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Abstract: Predicting corporate default risk has long been a crucial topic in the finance field, as
bankruptcies impose enormous costs on market participants as well as the economy as a whole. This
paper aims to forecast frailty-correlated default models with subjective judgements on a sample
of U.S. public non-financial firms spanning January 1980–June 2019. We consider a reduced-form
model and adopt a Bayesian approach coupled with the Particle Markov Chain Monte Carlo (Particle
MCMC) algorithm to scrutinize this problem. The findings show that the 1-year prediction for
frailty-correlated default models with different prior distributions is relatively good, whereas the
prediction accuracy ratios for frailty-correlated default models with non-informative and subjective
prior distributions over various prediction horizons are not significantly different.

Keywords: default risk; frailty; hidden factors; doubly stochastic; expert opinion; particle markov
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1. Introduction

Default forecasting is crucial for financial institutions and investors. Prior to investing
in or extending credit to a company, investors and creditors must assess the company’s
financial distress risk in order to avoid incurring a significant loss. In the literature on
financial distress, default risk modelling can be grouped into two main categories: structural
and reduced-form approaches. This paper uses the reduced-form method of correlated
default timing. The interested readers may refer to Nguyen and Zhou (2023) for a general
view of the literature on reduced-form models of correlated default timing.

Accounting-based measures are the first generation of reduced-form models for pre-
dicting the failure of a company. The earliest works predicting this type of financial distress
are univariate analyses (Beaver 1966, 1968), which employ financial ratios independently
and adopt the cut-off point for each financial ratio in order to improve the precision of
classifications for a distinct sample. Altman (1968) conducted a multivariate analysis of
business failure based on multiple discriminant analyses by combining the data from
numerous financial ratios from the financial statement into a singular weighted index. The
second generation of default literature is the logistic model (Ohlson 1980). This method
was developed to deal with the shortcomings of the Altman Z-score method. Shumway
(2001) attempts to predict defaults and shows that half of the accounting ratios utilized by
Altman (1968) and Zmijewski (1984) have poor prediction on the default models, while
a large number of market-driven independent variables are significantly associated with
default probability. The recent expansion of reduced-form default risk models has centred
on duration analysis. Jarrow and Turnbull (1995) and Jarrow et al. (1997) are the pioneers
of term structure and credit spread modelling.

With regard to duration analysis, recent research indicates that observable macroeco-
nomic and firm-specific factors may not be sufficient to characterize the variation in default
risk, as corporate default rates are strongly correlated with latent factors. The need for and
importance of the hidden factor in a default model are discussed in several recent studies,
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such as Koopman and Lucas (2008), Duffie et al. (2009), Chava et al. (2011), Koopman et al.
(2011, 2012), Creal et al. (2014), Azizpour et al. (2018), and Nguyen (2023).

To improve the prediction accuracy of default models, the utilization of expert judge-
ment in the decision-making process is common in practice, as there may not be enough
statistically significant empirical evidence to reliably estimate the parameters of compli-
cated models. This problem is considered to be of central interest in simulating a number
of debates in the empirical literature regarding the issue of Bayesian inference. In the
process of inference, however, the majority of Bayesian analyses utilize non-informative
priors formed by formal principles. The theoretical foundation utilized by the majority
of Bayesians is that of Savage (1971, 1972) and De Finetti (2017). Despite the fact that
non-informative prior distribution plays a crucial role in defining the model for certain
problems, it appears that there is an unavoidable drawback, as it is sometimes impossible
to specify only non-informative priors and disregard the informative priors. It is observed
that Bayes factors are sensitive to the selection of unknown parameters of informative prior
distributions, which has a greater likelihood of influencing the posterior distribution. As a
consequence, it generates debates regarding the selection of priors. Moreover, real prior
information is beneficial for specific applications, whereas non-informative priors do not
take advantage of this; consequently, such circumstances require informative priors. In
other words, this is where subjective views and expert opinion are combined. Assuming
we have a complex, high-dimensional posterior distribution, it is uncertain whether we
have exhaustively summarized it. This should likely be completed by an experienced
statistician. Choosing informative priors and establishing a connection with expert opinion
are still the subject of debate in academic research, and interesting stories about them are
still being continued. Recently, there has been research on the default prediction combined
with expert opinion using machine learning techniques, such as by Lin and McClean (2001),
Kim and Han (2003), Zhou et al. (2015), and Gepp et al. (2018). However, these studies
adopt machine learning techniques with single classifiers.

Motivated by these findings, this paper aims to answer the research question of
whether adding expert opinions to the frailty-correlated default risk model can give us
better prediction results. To do so, we combine prior distributions to the frailty-correlated
default model in Duffie et al. (2009) and adopt the Particle MCMC approach in Nguyen
(2023) to estimate the unknown parameters and predict the default risk in the model using
the dataset of U.S. public non-financial firms spanning 1980–2019. Our findings show that
the 1-year prediction for frailty-correlated default models with different prior distributions
is relatively good, whereas the prediction accuracy of models decrease significantly as the
prediction horizons increase. The results also indicate that prediction accuracy ratios for
frailty-correlated default models with non-informative and subjective prior distributions
over various prediction horizons are not significantly different. Specifically, the out-of-
sample prediction accuracy for the frailty-correlated default models with subjective prior
distribution is slightly higher than that of the frailty-correlated default models with uniform
prior distribution (95.00% for 1-year prediction, 85.23% for 2-year prediction, and 83.18%
for 3-year prediction of the frailty default model with uniform prior distribution; and
96.05% for 1-year prediction, 86.32% for 2-year prediction, and 84.71% for 3-year prediction
of the frailty default model with subjective prior distribution).

To obtain the research objective, the remainder of the paper is organized as follows:
Section 2 presents the econometric model and the estimation methodology for the frailty-
correlated default models with the different prior distributions. Section 3 reports major
results. Data and the choice of covariates are also presented in this section. Section 4
provides the model performance evaluation. Section 5 presents the concluding remarks
and limitations of the research.

2. Econometric Model

This part outlines the econometric model used by Duffie et al. (2009) and our extension
to the model and improvement of the method to examine and forecast default risk at the
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firm level. We first provide an introduction to the notations used in this study. We consider
a complete filtered probability space (Ω,F ,G, P), where the filtration G := {Gt}t∈[0,T]
describes the flow of information over time and P is a real-world probability measure.
Further on, we use the standard convention where capital letters denote random variables,
whereas lower case letters are used for their values.

The complete Markov state vector is described as Wt = (Xit, Yt, Ht), where we let
Wt be a Markov state vector of firm-specific and macroeconomic covariates, Xit a vector
of observable firm-specific covariates for firm i at the first observation time ti until the
last observation time Ti, Vi be an unobservable firm-specific covariate, Yt be a vector of
observable macroeconomic variables at all times, and Ht be an unobservable frailty (latent
macroeconomic factor) variable; Zit = (1, Xit, Yt) denote a vector of observable covariates
for firms i at time t, where 1 is a constant.

On the event of s > t of survival to t, given the information set Ft, the conditional
probability of survival to time t + τ is

q(Wt, τ) = p(s > t + τ|Ft) = E
(

e−
∫ t+τ

t λ(z)dz|Wt

)
(1)

and the conditional default probability at time t + τ is of the form:

p(Wt, τ) = p(T < t + τ|Ft) = E
( ∫ t+τ

t
e−
∫ u

t λ(z)dzλ(u)du|Wt

)
(2)

The information filtration of {Ft}t∈[0,T] includes the information set of the observed
macroeconomic/firm-specific variables:

{Yτ}τ∈[0,t] ∪ {(Xiτ , Diτ)}i∈[1,m],τ∈[ti ,min(t,Ti)]

The complete information filtration {Gt}t∈[0,T] contains the variables in the information
filtration of {Ft}t∈[0,T] and the frailty process {Hτ}τ∈[0,t].

The assumptions are imposed as follows:

Assumption 1. All firms’ default intensities at time t depend on a Markov state vector Wt which
is only partially observable.

Assumption 2. Conditional on the path of the Markov state process W determining the default
intensities, the firm default times are the first event times of an independent Poisson process with
time-varying intensities determined by the path of W. This is referred to as a doubly stochastic
assumption.

Assumption 3. Set the level of mean-reversion of H, α = 0, the unobserved frailty process H is
a mean-reverting Ornstein–Uhlenbeck (OU) process which is given by the stochastic differential
equation below:

dHt = −ηHtdt + σdWt, (3)

where η, α, σ are parameters; {Wt}t∈[0,T] is a standard Brownian motion with respect to (Ω,F ,G, P);
η is a nonnegative constant, the speed of mean-reversion of H; σ is the volatility of the Brownian
motion.

In the general case, without Assumption 3, we would need extremely numerically
intensive Monte Carlo integration in a high dimensional space due to our large dataset
from 1980 to 2019. Thus, we assume process H is an OU process, as in Duffie et al. (2009).

The default intensity of a firm i at the time t is: λit = Λ(Si(Wt), θ), where Si(Wt) =
(Zit, Ht) is the component of the state vector at time t and θ = (κ, ξ, η, σ) is a parameter
vector to be estimated; κ is a parameter vector of the observable covariates Z; ξ is a
parameter of the frailty variable Ht, η is the speed of mean-reversion of Ht; and σ is a
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Brownian motion parameter of Ht. The parameters η and σ need to be estimated through a
mean-reverting OU process, which we assume the unobserved frailty process H will follow.
The proportional hazards form is expressed by

Λ((z, h), θ) = e(κ1z1+...+κnzn+ξh) (4)

Dm is the default indicators of m firms. Default indicator Dit of the firm i at the time t
is defined as:

Dit =

{
1 if firm i defaulted at time t
0 otherwise

Now we will start with the conditional probability of the m company. As mentioned
above, we let ti be the first observation time for firm i and Ti is the last observation time for
firm i. For each firm i and fixed time t, we have

P(Dit = 1|γ, θ) = λit∆te−λit∆t

P(Dit = 0|γ, θ) = e−λit∆t

and then, in our case, the conditional probability of the individual firm is given by

p(Zit, Dit, H|θ) = λit∆te−λit∆t Dit + e−λit∆t(1− Dit)

Ti

∏
t=ti

p(Zit, Dit, H|θ) = e−∑
Ti
t=ti

λit∆t
Ti

∏
t=ti

(Ditλit∆t + (1− Dit)) (5)

Thus, the conditional probability of the m firm is expressed as:

m

∏
i=1

( Ti

∏
t=ti

p(Zit, Dit, H|θ)
)

=
m

∏
i=1

[
e−∑

Ti
t=ti

λit∆t
Ti

∏
t=ti

(Ditλit∆t + (1− Dit))

]

= e−∑m
i=1 ∑

Ti
t=ti

λit∆t
m

∏
i=1

Ti

∏
t=ti

(Ditλit∆t + (1− Dit)). (6)

Applying Bayes’ theorem:

p(θ|Z, D, H) ∝ L(θ|Z, D, H)p(θ) (7)

We have two cases for the prior distribution p(θ): (i) Uniform prior and (ii) Subjective prior.

1. Prior distribution is uniform

p(θ|Z, D, H) ∝ L(Z, D, H|θ), (8)

where p(θ) ∝ 1 (non-informative prior distribution). This case is exactly studied by
Duffie et al. (2009). Our extension to the model by combining with priors is given
below.

2. Prior distribution is subjective

p(θ|Z, D, H) ∝ L(θ|Z, D, H)N (κ, ξ|µ, Σ), (9)

whereN (µ, Σ) is the multivariate normal prior with a mean vector µ and a covariance
matrix Σ.
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If the observable covariate process Z is independent of the frailty process H, the
likelihood function of intensity parameter vector θ is given by

L(θ|Z, D) =
∫
L(θ|Z, D, h)pH(h)dh×N (κ, ξ|µ, Σ)

= E

[
m

∏
i=1

(
e−∑

Ti
t=ti

λit∆t
Ti

∏
t=ti

(Ditλit∆t + (1− Dit))

)∣∣∣∣Z, D
]
×N (κ, ξ|µ, Σ), (10)

where pH(.) is the unconditional probability density of the unobservable frailty process H.
Now we show how to transform the model with the frailty-correlated defaults to

the one combined with the subjective prior distribution. We have found the posterior
probability density earlier as

p(θ|Z, D, H) ∝ L(θ|Z, D, H)p(θ)

= L(θ|Z, D, H)N (κ, ξ|µ, Σ)

= L(θ|Z, D, H)
exp(− 1

2 ((κ, ξ)− µ)TΣ−1((κ, ξ)− µ)√
(2π)n|Σ|

. (11)

Taking the logarithm of Equation (11)

log
(
L(θ|Z, D, H)

exp(− 1
2 ((κ, ξ)− µ)TΣ−1((κ, ξ)− µ))√

(2π)n|Σ|

)

= log(L(θ|Z, D, H) + log
(

exp(− 1
2 ((κ, ξ)− µ)TΣ−1((κ)− µ))√

(2π)n|Σ|

)
. (12)

Recall that the log-likelihood of parameter value θ given the observable and hidden vari-
ables is given by

`(θ|Z, D, H) = log
(

e−∑m
i=1 ∑

Ti
t=ti

λit∆t
m

∏
i=1

Ti

∏
t=ti

(Ditλit∆t + (1− Dit))

)

= −
m

∑
i=1

Ti

∑
t=ti

λit∆t +
m

∑
i=1

Ti

∑
t=ti

log(Ditλit∆t + (1− Dit)). (13)

We proceed to take the logarithm for the second term of the Equation (12)

log
(

exp(− 1
2 ((κ, ξ)− µ)TΣ−1((κ, ξ)− µ))√

(2π)n|Σ|

)

= − 1
2
√
(2π)n|Σ|

((κ, ξ)− µ)TΣ−1((κ, ξ)− µ). (14)

In the second term, the central interest is the covariance matrix. For notational simplicity,
set γ = (κ, ξ). It is then rewritten as

(γ1 − µ1)c1,1 + (γ2 − µ2)c2,1 + ... + (γn+1 − µn+1)cn,1
(γ2 − µ1)c1,2 + (γ2 − µ2)c2,2 + ... + (γn+1 − µn+1)cn,2

...
(γ1 − µ1)c1,n + (γ2 − µ2)c2,n + ... + (γn+1 − µn+1)cn,n

(γ1 − µ1)c1,n+1 + (γ2 − µ2)c2,n+1 + ... + (γn+1 − µn+1)cn,n+1




γ1 − µ1
γ1 − µ2

...
γn − µn

γn+1 − µn+1
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= (γ1 − µ1)

(
(γ1 − µ1)c1,1 + (γ2 − µ2)c2,1 + ... + (γn − µn)cn,1 + (γn+1 − µn+1)

cn+1,1

)
+ (γ2 − µ2)

(
(γ1 − µ1)c1,2 + (γ2 − µ2)c2,2 + ... + (γn − µn)cn,2

+(γn+1 − µn+1)cn+1,2

)
+ · · ·+ (γn − µn)

(
(γ1 − µ1)c1,n + (γ2 − µ2)c2,n

+... + (γn − µn)cn,n + (γn+1 − µn+1)cn+1,n

)
+ (γn+1 − µn+1)

(
(γ1 − µ1)c1,n+1

+(γ2 − µ2)c2,n+1 + ... + (γn − µn)cn,n+1 + (γn+1 − µn+1)cn+1,n+1

)
=

(
(γ1 − µ1)(γ1 − µ1)c1,1 + (γ1 − µ1)(γ2 − µ2)c2,1 + ... + (γ1 − µ1)(γn − µn)cn,1

+(γ1 − µ1)(γn+1 − µn+1)cn+1,1

)
+

(
(γ2 − µ2)(γ1 − µ1)c1,2 + (γ2 − µ2)

(γ2 − µ2)c2,2 + ... + (γ2 − µ2)(γn − µn)cn,2 + (γ2 − µ2)(γn+1 − µn+1)cn+1,2

)
+ · · ·

+

(
(γn − µn)(γ1 − µ1)c1,n + (γn − µn)(γ2 − µ2)c2,n + ... + (γn − µn)

(γn − µn)cn,n + (γn − µn)(γn+1 − µn+1)cn+1,n

)
+

(
(γn+1 − µn+1)(γ1 − µ1)

c1,n+1 + (γn+1 − µn+1)(γ2 − µ2)c2,n+1 + ... + (γn+1 − µn+1)(γn − µn)

cn,n+1 + (γn+1 − µn+1)(γn+1 − µn+1)cn+1,n+1

)
=

n+1

∑
j=1

n+1

∑
k=1

cjk(γj − µj)(γk − µk). (15)

Then, the second term can be rewritten as

log
(

exp(− 1
2 (γ− µ)TΣ−1(γ− µ))√

(2π)n|Σ|

)
= − 1

2
√
(2π)n|Σ|

(γ− µ)TΣ−1(γ− µ)

= − 1
2
√
(2π)n|Σ|

n+1

∑
j=1

n+1

∑
k=1

cjk(γj − µj)(γk − µk). (16)

We combine terms of Equation (11) to obtain an overall likelihood function given the
filtration G

log(L(θ|Z, D, H) + log
(

exp(− 1
2 (γ− µ)TΣ−1(γ− µ))√

(2π)n|Σ|

)

=

(
−

m

∑
i=1

Ti

∑
t=ti

λit∆t +
m

∑
i=1

Ti

∑
t=ti

ln(Ditλit∆t + (1− Dit))

)

+
n+1

∑
j=1

n+1

∑
k=1

cjk(γj − µj)(γk − µk). (17)

Now the central interest is to estimate Equation (17). We used a Bayesian approach
coupled with the Particle MCMC algorithm to estimate and forecast the frailty-correlated
default models with uniform and subjective prior distributions. Particle filters can be
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understood as sequential Monte Carlo (SMC) methods, as introduced by Handschin and
Mayne (1969) and Handschin (1970). Particles are a set of points in the sample space, and
particle filters provide approximations to the posterior densities via these points. Each
particle has an assigned weight, and then the posterior distribution can be approximated
by a discrete distribution. Several algorithms about particle filters have been proposed in
the literature review, and it can be said that the difference between algorithms consist in
the way that a set of the particles evolves and adapts to inputs data. Algorithm 1 presents
the Sequential Monte Carlo process we applied in our method.

Algorithm 1: Sequential Monte Carlo algorithm
• At time t = 1: ∀n = 1, ..., N
(1) Sample Hn

1 ∼ qθ(.|(z1, D1))
(2) Calculate and normalize the weights

w1(Hn
1 ) :=

pθ(Hn
1 , (z1, D1))

qθ(Hn
1 |(z1, D1))

=
µθ(Hn

1 )gθ((z1, D1)|Hn
1 )

qθ(Hn
1 |(z1, D1))

,

Wn
1 :=

w1(Hn
1 )

∑N
i=1 w1(Hi

1)
.

• At time t = 2, ..., T : ∀n = 1, ..., N

(1) Resample the particles, i.e., sample the indices An
t−1 ∼ G(.|Wt−1),

(2) Sample Hn
t ∼ q(.|((zt, Dt), H

An
t−1

t−1 )) and set Hn
1:t := (H

An
t−1

1:t−1, Hn
t ),

(3) Calculate and normalize the weights

wt(Hn
1:t) :=

pθ(Hn
1:t, (z1:t, D1:t))

pθ(H
An

t−1
1:t−1, (z1:t−1, D1:t−1))qθ(Hn

t |((zt, Dt), H
An

t−1
t−1 ))

=
fθ(Hn

t |H
An

t−1
t−1 )gθ((zt, Dt)|Hn

t )

qθ(Hn
t |((zt, Dt), H

An
t−1

t−1 ))

Wn
t :=

wt(Hn
1:t)

∑N
i=1 wt(Hi

1:t)

One disadvantage of this approach is that the SMC approximation to pθ(xt|(y1:T)
deteriorates when T − t is too large. Andrieu et al. (2010) have proposed the Particle PIMH
method to overcome this difficulty. This is a class of MCMC using the SMC algorithm as
its component to design its multi-dimensional proposal distributions. The advantage of
this method is that the PIMH sampler does not call for the SMC algorithm to generate
all samples which approximate pθ(x1:T |y1:T) but only to choose a sample which can be
approximated for pθ(x1:T |y1:T) (see Andrieu et al. 2010). Algorithm 2 presents the PIMH
method applied in our model.
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Algorithm 2: PIMH algorithm
• Set k = 0

Sample S ∼ pθ(h1:T |(z1:T , D1:T)) by SMC Algorithm 1,
Draw H1:T(0) ∼ p̂θ(.|(z1:T , D1:T)) from S
Set p̂θ(z1:T , D1:T)(0) = p̂θ(.|(z1:T , D1:T))

• For k = 1 : N
(1) Sample S ∼ pθ(h1:T |(z1:T , D1:T)) by SMC Algorithm 1

Draw H∗1:T ∼ p̂θ(.|(z1:T , D1:T))
(2) Draw U with the uniform distribution (0, 1)

If U < p̂θ(z1:T , D1:T)
∗/ p̂θ(z1:T , D1:T)(k− 1)

Set H1:T(k) = H∗1:T
Set p̂θ(z1:T , D1:T)(k) = p̂θ(z1:T , D1:T)

∗

Else
Set H1:T(k) = H1:T(k− 1)
Set p̂θ(z1:T , D1:T)(k) = p̂θ(z1:T , D1:T)(k− 1)

In our method, we combine Particle MCMC with the maximum likelihood method to
estimate the intensity parameter vector θ for the frailty-correlated model. We present the
implementation steps in Algorithm 3. See Nguyen (2023) for further discussions about the
methods.

Algorithm 3: Particle MCMC Expectation-Maximization algorithm
• Initialize

Set i := 0
Set θ(0) = (κ̂, 0.05, 0.01, 1), where κ̂ is an estimate of κ in the model without the hidden

factors
• Loop

Set i := i + 1
Sample H1, H2, ..., HN from pH(.|Z, D, θ(i−1)) by PIMH Algorithm 2
Employ the maximum likelihood method to estimate parameters θ(i) from Equation (17)

using generated samples H1, H2, ..., HN

Exit when achieving reasonable numerical convergence of the likelihood L.

3. Major Results
3.1. Data Sample

The dataset used to estimate the models is as follows: Short-term risk-free risk
(3-month Treasury bill rate) is collected from the Board of Governors of the Federal Re-
serve System. We use the Compustat North America dataset and the Center for Research
in Security Prices (CRSP) database from Wharton Research Data Services. We collected
quarterly and annual accounting data for companies in the nonfinancial industry in the
United States. Compustat quarterly and annual files contain information regarding both
short- and long-term debt. When comparing the values of Debt in Current Liabilities
and Total Current Liabilities, for short-term debts, we select the greater value. When the
quarterly debt values are missing, we substitute them with the annual debt values if they
are available; if they are not, they are treated as the final missing values. Additionally,
we include these companies’ stock market data. Historical default rate data are collected
from Moody’s database. Our default measure is determined in a similar way to Nguyen
(2023). The final dataset contains 2432 U.S Industrial categories with 424,601 firm-month
observations with a total of 412 defaults (272 bankruptcies and 140 other defaults) over the
period from January 1980 to June 2019.
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3.2. The Choice of Covariates

The observable firm-specific/macroeconomic covariate variables used to examine and
predict the defaults for the U.S. firms are as follows:

1. The 3-Month Treasury bill rate (TREASURY RATE): The 3-Month Treasury bill is a
short-term U.S. government security with a constant 3-month maturity. The Federal
Reserve computes yields for constant maturities by interpolating points along a
Treasury yield curve comprised of actively traded issues with term maturities. It is a
risk-free rate and has a significant impact on monetary policy (see, for example, Duffie
et al. 2007, 2009; Duan et al. 2012; Azizpour et al. 2018; Nguyen 2023).

2. The Trailing 1-year return on the S&P 500 (SP 500): This variable measures the market
return, and its importance has been documented in previous studies (see, for example,
Duffie et al. 2007, 2009; Duan et al. 2012; Azizpour et al. 2018; Nguyen 2023).

3. Distance to Default (D2D): This variable is defined as the number of standard devia-
tions of the annual asset growth of a firm where the firm’s assets are higher than its
liabilities (see Merton (1974) for further discussion on this variable). We construct this
variable in a similar way to Vassalou and Xing (2004), Hillegeist et al. (2004), Bharath
and Shumway (2008), and Nguyen (2023). Duffie et al. (2007, 2009) and Nguyen
(2023) find a negative and significant relationship between distance to default and the
default intensity of the US firms in Industry category. Duan et al. (2012) also show that
the default risk of U.S industry and financial firm firms is significantly and negatively
associated with the Distance-to-Default variable.

4. Firm size (FIRM SIZE): This variable is used to show the measure or quantity of a
company’s assets. The importance of this variable was documented in a study by
Shumway (2001), Duan et al. (2012), and Nguyen (2023). Firm size is calculated as the
logarithm of the assets.

5. Return on assets ratio (ROA): This is a financial ratio that indicates a company’s ability
to generate profit relative to the value of its assets. A higher ROA expressed as a
percentage indicates that a company can generate more profits from its assets. A
lower ROA indicates productivity and the company’s ability to better its balance sheet
management. The return on assets ratio is computed as a ratio of net income to total
assets. In the default literature, the profitability ratio is a traditional variable, and
its importance has been pointed out since Altman (1968) and is widely used in the
finance literature, such as Shumway (2001), Duan et al. (2012), Nguyen (2023).

6. Financial leverage ratio (LEVERAGE): This ratio, also known as the debt ratio, is used
to assess a company’s ability to meet its long-term (one year or longer) debt obligations.
These obligations consist of interest payments, the ultimate principal payment, and
any other fixed obligations, such as lease payments. This ratio is calculated as the
ratio of total liabilities to total assets (see, for example, Ohlson 1980; Zmijewski 1984;
Nguyen 2023).

7. Trailing 1-year firm stock return (FIRM RETURN): This variable is suggested by
Shumway (2001) and is widely used in the finance literature (see, for example, Bharath
and Shumway 2008; Duffie et al. 2007, 2009; Nguyen 2023). We use a similar formula
as Shumway (2001) and Nguyen (2023) to compute this variable.

Tables 1 and 2 provide definitions and summary statistics for all research covariates
used in the sample to predict the frailty-correlated default models with different prior
distributions.
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Table 1. Observable firm-specific attributes and macroeconomic factors.

No Covariates Definitions Reference

1 TREASURY RATE 3-month US Treasury bill rate Duffie et al. (2007, 2009),
Duan et al. (2012), Nguyen (2023)

2 SP500 Trailing 1-year return on the S&P 500 index Duffie et al. (2007, 2009),
Duan et al. (2012), Azizpour et al. (2018),
Nguyen (2023)

3 D2D Distance to Default Duffie et al. (2007, 2009),
Duan et al. (2012), Nguyen (2023)

4 FIRM SIZE Logarithm of the assets Shumway (2001), Nguyen (2023)

5 ROA Net income to total assets Altman (1968), Shumway (2001),
Nguyen (2023)

6 LEVERAGE Total liabilities to total assets Ohlson (1980), Zmijewski (1984),
Nguyen (2023)

7 FIRM RETURN Trailing 1-year stock return Shumway (2001), Duffie et al. (2007),
Duffie et al. (2009), Bharath and Shumway (2008),
Nguyen (2023)

Notes: The details of observable covariates used to examine and predict the frailty-correlated default model with
prior distributions.

Table 2. Summary statistics of observable firm-specific attributes and macroeconomic factors.

Variable Mean SD Minimum Median Maximum

Macroeconomics covariates
TREASURY RATE 4.6837 3.1343 0.0100 4.9500 16.300
SP500 0.1048 0.1534 −0.5542 0.1225 0.4452
Firm-specific covariates
D2D
Defaults 0.0325 1.3529 −14.1997 0.0332 4.9388
Nondefaults 1.9052 1.4412 −5.4534 1.8025 48.6861
FIRM SIZE
Defaults 20.1936 1.5811 15.1688 20.1070 26.3362
Nondefaults 21.4783 1.8422 13.5392 21.4586 27.9370
ROA
Defaults −0.0096 0.1026 −5.3156 0.0036 4.1160
Nondefaults 0.0105 0.0449 −3.5341 0.0128 2.9270
LEVERAGE
Defaults 0.7060 0.3792 0.0000 0.6662 7.6641
Nondefaults 0.5671 0.2438 0.0000 0.5588 8.2774
FIRM RETURN
Defaults −0.0339 1.3053 −2.8998 −0.0962 45.8583
Nondefaults −0.0356 0.4603 −2.9045 −0.0444 5.4282

Notes: The historical default rates comprises 424,601 month observations between January 1980 and June 2019.

3.3. Parameter Estimates

We estimate both default models with both uniform and subjective prior distribution,
which enables us to compare two models easily. Table 3 shows the estimates for parameters
of default intensities with a uniform prior distribution.

From Table 4, it can be seen that all these variables are statistically significant at
traditional confidence levels. The estimate of Distance to Default of −0.6309 indicates that
a negative shock to the distance to default by one standard deviation increases the default
intensity by ≈87.91%. Among firm-specific variables, Distance to Default, which is the
volatility-adjusted leverage measure, shows its dominant role in explaining a significant
variation of the default intensity. The result of Firm size indicates that larger firms often
have more financial flexibility than smaller firms, which can help them better overcome
financial distress. The coefficient of Return on assets ratio confirms that firms with high-
profits relative to assets are less likely to go bankrupt. The result of financial leverage
ratio reports that the higher the debt ratios, the higher the default risk of firms. The 1-year
trailing stock return covariate is statistically significant and negatively related to the default
intensities of the firms. The observable macroeconomic variables chosen in this study are
highly economically and statistically significantly negatively associated with the default
intensities of the firms.
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Table 3. Estimation results of default intensity with non-informative prior distribution.

Predictor Coefficient
Asymptotic

t-Statistic
95% Confidence Interval

Standard Error Lower Bound Upper Bound

Macroeconomics covariates:
Constant −3.1263 0.7673 −4.07 −4.6303 −1.6223
TREASURY RATE −0.1231 0.0231 −5.33 −0.1685 −0.0777
SP500 −0.9093 0.2832 −3.21 −1.4645 −0.3540
Firm-specific covariates:
D2D −0.6099 0.0202 −30.19 −0.6496 −0.5703
FIRM SIZE −0.1838 0.0355 −5.18 −0.2535 −0.1142
ROA −0.3691 0.0941 −3.92 −0.5536 −0.1846
LEVERAGE 0.5293 0.0462 11.46 0.4387 0.6200
FIRM RETURN −1.1282 0.0825 −13.67 −1.2900 −0.9663
Frailty effect:
Hidden-factor volatility 0.1096 0.0061 17.97 0.0975 0.1216
Hidden-factor mean reversion 0.4360 0.0546 7.98 0.3288 0.5432
Brownian motion volatility 8.4610 0.3394 24.93 7.7956 9.1264

No. of firm-month observations 424,601
Log-likelihood −2379.61

Notes: Asymptotic standard errors of the estimated parameters are computed using the Hessian matrix.

Table 4. Estimates of the frailty-correlated model with subjective prior distribution.

Predictor Coefficient
Asymptotic

t-Statistic
95% Confidence Interval

Standard Error Lower Bound Upper Bound

Macroeconomics covariates:
Constant −3.4556 0.6259 −5.52 −4.6825 −2.2288
TREASURY −0.1175 0.0184 −6.37 −0.1536 −0.0813
SP500 −1.0620 0.2306 −4.60 −1.5142 −0.6099
Firm-specific covariates:
D2D −0.6309 0.0169 −37.30 −0.6641 −0.5977
FIRM SIZE −0.1856 0.0289 −6.42 −0.2422 −0.1290
ROA −0.3807 0.0780 −4.8792 −0.5336 −0.2277
LEVERAGE 0.5570 0.0380 14.6277 0.4823 0.6316
FIRM RETURN −1.2134 0.0676 −17.93 −1.3461 −1.0808
Frailty effect:
Hidden-factor volatility 0.0897 0.0040 22.00 0.0817 0.0977
Hidden-factor mean reversion 0.6189 0.0590 10.47 0.5031 0.7347
Brownian motion volatility 12.5069 0.4354 28.7216 11.6534 13.3604

No. of firm-month observations 424,601
Log likelihood −2202.45

Notes: Table reports the estimation result of the frailty-correlated model combined with subjective prior distribu-
tion. Asymptotic standard errors of the estimated parameters are calculated by the Hessian matrix, given µ and Σ
below.

µ = (−3.1 − 0.6 − 1.1 − 0.1 − 0.9 − 0.18 − 0.36 0.53 0.1)

Σ =



0.540000 −0.004164 −0.008542 0.006700 −0.017213 0.024840 −0.008855 0.005788 −0.000056

−0.004164 0.000440 0.000327 −0.000088 0.000446 0.000206 −0.000054 −0.000067 0.000084

−0.008542 0.000327 0.006385 0.000111 0.000912 0.000272 −0.000554 −0.000534 −0.000018

0.006700 −0.000088 0.000111 0.000472 0.002533 −0.000251 0.000129 −0.000091 0.000023

−0.017213 0.000446 0.000912 0.002533 0.074100 0.000619 −0.001904 −0.000771 0.000015

0.024840 0.000206 0.000272 −0.000251 0.000619 0.001164 0.000457 −0.000189 0.000041

−0.008855 −0.000022 −0.000554 0.000129 −0.001904 0.000457 0.008680 −0.002102 0.000045

0.005788 −0.000053 −0.000534 −0.000091 −0.000771 −0.000189 −0.002102 0.002021 0.000010

−0.000045 0.000041 −0.000019 0.000026 −0.000043 0.000021 0.000057 0.000009 0.000023



The role of the frailty effect is not relatively large in our dataset. The volatility and the
mean reversion of the hidden factor, which determine the dependence of the unobserved
default intensities on the latent variable Ht, have a highly economically and statistically
significant impact on the default intensities of the firms. The frailty volatility is the co-
efficient ξ of the dependence of the default intensity on the OU frailty process H. The
coefficient of 0.1096 shows us that an increase of 1% of the latent factor volatility will
increase the unobserved default intensities by 10.96% monthly. This finding is consistent
with Duffie et al. (2009) and Nguyen (2023). The estimated mean reversion η of frailty factor
is approximately 43.60% monthly. Brownian motion volatility is statistically significantly
positive. In general, signs of coefficients in the frailty-correlated defaults models are no
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surprise. It can be seen from Tables 3 and 4 that the signs and scales of estimates in both
cases where models with uniform and subjective prior distributions are similar.

4. Out-of-Sample Performance and Robustness Check

To evaluate the model performance, we use the cumulative accuracy profile (CAP) and
the accuracy ratio (AR). The companies are divided into two equal groups: estimation and
evaluation. We estimate the parameters based on the estimation group and then evaluate
the prediction accuracy using the evaluation group. The implementation steps are shown
as follows: Firstly, we estimate parameters in the frailty-correlated default model with
subjective prior distribution using the historical default rates in the period from 1981 to
2011. Secondly, using the estimation results obtained from Step 1, we forecast the data
for the period from 2012 to 2018 based on the covariates time series model for observable
firm-specific/macroeconomic covariates. Thirdly, we forecast the data of the frailty variable
for the period (2012-2018) using the PIMH Algorithm 2. Fourthly, after obtaining the
estimates from Step 1 and the data obtained from Steps 2 and 3, we compute the default
probability based on Equation (2). Lastly, we can determine a CAP and its associated AR.
The CAPs and ARs for the out-of-sample prediction horizons are displayed in Figures 1
and 2.

Figure 1. This graph illustrates the out-of-sample cumulative accuracy profiles (power curves) over
the entire sample period (1980–2019) for various prediction horizons. The companies are divided into
two equal groups: estimation and evaluation. We estimate the parameters based on the estimation
group and then evaluate the prediction accuracy using the evaluation group. The power curve
illustrates 20% of companies with the most capacity of default over the different horizons in the
frailty-correlated default model with subjective prior.

Table 5 reports the results of out-of-sample predictions of frailty-correlated models
with uniform and subjective prior distributions. From two default models, it can be seen
that the prediction ratios of the frailty-correlated default model with subjective prior
distribution are higher than those of the model with uniform prior distribution. The
out-of-sample prediction accuracy for 1-year prediction on average is good. Specifically,
95 percent for the frailty-correlated model with a non-informative prior distribution and
96.05 percent for the model with a subjective prior distribution. When the time horizon for
predictions is extended to three years, the AR of the models suffers a significant decline,
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falling to 85.23 percent for frailty-correlated models with uniform prior distributions and
86.32 percent for those with subjective prior distributions. We also perform out-of-sample
default predictions using the logistic regression method 1 to compare the accuracy with our
proposed method in Table 6. The results show that our method has better prediction power
compared with the logistic regression method.

Figure 2. This graph illustrates average accuracy ratios for out-of-sample prediction in three predic-
tion accuracy horizons for frailty-correlated default models with expert opinion.

Table 5. Prediction accuracy for frailty-correlated default model with different prior distribution.

T (Year) 2012 2013 2014 2015 2016 2017 2018 Average

1 85.71 100.00 100.00 87.50 91.67 100.00 100.00 95.00
Uniform prior 2 77.78 83.33 80.00 89.47 93.33 87.50 85.23

3 72.73 78.57 78.68 90.91 95.00 83.18

1 85.71 100.00 100.00 93.33 93.33 100.00 100.00 96.05
Subjective prior 2 78.68 87.50 80.00 90.91 93.33 87.50 86.32

3 75.00 78.57 83.33 91.67 95.00 84.71

Notes: The table reports the accuracy ratios for the out-of-sample prediction for different prediction horizons. In
particular, individual accuracy ratios and average accuracy ratios for the model with uniform and subjective prior
distributions over three default prediction horizons (2012–2018, 2013–2018, and 2014–2018) are presented.

Table 6. Comparison of default prediction accuracy between the Logistic Regression method and the
Particle MCMC Expectation-Maximization method.

T (Year) 2012 2013 2014 2015 2016 2017 2018 Average

1 80.00 75.00 50.00 80.00 90.00 100.00 100.00 82.14
Logistic Regression 2 66.67 66.67 57.14 78.57 90.91 80.00 73.33

3 62.50 54.55 64.28 80.00 93.33 70.93

Particle MCMC 1 85.71 100.00 100.00 93.33 93.33 100.00 100.00 96.05
Expectation-Maximization 2 78.68 87.50 80.00 90.91 93.33 87.50 86.32
with subjective prior 3 75.00 78.57 83.33 91.67 95.00 84.71

Notes: The table reports the accuracy ratios for the out-of-sample default prediction at 1 year, 2 years, and
3 years using the Logistic Regression method and Particle MCMC Expectation-Maximization with subjective prior
method.

Overall, two notable conclusions can be drawn from these parameter estimation
results: (i) The 1-year prediction for both models is good and when the prediction horizons
increase, the prediction accuracy of the models decreases significantly. (ii) It can be seen that
there has not been much difference about prediction accuracy ratios for frailty-correlated
default models with non-informative and subjective prior distributions over three out-of-
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sample prediction horizons, including 2012–2018 for 1-year default distribution, 2013–2018
for 2-year default prediction, and 2014–2018 for 3-year default prediction.

To check the robustness of the estimation results for the frailty-correlated default
model with subjective prior distribution, we estimated a subperiod from 1980 to 2011 as a
sensitivity test. The outcomes correspond with the signs and magnitude of the entire sample.
On the other hand, the value of log-likelihood in the frailty-correlated default model with
subjective prior distribution (−2202.45) is larger than that in the frailty-correlated default
model with non-informative prior distribution (−2379.61), which confirms that the frailty-
correlated default model should incorporate the expert opinion.

5. Concluding Remarks and Limitations

Risk assessment is part of the decision-making process in many fields of discipline
including finance. In the financial distress literature, the credit risk evaluation entails
the evaluation of the hazard of potential future exposure or probable loss to lenders in
the context of lending activities. The effective management of credit risk is a crucial
aspect of risk management and crucial to the long-term survival of any bank. Credit risk
management’s objective is to maximize the bank’s risk-adjusted return by keeping credit
risk exposure within acceptable limits. The ability to accurately forecast a company’s
financial distress is a major concern for many stakeholders. This practical relevance has
motivated numerous studies on the topic of predicting corporate financial distress. To
improve the prediction accuracy of default models, the utilization of expert judgement in
the decision-making process is common in practice as there may not be enough a statistically
significant amount of empirical evidence to reliably estimate parameters of complicated
models. This problems is considered to be of central interest of simulating a number of
debates in the empirical literature regarding the issue of Bayesian inference.

This paper proposes a method to add expert judgement to the frailty-correlated default
risk model in Duffie et al. (2009) by incorporating subjective prior distributions into the
model. Then we employ the Bayesian method coupled with a Particle MCMC approach in
Nguyen (2023) in order to evaluate the unknown parameters and predict the default risk
models on a historical defaults dataset of 424,601 firm-month observations from January
1980 to June 2019 of 2432 U.S. industrial firms. We compare the prediction results of
the frailty-correlated default risk model with uniform and subjective prior distributions
together. The findings show that the 1-year prediction for both models are pretty good and
the prediction accuracy of models decrease considerably as the prediction horizons increase.
The results also indicate that prediction accuracy ratios for frailty-correlated default models
with non-informative and subjective prior distributions over various prediction horizons
are not significantly different. Specifically, the out-of-sample prediction accuracy for the
frailty-correlated default models with uniform distribution is slightly higher than that of
the frailty-correlated default models with informative prior distribution over three out-
of-sample prediction horizons, including 2012–2018 for the 1-year default distribution,
2013–2018 for the 2-year default prediction, and 2014–2018 for the 3-year default prediction.

The frailty-correlated default model with expert opinion has been designed to estimate
and predict the default risk of corporations. The model can be adapted to accommodate
any context. However, the model also has its limitations. Firstly, one of the main limitations
is that we cannot access inputs of data for expert opinion; therefore, to some certain extent,
our results also depend on how we assume the values of priors. Accordingly, the prediction
accuracy can be slightly different. It is observed that Bayes factors are sensitive to the
selection of unknown parameters from informative prior distributions, which has a greater
likelihood of influencing the posterior distribution. As a consequence, it generates debates
regarding the selection of priors. According to Kass and Raftery (1995), non-informative
priors may also contribute to posterior estimate instability and convergence of the sampler
algorithm. Choosing informative priors and establishing a connection with expert opinion
are still the subject of debate in academic research, and interesting stories about them are
still being continued. Therefore, future work should use actual data of expert opinion,
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which may be feasibly conducted in the age of big data. Recently, there have been research
on the default prediction combined with expert opinion using machine learnings, such as
Lin and McClean (2001), Kim and Han (2003), Zhou et al. (2015), and Gepp et al. (2018).
However, these studies adopt machine learning techniques with single classifiers and
observable variables. Future work can adopt a meta-learning framework to examine and
predict defaults with expert opinion at the firm level.
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