bibliography review, see (Garcia and Requena
2019) and (Hamza and Hmood 2021). In our case, we follow the original works of Hurst
(1951) and Mandelbrot (1967) as well as the recent procedures outlined by (Szostakowski
2018) and (Ceballos and Largo 2018) to describe the mathematical background of the
adjusted rescaled range (R/S) analysis (Mandelbrot 1967).

As we can see below, different cases of the Hurst exponent return different results
about the persistence of a time series. The indicator, H, describes the behavior of our data
compared to ordinary Brownian motion (see Di Vita 2021). The study of (Rehman and
Siddiqi 2009) combines the Hurst exponent with the field of econophysics. According
to (Decreusefond and Suleyman 1998), in the case of mathematical finance, stochastic
processes are used to model the time evolution of assets. In addition, it has been noted
that after a given time, t, a real process depends both on the situation at time t and the
whole history of the process up to time t. A major characteristic of that procedure is
the self-similarity of a process. This is relative to the law of a random variable. More
precisely, the self-similarity of a process X,, has the same law as the process at'X;, where 0
<t <1. An example of a self-similar stochastic process is a fractional Brownian motion.
When a fractional Brownian motion has a Hurst exponent larger than 0.5, it means that
its increments (the increments of this motion) are positively autocorrelated (Garcin 2019).
Given that H belongs to the interval (0, 1), a fractional Brownian motion X; is a centered
Gaussian process with covariance function:

+ |S‘2H* ‘t*S‘ZH
2

2H
E(XiXs) = o2l

where o expresses the volatility parameter, and for s, t € R?. For more details about the

fractional Brownian motion, see (Garcin 2019). Many studies focus on the Hurst exponent

and fractal dimension analysis; it measures how rough a fractal object is (Rehman 2009).
The equation of the fractal dimension, D, in terms of the Hurst exponent is:

D=2-H.

The interactions betwen D and H are as follows: If H = 0.5, then D expresses that the
amplitude changes that correspond to two successive time intervals behave as a Brow-
nian motion (i.e., there is no correlation between amplitude changes of these time in-
tervals). If 0.5 < H < 1, then D represents a persistent process. Conversely, when D
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satisfies the range between 1.5 and 2 (0 < H < 0.5), then the process is anti-persistent
(Rangarajan and Santb 2004).

The work of (Ding et al. 2021a) associates Henry’s law with the Hurst exponent and the
fractional differencing parameter, i.e., their distinct linear relationship. (Ghosh and Bouri
2022) studied the long-term memory and fractality of nine CBOE volatility indices and
connected the empirical results with the trading strategies in the sense that past volatility
provides information for future trading predictions. That is, various volatility indices
satisfy the fractal market hypothesis. For more details about the Hurst exponent and fractal
dimension analysis, see (Gneiting and Schlather 2001), (Cadenas et al. 2019), (Bhatt et al.
2015), and (Fuss et al. 2020). (Da Fonseca and Zhang 2019) illustrate the computation of
volatility of volatility by using high-frequency data for major indexes; the results indicate
that the volatility of volatility is a rough process and it maintains the long-term memory
property. A new estimation of the Hurst exponent is proposed by (Li and Teng 2022),
related to the roughness of volatility. They show that truncated spot volatility is rougher
than non-truncated spot volatility. (Ding et al. 2021b) studied the action and compared the
results of different settings (correlation processing, trend processing, etc.) on the Hurst
exponent. The study showed that these settings affect accuracy of the Hurst exponent
estimation. (Das and Kumar 2021) proposed a new way for optimizing a portfolio by using
a combination between the Hurst exponent and wavelet analysis. Their main result reflects
that higher returns are achieved by combining government bonds with equities and gold
in the case where the portfolios’ structure is accomplished by the risk exposures of each
asset in the overall portfolio risk. Hence, examining Hurst exponent analysis and volatility
is an important topic, as also shown in the recent papers (Kondoz et al. 2019) and (Athari
and Hung 2022).

The paper is organized as follows: Section 2 represents the main results of this work
in the form of hypotheses. In Section 3, we present the required mathematical background
for estimating the volatility measures through range-based estimators (high, low, open,
close prices) of volatility indices from five international volatility markets. These are the
approaches of Alizadeh et al. (2002), Gallant et al. (1999), Parkinson (1980), Garman and
Klass (1980), (Rogers and Satchell 1991), and (Rogers et al. 1994). Then we describe the
method for calculating the volatility of volatility measures through the GARCH(1, 1) model,
and a brief analysis of the Hurst exponent and different calculation steps are illustrated.
After that, a description of our data as well as descriptive statistics are given analytically.
Section 4 expresses the numerical results of the Hurst exponent method, i.e., applying the
Hurst exponent to CBOE, VIX, VXN, DJIA, VXD, HSI, VHSI, and KOSPI for the period
2001-2021 (full-period) and the sub-periods 2001-2007 (before the Greek financial crisis
(GFC)), 2008-2021 (after the GFC period), 2008-2010 (GFC period), and 2020-2021 (COVID-
19-period). Then we apply the Hurst exponent to the volatility measures Vs, Vi, Vr s,
and Vs ;. Finally, our study follows a graphical representation of the previous volatility
measures. In Section 5, we discuss the main results analytically, the limitations of this work,
and give the main conclusion from our research.

2. Hypotheses

First, we provide the contribution of this work as well as the main research hypotheses.
For the empirical analysis, we use data from five of the most powerful international markets
to examine the momentum of the market as a function of booms and crashes. In this way,
we use the Hurst exponent on the volatility of volatility indices and study trends in our
time series during the period 2001-2021 and several sub-periods: 2001-2007 (period before
GFC), 2008-2010 (GFC), 2008-2021 (period after GFC), and 2020-2021 (COVID-19). The
main hypothesis (Hj) is as follows: Do the values of the Hurst exponent on the volatility of
volatility indices better reflect the period’s changes than the values of the Hurst exponent
on the volatility indices? The answer of this question requires the following steps and
corresponding hypotheses.
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Firstly, we need to estimate the range-based estimators, ng,t/ Vit Vist, and Vs by
using the open, high, low, and close prices of five volatility indices during the period of
2001-2021. This estimation follows the procedure of (Chan and Lien 2003). The math-
ematical background is available in detail in the next section. According to (Chan and
Lien 2003), the quantity Vs, as the first logarithmic difference between the high and low
prices, overestimates the other three measures, V)¢, Vs, and ng,t- We extend this result by
examining the GFC and COVID-19 periods. Even during intense periods, Vs overestimates
the other three measures. This is the reason we isolated the V;-figure; see for instance
Figures 1-5.
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Figure 1. Time-varying dynamics of volatility measures of the CBOE Market Volatility Index. Range-
based estimators (a) Vs and (b) Vekt: Vot Vist [Author’s own processing].
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Figure 2. Time-varying dynamics of volatility measures of the CBOE NASDAQ 100 Volatility Index.
Range-based estimators (a) Vs and (b) ng,t: Vp,t, Vist [Author’s own processing].
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Figure 3. Time-varying dynamics of volatility measures of the DJIA Volatility Index. Range-based
estimators (a) V¢ and (b) Vekts Vit Vist [Author’s own processing].
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Figure 4. Time-varying dynamics of volatility measures of the HSI Volatility Index. Range-based
estimators (a) V¢ and (b) ng,t/ Vi, Vist [Author’s own processing].
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Figure 5. Time-varying dynamics of volatility measures of the KSVKOSPI Volatility Index. Range-
based estimators (a) Vs and (b) Vet Vs Vst [Author’s own processing].

Secondly, we apply the variability analysis to the volatility indices by estimating the
Hurst exponent. That is, we apply the R/S analysis to the five volatility indices, VIX
(CBOE), VXN (CBOE Nasdaq 100), VXD (DJIA), VHSI (HSI), and KSVKOSPI (KOSPI). The
purpose here, following the variability analysis, is to analyze the patterns of variations in
the time-series. In this way, we examine the microstructure of our data and the behavior of
a financial market produced by the five volatility indices.
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Consequently, risk managers, investors, and modelers find the information (behavior
of the time series) useful; following this, they can choose an optimal financial strategy for
their portfolio (momentum-based strategy, random walk, or mean-reversion strategy).

Our second hypothesis (Hy) is: Do the values of the Hurst exponent on the volatility
indices reflect the well-defined behavior of the financial market in the sense of three
financial strategies or do the risk managers, investors, and modelers trust the behavior
of financial market based on the values of the Hurst exponent on the volatility indices?
We continue our analysis of the time series in the sense of the volatility of volatility. More
precise, applying GARCH(1, 1) to the volatility measures Vst, Vpt, Vist, and Vet we
obtain the volatility of volatility indices for the period 2001-2021 and the sub-periods
2001-2007 (before the GFC), 2008-2010 (GFC), 2008-2021 (after the GFC), and 2020-2021
(COVID-19). Then, by using the Hurst exponent on these volatility of volatility indices, we
test how persistent (or not) our time series data is.

Our third hypothesis (H3) is: Do the values of the Hurst exponent on the volatility
of volatility indices reflect the well-defined behavior of the financial market in the sense
of three financial strategies, or do the risk managers, investors, and modelers trust the
momentum of the financial market based on the values of the Hurst exponent on the
volatility of volatility indices? This last hypothesis relates to the case of rough (or not)
volatility. The term “rough” is associated with the Hurst exponent through R/S analysis
and the fact that the volatility model is a function of fractional Brownian motion. According
to the works of (Cont and Das 2022) and (Fukasawa et al. 2019), if H is closer to 1 (0.5 < H <
1), then the increments of the time series are smoother than Brownian motion. Conversely,
if H approaches 0 (0.5 to 0), then the increments of the time series become rougher than
Brownian motion. Consequently, the term “rough” in our case is related to the distance of
the values of the Hurst exponent from the value of 0.5 (Brownian motion). Thus, our final
hypothesis (H,) is: How rough is the volatility or the volatility of volatility with respect to
the given financial data?

In general, the Hurst exponent is related to the dynamics of the memory among
the observations. For example, the case of random walk (i.e., H = 0.5) contains security
prices that are unpredictable over time, and there is no memory among the observations.
When H belongs to (0.5, 1), then the time series has a long-term memory, illustrating the
momentum-based strategy. Finally, anti-persistent time series is illustrated by the values of
0 < H < 0.5, for which the mean-reversion strategy is proposed.

3. Methodology & Data Description

The main goal of this article is the estimation of the Hurst exponent with respect to the
estimated volatility indices and the volatility of volatility indices. In particular, we follow
the approach of (Chan and Lien 2003) for estimation of the volatility measures V¢, V4,
Vektr and V. Then, a GARCH model is applied to the vectors Vs, Vi, Vektr and Vs 4;
after that, we proceed with the estimation of volatility of volatility. The computation of the
Hurst exponent is based on (Szostakowski 2018) and (Ceballos and Largo 2018).

First, we apply four equations corresponding to the opening, closing, high, and low
market prices. Suppose that O; represents the opening price on day t, and let C;, H;, and
L; be the closing, high, and low prices, respectively. Staring with the case of the first

logarithmic difference between H; and Ly, i.e., the high and low prices, we have:

Vit = In(H;) — In(Ly) = ln<ft). 1)
t
based on (Decreusefond and Suleyman 1998), (Alizadeh et al. 2002) and (Gallant et al. 1999).
Next, as a volatility measure, we use an underlying geometric Brownian motion with no
drift as follows:

1

Vpt = g (In(Hy) — In(L))* = 0.361 {ln<ft>r. )

t
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Vgk,t = 0.511[In(Hy) — In(L¢)]?

This is the Parkinson volatility (Parkinson 1980). Keeping the same diffusion process
as before, we proceed to the next volatility measure, similar to (Garman and Klass 1980),
which is a function of the opening, closing, highest, and lowest prices, such that:
—0.19[In(C;) — In(Oy)][In(Hy) + In(L¢) — 2In(O1)] — 2[In(H;) — In(O1)][In(L¢) — In(Oy)]) — 0.383[In(C;) — In(0)]*  (3)

Equivalently, we can use the following, more convenient formation:

_ [In(Hy) —In(Ly)}?
gkt — 2

— [2In2 — 1][In(C;) — In(Oy)]? 4)

According to (Chan and Lien 2003), when the stochastic process has a drift action,
then models (2) and (4) are not effective for volatility simulation. Instead, we introduce
the models of (Rogers and Satchell 1991) and (Rogers et al. 1994), which include the daily
opening, highest, lowest, and closing prices, of the form:

Vist = [In(L¢) —In(Of)][In(L;) — In(Cy)] + [In(H;) — In(Oy)][In(H;) —In(Cy)].  (5)

Regarding the estimation of the volatility of volatility measures, we apply the GARCH
(1, 1) model on volatility measures Vs, V1, ng,t/ and Vs based on the volatility indices
considered. In general, GARCH (Bollerslev 1986) is a method for estimating volatility
measure. Here, we follow the notation of (Jafari et al. 2007) in order to describe some of
the basic components of the GARCH model. Suppose that r; expresses a return on an
asset. Then:
Tt = U+ Ot€y

for the mean value p, variance 02, and &;~iid N(0, 1). GARCH implies an estimation for
the variance through the constant variables «y, ..., «p and By, ..., B4 such that:

07 = g + oqrf_l +...+ ocprtz,p + [316%_1 + chf,q.
More precisely in our case, a GARCH (1, 1) model has the form:
of = &+ oary_y + Brop_y, (6)

where o1 + 31 <1 with ¢y > 0, 31 > 0 and &y > 0. The corresponding numerical results
are available in Section 4. Finally, we apply Hurst exponent analysis in order to examine
if the time series is persistent or not. According to (Garcia and Requena 2019), the latter
case indicates that our data satisfy the behavior of ordinary Brownian motion instead of
the former case where there is memory associated with the data. For this reason, we use
the R/S analysis (Mandelbrot 1967), which represents one of the statistical measures of the
variability of the time series. For this process, we follow the references of (Szostakowski
2018) and (Ceballos and Largo 2018).

Let the time series X of length N be divided into a sub-period of length d, where 7 is
an integral divisor of N. Then the mean value is calculated such that:

We normalize the data in the following relationship:
Yt = Xt —m

fort=1,...,n, returning in this way the cumulative time series, Z, where:

t
Zi=) Y,t=1,--n
i=1
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Then the respective range will be:
Ry =max(Zy,--- ,Zy) —min(Zy,- -+ ,Zn)

After that, we rescale the range by using the standard deviation S,:

RY _ R
S), S.

Finally, the Hurst exponent is estimated through R/S analysis

E <R> =cnf
S n

for the constant ¢ independent of n. Let us now distinguish the different results for the
different cases of H. For example, if H = 1, then the series is uncorrelated, meaning that
the series is characterized by random behavior. If 0 < H < 0.5, then we have the case of
anti-persistence in the time series, meaning that it has a tendency to return to the long-term
mean. On the other hand, if 0.5 < H < 1, then the time series has a positive long-term
autocorrelation (i.e., it is a persistent series). Our daily volatility data, obtained from five
international volatility markets, includes not only closing prices but also a full range of
prices, i.e., high, low, and open for each trading day. The period of analysis is from January
2001 to December 2021 and incorporates various market phases, such as a global booms and
crashes, as explained above. These events include the global financial crisis (started October
2008), COVID-19 (December 2019), and Brexit (started February 2020). Next, we present
the descriptive statistics of our daily data and then apply the four volatility measures, V,,
Vi, Vet and Vi by using Equations (1)-(4), respectively (see Tables 1 and 2). For all
cases, the normality test is rejected.

Table 1. Descriptive statistics of volatility indices from 5 international markets [Author’s own

processing].
CBOE Market Volatility Index | Price History Close High Low Open
Mean 19.681 20.707 18.905 19.812
Median 17.250 18.080 16.520 17.340
Maximum 82.690 89.530 72.760 82.690
Minimum 9.1400 9.3100 8.5600 9.0100
Std. Dev. 8.9360 9.5939 8.3575 8.9923
Skewness 2.2932 2.3856 2.1518 2.2773
Kurtosis 7.9056 8.5988 6.6939 7.6987
Jarque-Bera 18.110 20.964 13.729 17.346
Probability 0.000000 0.000000 0.000000 0.000000
Observations 5203 5203 5203 5203
CBOE NASDAQ 100 Volatility Index | Price History Close High Low Open
Mean 24.340 22.880 21.061 21.968
Median 20.560 20.300 18.860 19.605
Maximum 80.640 86.520 73.860 80.570
Minimum 10.310 10.970 9.6600 10.310
Std. Dev. 11.067 9.0678 7.9105 8.4678
Skewness 1.6283 2.4683 2.2681 2.3566
Kurtosis 2.5228 9.3483 7.7727 8.4064
Jarque-Bera 3679.05 21.477 15.564 17.849
Probability 0.000000 0.000000 0.000000 0.000000

Observations 5203 5203 5203 5203
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Table 1. Cont.

DJIA Volatility Index | Price History Close High Low Open
Mean 18.650 20.024 17.572 18.656
Median 16.120 17.465 15.170 16.120
Maximum 74.600 80.240 63.250 74.600
Minimum 2.7100 9.5600 2.4700 2.7100
Std. Dev. 8.2446 9.0035 7.7995 8.2493
Skewness 2.1898 2.1293 2.0826 2.2062
Kurtosis 6.8074 6.5143 5.9404 6.9090
Jarque-Bera 14.202 13.129 11.409 14.566
Probability 0.000000 0.000000 0.000000 0.000000
Observations 5202 5202 5202 5202
HSI Volatility Index | Price History Close High Low Open
Mean 21.678 18.931 17.729 18.341
Median 19.660 18.465 17.500 18.020
Maximum 104.29 68.640 58.610 58.870
Minimum 2.0294 2.0707 1.9985 2.0402
Std. Dev. 10.254 8.1025 7.1187 7.5525
Skewness 1.7779 0.68914 0.19054 0.39290
Kurtosis 6.3893 3.7278 2.1159 2.6870
Jarque-Bera 11.364 1761.31 515.37 873.569
Probability 0.000000 0.000000 0.000000 2.03 x 107185
Observations 2426 2676 2676 2675
KSVKOSPI Volatility Index | Price History Close High Low Open
Mean 16.346 16.912 15.999 16.465
Median 15.240 15.670 14.920 15.340
Maximum 69.240 71.750 62.080 71.290
Minimum 0.010914 0.011174 0.010879 0.011155
Std. Dev. 7.9787 8.4060 7.6776 8.0174
Skewness 0.89333 1.0452 0.76862 0.90655
Kurtosis 4.3562 5.1291 3.8254 4.5845
Jarque-Bera 2906.89 4022.5 2228.7 11.752
Probability 0.000000 0.000000 0.000000 0.000000
Observations 3147 3147 3147 3187.04

Table 2. Volatility estimates. Descriptive statistics on range-based estimators.

[Author’s own

processing].
CBOE Market Volatility Index | Price History Vek vy Vis Vs

Mean 0.0038030 0.0037981 0.0039638 0.086164
Median 0.0018780 0.0019078 0.0018067 0.072696
Maximum 0.30795 0.25293 0.30252 0.83704
Minimum 0.000000 0.000000 0.000000 0.0000
Std. Dev. 0.0082953 0.0079785 0.0094253 0.055655
Skewness 15.579 14.463 14.593 3.0640
Kurtosis 427.86 359.09 345.82 20.355
Jarque-Bera 3.98973 x 1007 2.81359 x 10777  2.61108 x 10" 97.966
Probability 0.000000 0.000000 0.000000 0.000000

Observations 5203 5203 5203 5203
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Table 2. Cont.
CBOE NASDAQ 100 Volatility Index | Price History Vek Vy Vis Vs
Mean 0.0029664 0.0030914 0.0031269 0.078422
Median 0.0015422 0.0016296 0.0015031 0.067187
Maximum 0.49927 0.36051 0.74883 0.99932
Minimum 0.0000 0.0000 0.0000 0.000000
Std. Dev. 0.0089028 0.0075764 0.012429 0.049134
Skewness 39.489 26.260 47917 3.8547
Kurtosis 2111.0 1109.9 2816.0 38.789
Jarque-Bera 8.57543 x 1008 237258 x 10™%® 152557 x 10*0? 300.56
Probability 0.000000 0.000000 0.000000 0.000000
Observations 4612 4612 4612 4612
DJIA Volatility Index | Price History Ve Vy Vis Vs
Mean 0.015907 0.012977 0.021436 0.12924
Median 0.0022831 0.0023729 0.0022821 0.081075
Maximum 1.6846 1.3000 2.6153 1.8977
Minimum —0.00013469 0.0000 —0.00046366 0.0000
Std. Dev. 0.055918 0.046756 0.083584 0.13874
Skewness 13.467 15.625 15.595 3.7924
Kurtosis 300.86 355.86 385.30 25.684
Jarque-Bera 1.97765 x 1077 2.76597 x 1077  3.23887 x 10*"7 155.450
Probability 0.000000 0.000000 0.000000 0.000000
Observations 5202 5202 5202 5202
HSI Volatility Index | Price History ng v, Vis Vs
Mean 0.0020828 0.0019981 0.0023188 0.059696
Median 0.00085300 0.00083030 0.00085529 0.047958
Maximum 0.10961 0.086440 0.18831 0.48933
Minimum 0.0000 0.0000 0.0000 0.0000
Std. Dev. 0.0054811 0.0048891 0.0075498 0.044407
Skewness 9.1365 8.8341 11.524 3.4983
Kurtosis 111.45 105.41 189.48 19.140
Jarque-Bera 1.4216 x 10*06  1.27379 x 1079  4.06097 x 10+0° 46.304
Probability 0.000000 0.000000 0.000000 0.000000
Observations 2426 2676 2675 2676
KSVKOSPI Volatility Index | Price History ng Vy Vis Vs
Mean 0.0015916 0.0016425 0.0017795 0.051696
Median 0.00057376 0.00062004 0.00054095 0.041444
Maximum 0.16515 0.27974 0.32143 0.88028
Minimum 2.8075 x 10~%  3.1385 x 10~% 0.0000 0.0093241
Std. Dev. 0.0064552 0.0071245 0.0096723 0.043337
Skewness 15.196 23.862 21.189 6.2728
Kurtosis 290.69 796.66 573.95 72.830
Jarque-Bera 1.1201 x 1097 8.35198 x 1077  4.34308 x 10*77 716.154
Probability 0.000000 0.000000 0.000000 0.000000
Observations 3147 3147 3147 3147

4. Numerical Results

In this section, we present our empirical results. We begin with the computation of
the range-based estimators, Vet Vot Vst and Vs by using the volatility indices of five
international markets for all periods (2001-2021 and all sub-periods). Then we estimate
the Hurst exponent on the volatility indices for the whole period of 2001-2021 and the
respective sub-periods (Table 3). Further, we apply GARCH(1, 1) on the aforementioned
range-based estimators in order to compute the volatility of volatility indices during the
same period and sub-periods, and finally, we apply the Hurst exponent to the volatility
of volatility indices. This is the desired result, because in this way we test how persistent
our time series data are. The volatility of the volatility indices is estimated from an AR(1)-
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GARCH(1, 1)-model. The results for the variance in Equation (6) show that the p-value
is equal to zero (or less than 0.05), and as a consequence, the model’s parameters are
highly significant. Beyond that, the sum of parameters « and f3 is less than 1; this indicates
that we have a stationary solution with finite expected value. In addition, the sum of
the model’s coefficients is very close to one, meaning that the volatility shocks are highly
persistent and in equilibrium with the extracted results of this work related to the Hurst
exponent. More precisely, the general result across the whole time-period is that the Hurst
exponent indicates a time series with a long-term positive autocorrelation (see Table 4).
Mathematically, this is the time interval of H between the values (0.5, 1).

Table 3. Values of the Hurst exponent on the volatility indices of 5 international markets. [Author’s
own processing].

Volatilitv Indices Period Period before GFC GFC Period after GFC COVID-19
y 2001-2021 2001-2007 2008-2010 2008-2021 2020-2021
CBOE Volatility 0.923132 0.990811 0.97901 0.949799 0.937536
Index
CBOE NASDAQ
100 Volatility Index 0.944038 1.01016 0.967554 0.951156 0.958043
DJIA Volatility 0.916349 0.991099 0.977751 0.943301 0.976587
Index
HSI Volatility 0.938568 0.945965 0.978547 0.948096 1.02819
Index
KSVKOSPI
Volatili ty In dex * 0.92346 - 0.972173 0.92346 1.02054
* The data range of 20092021 (estimations of GARCH models for Vekts Vpts Vist, Vs are available upon request).
Table 4. Values of the Hurst exponent on the volatility of volatility indices of 5 international markets.
[Author’s own processing].
Volatilitv Indices Period Period before GFC GFC Period after GFC COVID-19
y 2001-2021 2001-2007 2008-2010 2008-2021 2020-2021
Vi 0.67335
- gk .
CBOII”:HZ‘;E“H”Y Vi: 0.738147 Vs: 0.816659 Vy: 0.682425 Vy: 0.679823 “//8’? 00'774086135814
Vs: 0.761437 s
ng: 0.779025
CBOE NASDAQ ) Vp: 0.559094 ) ) Vp: 0.705984
100 Volatility Index Vs: 0.630445 Vs: 0.63375 Vs: 0.598392 V,s: 0.775285
Vs: 0.777791
DJIA Volatility - Vi: 0.700755 Vi: 0.702298 Vi 0.731611 ;
Index
HSI Volatility ) ) Vp: 0.630344
Index Vs: 0.71753 - - Vs: 0.71753 Vi 0721309
KSYKOSPI Vp: 0.530579 ) V,,: 0.574546 Vp: 0.530579 Vi: 0750765
Volatility Index * Vs: 0.58489 Vs: 0.584908 Vs: 0.58489

* The data range of 20092021 (estimations of GARCH models for ng,t, Vipts Vs, Vs p are available upon request).

Based on the numerical results, we get useful information related to the Hurst exponent
and the volatility of volatility. The values of the Hurst exponent before the GFC indicate a
more persistent time series than the period after the GFC. In addition, the existence of a
trend in the time series throughout the period of COVID-19 is stronger than during the GFC
period and after the GFC period. A possible reason for that performance is the unifying
behavior between the investors during the uncertain and unexpected COVID-19 period,
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creating in this way a stable financial momentum strategy. Some important results are as
follows: The Hurst exponent on the KSVKOSPI volatility of volatility indices is close to 0.5
for most periods. This implies a random walk time series, i.e., the time series approaches
the properties and general behavior of Brownian motion more than the other four volatility
of volatility indices. However, the COVID-19 period on the KSVKOSPI time series has
a more positive long-term autocorrelation (persistent series) than the other three crisis
periods. The VIX(CBOE) is the most stable index compared to the other indices over the
period 2001-2021.

There are also some remarkable points related to the volatility indices and volatility of
volatility indices. Firstly, there is a difference between the values of the Hurst exponent
on the volatility indices and on the volatility of the volatility indices. The values of H
in the second case are close when we consider the crisis period as well as the period of
COVID-19. For example and based on the Table 3, the values of the Hurst exponent on
the volatility indices during the crisis time interval 2008-2010 range between 0.967554 and
0.97901. The same Hurst exponent before the crisis time interval, i.e., 2001-2007, ranges
between 0.945965 and 1.01016. The respective case for the values of the Hurst exponent on
the volatility of the volatility indices ranges between 0.574546 and 0.761437 (crisis period
2008-2010) and 0.559094 and 0.816659 (before crisis period, 2001-2007). Secondly, Table 3
contains three values of Hurst exponent on the volatility indices larger than 1, in contrast to
the volatility of the volatility indices where the Hurst exponent is always less than 1. The
case where H > 1 indicates that we need to follow a different approach in order to obtain the
desired results. However, this part is out of the framework of this work. There is also the
possibility (H > 1) of the existence of a non-stationary time series. In any case, the significant
Hurst exponent value has a range between 0 and 1. Therefore, it is better to choose the
approach and results of the Hurst exponent on the volatility of volatility indices instead
of the volatility indices (and as a consequence for these three irregular situations where H
is greater than 1). According to our numerical results, the Hurst exponent in the case of
volatility of volatility indices is more effective than the Hurst exponent on the volatility
indices, better illustrating the financial strategies. Consequently, the main hypothesis (H;)
is well-defined. However, the values of the Hurst exponent on the volatility indices do
not reflect the well-defined behavior of the financial market in the sense of three financial
strategies for the aforementioned reasons, and thus, hypothesis (H;) is rejected. According
to Tables 3 and 4, the values of the Hurst exponent are between 0.5 and 1; this implies that
both the volatility and the volatility of volatility with respect to the given financial data
are not rough (hypothesis (Hy)). In this paper, we also examined if the range of the time
interval affects the values of the Hurst exponent; we obtained a negative result. Further,
and regardless of the potential financial strategies of our time period, the values of the
Hurst exponent are greater than 0.5 for the whole period of 2001-2021 (Table 4). This
indicates that there is no anti-persistent time series, i.e., the future values do not tend to
return to a long-term mean. This implies that there is no mean-reverting financial strategy.
This type of strategy helps investors to trade despite difficult circumstances (long-term
variations), given that the future values will eventually return to a long-term mean. On
the other hand, and according to the Hurst exponent results (Table 4), in most cases, the
market encourages a momentum-based strategy, whereby investors have the information
that securities will maintain their price dynamics as a function of time (momentum), either
upward or vice-versa. In this case, risk managers, investors, and modelers might go
towards a specific stock market under the momentum-based strategy. There is also the
option for risk managers, investors, and modelers to diversify their portfolios accordingly,
considering a mix of momentum-based and mean-reverse strategies and avoiding risk
investments with a value of H close to the values of a random walk. Then we could claim
that the hypothesis (Hy) is well-defined; that is, risk managers, investors, and modelers can
rely on the values of the Hurst exponent on the volatility of volatility indices reflecting the
well-defined behavior of the financial market in the sense of three financial strategies.
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5. Discussion and Conclusions

The main contribution of this work is the computation of the Hurst exponent through
the volatility measures by using data from five international markets during the period
of January 2001 to December 2021. Based on these values of the Hurst exponent, we
analyze the trace behavior of three trading strategies, i.e., the momentum-based strategy,
the random walk, and the mean-reversion strategy. The values of the Hurst exponent
on the volatility of volatility indices better reflects the period’s changes than the values
of the Hurst exponent on the volatility indices (hypothesis (Hj)). The results are highly
recommended for financial analysts dealing with volatility indices as well as for financial
researchers.

Firstly, according to Table 4, investors should be more careful in the case of the
KSVKOSPI volatility index, because H is close to the value of 0.5 over the periods 2001-2007
(period before the GFC) and 2008-2010 (GFC period). These values indicate that there is
no investing advantage based on the continuous trends of the market. This is not true for
the case of COVID-19 period where H = 0.75, indicating a momentum-based strategy. The
same strategy is appropriate for trading in the case of the CBOE Market volatility index,
where the time series has a long-term memory according to the different values of H. Both
the DJIA volatility index and HSI volatility index show a similar behavior to the CBOE
Market volatility index. The CBOE Market volatility index is closer to the KSVKOSPI
volatility index. Secondly, comparing the Tables 3 and 4, we see that the values of the
Hurst exponent on the volatility of volatility indices adapt better to the possible changes
of the interest periods than the the Hurst exponent on the volatility indices. Thirdly, by
taking advantage of the values of the Hurst exponent on the volatility of volatility indices,
investors, modelers, and risk managers might diversify their portfolios by considering a
mix of momentum-based and mean-reversion strategies.

This study has several limitations, which also offer potential directions for further
research. Further work should examine several methods of Hurst exponent analysis and
test if measures of volatility are affected by systemic volatility worldwide, or only by the
systemic volatility at each stock market level. However, the dynamic model in this article
(the methodology is described in the Section 3) satisfies the primary hypothesis (H;j). In
particular, investors, modelers, and risk managers may follow Hurst exponent values on
the volatility of volatility indices for their decisions. Finally, high-frequency data and
rough volatility should be considered, to determine if realized variance measures show a
high /low Hurst parameter.
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Abbreviations

The following abbreviations are used in this manuscript:

VIX (CBOE) Chicago Board Options Exchange Volatility index
VXN (CBOE Nasdaq 100) CBOE Nasdaq Volatility Index

VXD (DJIA) Dow Jones Industrial Average Volatility Index
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VHSI (HSI) Hang Seng index Volatility Index

KSVKOSPI (KOSPT) Korea Composite Stock Price Index

GFC Global financial crisis

H Hurst exponent

R/S Rescaled Range Analysis

AR Autoregressive Process

GARCH Generalized AutoRegressive Conditional Heteroskedasticity
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