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Abstract: This article deals with the identification of a superior forecasting method for market
liquidity using a calibrated Heston model for the bid/ask price path simulation instead of a standard
Brownian motion, as well as a compound Poisson process and inverse transform sampling for the
generation of the bid/ask volume distribution. We show that the simulated trading volumes converge
to one single value, which can be used as a liquidity estimator, and find that the calibrated Heston
model as well as the inverse transform sampling are superior to both the use of standard Brownian
motion and compound Poisson process.
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1. Introduction

This paper claims to use various optimization techniques in the context of financial
models, such as the Heston model. The goal is to apply these techniques to market liquidity
modeling and identify any superior forecasting quality to the liquidity estimation approach
using a standard Brownian motion. The first outstanding new idea within this work
is the application of various optimization techniques to the Heston model in order to
analyze its forecasting quality in contrast to the standard Brownian motion in the context of
market liquidity measurement. The second novel contribution of this article to the existing
literature is the application of inverse transform sampling to the volume-generating bid
and ask volume process of an order book. To estimate the liquidity, a simulation of the bid
and ask volumes is necessary. For this purpose, two methods are applied: the compound
Poisson process and inverse transform sampling. In order to compare their performance,
the chi-square test is performed.

Financial models are characterized by a set of parameters that describe price move-
ments of financial assets. In order to price and hedge financial products, stochastic models
are most often used in practice and applied for general risk estimation frameworks.

Heston (1993) developed a model for describing a movement of a stock price based on
the standard Brownian motion approach but added an important component: stochastic
volatility. Since a constant volatility is assumed in the classic framework, it may not be
appropriate to use such models to forecast future price developments. Heston’s stochastic
volatility model seems to be a better choice when modeling price fluctuations even though
it makes assumptions that might not be encountered in reality, such as normal distributed
returns in short time frames.

The application of stochastic volatility models is very broad. This paper focuses
especially on the application of the Heston model to market liquidity simulation.

Market liquidity describes the ability of a financial market to absorb additional trades
between market participants without affecting the price. When the price impact is strong,
we speak of the illiquidity of a market. In order to simulate market liquidity, a specific
parameter set is necessary to model trade capacity. This includes quoted bid and ask prices,
quoted bid and ask volumes, and traded prices and traded volumes.
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In order to simulate the Heston model as accurately as possible, frequent updates to
the parameters used for estimation are necessary.

The Heston model has been used in different areas of finance. These include the pricing
of derivatives and structured products, hedging, performance, and risk estimation. Many
articles address the application of the Heston model. Most works cover computational
implementation, such as Ingber (1996) or Kirkpatrick et al. (1983). Others give summaries
or overviews of the theoretical optimization techniques, such as Mikhailov and Ulrich
(2003) or Gatheral (2004). However, no existing research has compared various optimization
techniques applied to market liquidity measurement in the context of the the Heston model.

A rather new stream of research tries to capture the dynamics of the Bitcoin market
by calibrating various models to the existing options market, as discussed by Madan et al.
(2019). While their approach considers different financial models, their article focuses on the
comparison of various optimization techniques and on the broader underlying estimation
of market liquidity. Both techniques could also be applied to the calibration of the financial
models to Bitcoin option prices.

Mrazek and Pospísil (2017) calibrate the Heston stochastic volatility model to real
market data using several optimization techniques. They use known schemes, such as the
log-Euler, Milstein, QE, Exact, IJK, and a new method combining the Exact approach and
Milstein (E+M) scheme. They find the most precise to be the QE scheme of Andersen (2008).
However, for estimating market liquidity, the proposed methods in this article are shown
to be more effective.

Relying on market option data, fair values are calculated with the Heston model. Exact
fair prices can only be achieved by making use of algorithmic optimization techniques.
This optimization leads to a set of parameters that are then used to simulate the bid and
ask prices of the Euro Stoxx 50 Future (FESX).

Traded volume is an important factor for determining market liquidity. Since most
liquidity is generated at market and not via the limit order book, estimating at-market
volume is very difficult. The problem when simulating at market traded volume is that
point-wise simulation leads to a non-homogeneous movement that does not correspond
to reality.

The estimated traded volume serves as a good estimator of future expected market
liquidity. Market liquidity is highly linked to market risk since illiquidity leads to high
risk. Therefore, it is obvious to link risk classification to the value of future expected
market liquidity.

The scope of this research is on the computational implementation of a valid market
liquidity estimation. This research aims to show that various simulation techniques exist to
estimate future liquidity. It is likely that simulated traded volumes will not converge to the
number of realized traded volumes due to the fact that the simulated quotes are compound
Poisson-distributed random variables. Therefore, an approximation algorithm might be
necessary to generate values that are converging due to the law of large numbers.

The basis for this article is the working paper by Unger and Hughston (2010), which
examines the liquidity-generating pricing process. It incorporates two standard Brownian
motions that represent the price process of the buyer and the seller. The intersection of the
two Brownian motions serves as the indicator for the corresponding volume-generating
process and, therefore, as the indicator variable for the points in time when liquidity is
being generated. A simulated trade occurs by taking the minimum of two quoted sizes.
This means if a buyer wants to buy, for example, 50 units at a certain price, and a seller
agrees on that price but only wants to trade 10 units, then a liquidity of 10 units is generated.
Since the quoted volume is assumed to be simulated by a compound Poisson process, the
law of large numbers yields exponentially distributed random numbers.

The usual way to describe the price dynamics of an asset price process is to assume
conditions, such as stochastic independence of increments, finite variation, and driving
factors. Such factors may encompass a drift term, stochastic volatility, speed of mean
reversion, or correlation terms. In order to generate a price process that is close to reality, it
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is necessary to update the randomized price movement with the implied volatilities and
the subsequent traded prices of the corresponding derivatives. This means that without
having a method to reduce the error between the estimated value and the realized value, it
is impossible to stick to the real price development.

The problem with stochastic models is that a closed-form solution for every kind of
model does not exist. In such a case, numerical solutions are needed. These numerical
computations need to be calibrated to current market data. Since regular calibration
techniques require a lot of computational resources, the focus of this work lies in the
application of robust calibration.

One important calibration parameter that is widely used for pricing financial products
is implied volatility. The Heston model assumes stochastic volatility, which seems to reflect
reality better than constant volatility, as used in the classic Black–Scholes framework. The
standard approach is the least-square type calibration. The shortfall of this approach is its
sensitivity to the choice of the initial point: The point of convergence depends on the point
of departure.

On the basis of the obtained parameters, a simulation of expected traded volume will
be performed. The parameters needed for estimation of the volatility parameter v0 are
{κ, θ, σ, ρ}, where κ is the mean reversion rate, θ denotes the long-run variance, σ is the
volatility, and ρ is the correlation. The error resulting from the least square calibration is
subject to optimization procedures.

To reduce this error, several optimization methods exist, such as genetic algorithms
(GA) Poklewski-Koziell (2012), the particle swarm optimization technique (PSO)
Ruiz et al. (2015), the Levenberg–Marquardt method (LM) Lu et al. (2007), and the Nelder–
Mead Simplex method (SM) Spall (2001). Not many papers have dealt with these kinds of
optimization techniques in terms of financial market data calibration. The application to
liquidity estimation outlines the novelty of this research.

A potential extension of this article could be the consideration of a regime-switching
Markov model, similar to the work of Mehrdoust et al. (2023). They calculate American
put option prices using the Levenberg–Marquardt optimization by calibrating a regime-
switching double Heston model. For future research, their approach could be applied to all
of the optimization techniques presented in this article.

Poklewski-Koziell (2012) uses genetic algorithms to calibrate the Heston model to
synthetically generated data. This approach is being used in this article in order to eval-
uate its performance with the other optimization techniques. Using the approach of
Gilli and Schumann (2010), the option bid and ask prices and volumes are used in this
framework to calibrate option prices by application of the particle swarm optimization tech-
nique to the Heston model. According to Beltrami (2009–2010), the Levenberg–Marquardt
optimization locates the minimum of a function that is expressed as the sum of the squares
of non-linear functions. In our context, its application is to optimize the relevant Heston
parameters so that the sum of the squares of the deviations to the realized price values
becomes minimal.

All these optimization techniques are performed in order to minimize the estimation
error between the Heston option price and the realized option price under the condition of
minimizing the sum of the squared percentage errors between model- and market-implied
volatilities Bauer (2012); Yang et al. (2010).

The structure of the paper is as follows. In Section 2, the liquidity model used to
generate the bid and ask price, and the volume process is described. In Section 3, the
model for calibrating the Heston model is presented. Moreover, the different optimization
techniques and their validations are discussed. Section 4 presents the data and results.
Finally, the performance of the calibrated Heston model and the standard Geometric
Brownian motion is compared in Section 5. Section 6 concludes the paper.
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2. Model Description

The starting point of our research is the liquidity intersection model by Unger and
Hughston (2011). It defines a liquidity-generating process based on four key parameters
that prevail on market: bid price, ask price, bid volume, and ask volume. The mechanics
are as follows: The bid and ask prices are simulated independently by Geometric Brownian
motions as well as the corresponding bid and ask volume processes, which are simulated
by compound Poisson processes. Every time the bid price reaches the level of the ask
price, or exceeds it, a stopping time τ is defined. This stopping time refers to the time at
which liquidity is generated by the minimum of the prevailing quoted bid and ask volumes.
By repetition and averaging of the procedure, the simulated traded volume converges to
one single value, depending on the bid/ask spread. This singular value is the estimated
liquidity for the time period of the simulation of the corresponding asset.

The described simulation is conducted under the assumption of normal distributed
random variables and by estimation of µ and σ. These are the input parameters for the
Geometric Brownian motions, which serve as the driving random price processes of the
bid and ask prices. The procedure applies the Black–Scholes framework and all of its
properties. The point of interest is where we assume a different underlying price process
of the liquidity-generating process. For this purpose, we apply the Heston model and
show how the liquidity value behaves when the Heston model is calibrated with four
different optimization methods. These are the previously mentioned genetic algorithms
(GA), particle swarm optimization technique (PSO), Levenberg–Marquardt method (LM),
and Simplex method (SM).

For the estimation of market liquidity, we assume two stochastic processes for the
development of the bid (i) and ask (j) prices, two compound stochastic processes for
simulation of the bid (i) and ask (j) volumes, and an algorithm for the calculation of the
arithmetic mean of the traded volumes over a certain period of time. The arithmetic mean
is calculated by dividing the generated traded volume during a certain time interval by the
total number of time steps.

2.1. Simulation of Bid (i) and Ask (j) Prices

For the simulation of the prices, we propose a multivariate Geometric Brownian
motion and Heston model and compare the estimated results.

The multivariate Geometric Brownian motions for simulation of the price process
of the buyer Si and the price process of the seller Sj with µi/j (price drift) and σi/j (price
volatility) can be developed as follows:

dSi/j(t)
Si/j(t)

= µi/jdt + σi/jdWi/j(t), (1)

where the correlation between the Wiener bid and the ask processes Xi and Xj is denoted
as ρ.

The Heston model assumes a stochastic volatility development of the bid (i) and
ask (j) prices Si/j with parameters µi/j (price drift), Vi/j (price variance), κi/j (rate of
mean reversion), ωi/j (long run variance), σi/j (volatility of variance), and Wi/j (Standard
Brownian movements). Thus, for the bid dynamics, we use:

dSi(t)
Si(t)

= µidt +
√

Vi(t)dW1
i (t), (2)

dVi(t) = κi(ωi −Vi(t))dt + σi

√
Vi(t)dW2

i (3)

and for the ask price dynamics:

dSj(t)
Sj(t)

= µjdt +
√

Vj(t)dW1
j (t), (4)
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dVj(t) = κj(ωj −Vj(t))dt + σj

√
Vj(t)dW2

j (5)

where W1/2
1 and W1/2

2 are correlated by dW1/2
1 · dW1/2

2 = ρ1/2dt due to the leverage effect
between the asset price and instantaneous volatility.

2.2. Simulation of Bid (i) and Ask (j) Volumes

Parallel to the bid and ask price process, we have two corresponding bid and ask
volume processes running. Therefore, we propose two methods:

2.2.1. Compound Poisson Process

The dynamics of the volume processes Qi and Qj are assumed to follow a compound
Poisson process with a jump rate λi/j. Thus, for the processes of the bid and ask volumes,
we set the following probability functions:

P(Qi(t) = n) = e−λit (λit)n

n!
, (6)

P(Qj(t) = n) = e−λjt
(λjt)n

n!
, (7)

where Qi(t) and Qj(t) denote the submitted volume quote n that a buyer or a seller wants
to buy or sell, respectively, at a time t.

2.2.2. Inverse Transform Sampling

The dynamics of the volume processes Qi and Qj are assumed to be simulated with a
inverse transform sampling as follows:

Let

P(Xi = xk
i ) = pk

i , k = 1, 2, ...ni, with
ni

∑
k=1

pk
i = 1 (8)

P(Xj = xk
j ) = pk

j , k = 1, 2, ...nj, with
nj

∑
k=1

pk
j = 1 (9)

be the probability mass function (PMF) of the discrete random variables Xi (bid volume)
and Xj (ask volume) calculated by historical data with ni quoted bid volumes xk

i , k = 1...ni

and nj quoted ask volumes xk
j , k = 1...nj. Then, the PMF of the quoted bid (i) and ask (j)

volumes at a time t are given, respectively, by:

P(Qi(t) = xk
i ) = P(F(xk−1

i ) ≤ U ≤ F(xk
i )) (10)

P(Qj(t) = xk
j ) = P(F(xk−1

j ) ≤ U ≤ F(xk
j )) (11)

with F(xk
i/j) denoting the cumulative distribution function (CDF) of the historical quoted

bid (i) and quoted ask (j) volumes at a time t calculated from the PMF

F(xk
i/j) =

k

∑
s=1

ps
i/j (12)

and U denotes a uniform random variable between 0 and 1.
Since for x, y ∈ [0, 1] and x ≤ y

P(x ≤ U ≤ y) = y− x (13)
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we can easily prove that inverse transform sampling could be a good estimation for the
development of the bid (i) and ask (j) volume processes:

P(Qi/j(t) = xk
i/j) =

k

∑
t=1

pt
i/j −

k−1

∑
t=1

pt
i/j = pk

i/j (14)

2.3. Liquidity Estimation

The resulting compound volume process Y(t) at a time t characterizes the volume-
generating process induced by trading.

Y(t) =
{

min{Qi(t), Qj(t)} if Si(t) ≥ Sj(t)
0 o.w.

. (15)

The result is a non-homogeneous compound process. The min condition ensures
that the minimum amount of two matched quantities is listed as a transaction, or traded
volume, responsible for the market impact and its costs. By matching the bid and ask prices
and taking the average of each possible generated volume, we obtain the average traded
volume (liquidity) over a certain time period n:

E[Y] = ∑n
t=1 Y(t)

n
(16)

3. Optimization

To simulate of the bid and ask prices, we proposed a Geometric Brownian motion and
Heston model.

Since the GBM has the lognormal distribution with parameters (µ− σ2

2 t) and σ
√

t for
t ∈ [0, ∞], we can use the average mean value as the estimator for µ and the standard
deviation as the estimator for σ, calculated from the historical data.

The Heston model is based on the assumption that the volatility of the underlying asset
is stochastic and includes more parameters requiring estimation. To conduct an estimation,
we use the theoretical plain vanilla bid/ask option price. We proceed by developing an
analytic expression for the Fourier transform of the option price and then re-obtain the
price by Fourier inversion.

For optimizing the order submission flow on the ask volume as well as on the bid
volume, we perform a chi-square optimization. Our null hypothesis states that the real
arrival times of the conducted trades follow a compound Poisson distribution or an inverse
Fourier transform.

3.1. Optimization of Heston Parameters

In order to validate the effectiveness of the Heston model optimization, we estimate
the Heston parameters by using four different techniques: 1. genetic algorithms, 2. particle
swarm optimization 3. Levenberg–Marquardt, and 4. Nelder–Mead Simplex.

We perform these optimization techniques in order to minimize the root mean square
error between the estimated plain vanilla Heston option price and the realized option price
of option i on the estimation day:

arg minΩ

√
∑N

i=1(C0(i, r, Mi, S, Ki)− Ci)2

N
, (17)

where Ω is the set of Heston parameters to be estimated, N is the number of options on the
estimation day, C0 is the Heston call function denoting the dollar-adjusted plain vanilla
call option price, r is the interest rate, Mi the maturity of option i, S the closing price of the
underlying asset, and Ki the strike of option i.
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In order to calculate the plain vanilla option prices, e.g., the Fast Fourier Transform
(FFT) can be applied Carr and Madan (1999). Assuming no dividends and a constant
interest rate r, the initial option value C0 is

C0 = SΠ1 − Ke−rTΠ2, (18)

with risk-neutral probability that the option matures in-the-money:

P(ST > K) = Π2 =
1
2

1
π

∫ ∞

0
Re(

eiuln(K)φT(u)
iu

)du (19)

and the delta of the option Carr and Madan (1999)

Π1 =
1
2

1
π

∫ ∞

0
Re(

eiuln(K)φT(u− 1)
iuφT(−i)

)du, (20)

where φT(u) denotes the characteristic function of ln(ST), which is

φT(u) =
∫ in f ty

−∞
eiusqT(s)ds, (21)

qT denoting the risk-neutral probability of the log-price of the underlying Putschögl (2010).
Since the integrand is singular at u = 0, FFT cannot be used to evaluate the integral.

However, to make use of the speed advantage of FFT, we make use of the relation of the
initial call option value CT(k) and the risk-neutral density qT(s) by

CT(k) =
∫ ∞

k
e−rT(es − ek)qT(s)ds. (22)

CT(k) tends to S0 as k tends to ∞, which indicates that the call price function is not square-
integrable. However, the FFT can be applied when using the modified call price cT(k)
defined by

cT(k) = exp(αk)CT(k) for α > 0. (23)

With the inveres transform, we can obtain CT(k) by

CT(k) =
exp(−αk)

π

∫ ∞

0
e−ivkΦ(ν)dν, (24)

where

ΦT(ν) =
e−rTφT(ν− (α + 1)i)

α2 + α− ν2 + i(2α + 1)ν
. (25)

For out-of-the money options, the call price can be obtained with the Fourier transform
ξT(ν) of zT(k) for

ξT(ν) =
∫ ∞

−∞
eiνkzT(k)dk. (26)

By inversion of this transform, we obtain

zT(k) =
1

2π

∫ ∞

−∞
e−iνkξT(ν)dν, (27)

with Carr and Madan (1999)

ξT(ν) = e(−rT)(
1

i + iν
− erT

iν
− φT(ν− i)

ν2 − iν
). (28)
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Since we are now able to generate option prices based on stochastic volatility, we can
now simulate the bid and ask of the stock price using the Heston model.

The calibration of the Heston parameters follows the approach of the multi-asset
Heston model. This allows us to simulate the development of bid and ask prices while
taking into account the high correlation Lichters and Markus (2016).

Since the quoted bid and ask prices in the order book do not always correspond to
realized traded prices (too high or too low), a selection of the optimal options for the
calibration of the Heston model is necessary. For this reason, the options were tested by
maturity and moneyness levels, as well as the optimal amount of options in the sample
and the historic sampling period.

In order to solve the optimization problem, four different techniques are applied and
compared by validating their accuracies within the Heston model to the realized historical
prices of the options.

3.1.1. Heston Model Calibration with Genetic Algorithms

Genetic algorithms (GAs) are rooted in the principles of natural selection and evolution,
favoring the selection of stronger individuals within a population over weaker ones. This
concept is harnessed by GAs to optimize the relevant parameters of the Heston model. The
optimization process revolves around evaluating how effectively individual parameters
within the parameter space contribute to minimizing the objective function. Each individual
parameter is assigned a fitness value based on its ability to minimize the difference with
the objective function. Parameters that align well with the objective function, thus leading
to better fitness scores, are granted the privilege of reproducing. This reproduction process
forms the basis for creating subsequent generations within the population. As generations
progress, the genetic algorithm iteratively refines the parameter values, allowing for the
emergence of increasingly effective solutions in the pursuit of optimizing the Heston model.

3.1.2. Heston Model Calibration with Particle Swarm Optimization

Particle swarm optimization (PSO) is a computational algorithm for finding minima
in multi-dimensional spaces. Unlike genetic algorithms (GAs), in which individuals evolve
through selection, crossover, and mutation, PSO employs a population of particles that
continuously move within the solution space, adjusting their positions based on their
experiences and those of their neighbors Ruiz et al. (2015). This swarm intelligence ap-
proach makes PSO particularly effective in identifying the correct minimum, even in the
presence of multiple solutions, making it valuable for global optimization tasks due to its
computational efficiency.

3.1.3. Heston Model Calibration with Levenberg–Marquardt

The Levenberg–Marquardt method is the industry standard when it comes to opti-
mizing multivariate nonlinear systems represented as least squares problems. LM is an
iterative method for finding the minimum of a function expressed as the sum of the squares
of nonlinear functions Beltrami (2009–2010). An advantage of using Levenberg–Marquardt
is its fast convergence ability over all other optimization methods. As shown in this article,
this property holds also for the estimation process of the Heston parameters.

3.1.4. Heston Model Calibration with Nelder–Mead Simplex

The Nelder–Mead simplex method is a nonlinear optimization approach that generates
new points in or near a geometric object at each iteration. It uses a reflection step to move
from high-energy regions to low-energy regions. Calibration of the Heston model is
complete when the simplex becomes small enough Kienitz and Wetterau (2012).
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3.1.5. Heston Model Calibration with Levenberg–Marquardt Combined with
Genetic Algorithms

Due to the large amount of data, high frequency of the simulations, and complex-
ity of the closed Heston formula for calculating option prices, the computer run times
for optimizing Heston parameters are very high. For this reason, we have chosen weak
termination conditions (maximum function evaluation, maximum iterations, termina-
tion tolerance on the function value). The calibration results are very satisfactory for all
optimization methods.

Nevertheless, we also tested a combination of Levenberg–Marquardt and a genetic
algorithm by using the optimal parameters of LM as starting parameters for the GA. This
allows us to improve the optimization error (see results below).

3.2. Chi-Square Optimization Test of Bid and Ask Volume

For the simulation of the order submission flow, we test for two different arrival time
distributions for both the ask and bid sides: compound Poisson-distributed and inverse-
transformed arrival times. Our null hypothesis states that these simulated arrival times
correspond to the real order submission arrival times:

• H0: The bid/ask volume generated by the compound Poisson process and inverse
transform has a statistically significant association with the cumulative distribution
function of the real observed bid/ask volume data.

• HA: The bid/ask volume generated by the compound Poisson process or inverse
transform is distinct from the cumulative distribution function of the real observed
bid/ask volume data.

H0 is accepted if

1− pvalue = P[χ2 > χ2
0.05|H0] > 0.05 (29)

In order to test this assumption, we conduct a chi-square test for different time intervals
and take the arrival times that best match reality.

The compound Poisson process is a distribution that consists of two parameters, λ
and n, which measure the arrival time and volume, respectively. To estimate λ, we take
a sample length of real order submissions, which serves as the mean arrival time for our
simulation:

λ̂ =
1
n

n

∑
i=1

xi, (30)

where xi is the order submissions per time unit. λ serves as a good estimator for the
maximum likelihood method. To estimate n, we take historical data and calculate the mean
value of the bid/ask volumes for a specific time period.

For the inverse-transformed distribution, we take a random sample from the past
based on the PMF.

In order to perform a chi-square test for the simulated ask and bid order submission,
we classify for both methods:

• ao
i : the number of ask order submissions;

• ae
i : the expected number of ask order submissions;

for the ask volume side, as well as

• bo
i : the number of bid order submissions;

• be
i : the expected number of bid order submissions;

for the bid volume side and conduct the test

χ2
a =

(ao
i − ae

i )
2

ae
i

(31)
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for the ask-volume side, as well as

χ2
b =

(bo
i − be

i )
2

be
i

(32)

for the bid volume side.

4. Validation of Parameter Optimization

This section provides the results of the parameter estimation using FESX50 Future
option data as well as the statistical test results from the bid/ask volume chi-square
optimization. For the FESX50 parameter optimization, we compare the root mean square
errors of the four different optimization techniques, i.e., genetic algorithms (GA), particle
swarm optimization (PSO), Levenberg–Marquardt (LM), and Nelder–Mead Simplex (NM).
The parameters of interest are the Greeks κ, θ, σ, ρ , and v0 needed to determine the price of
an option, priced with the Heston model.

For the bid/ask volume chi-square optimization, we provide in-sample as well as
out-of sample test results for the compound Poisson process and inverse transformation.

In order to figure out the optimal model choice for the calibration of the Heston model,
we only take the bid prices due to computational reasons, since it exhibits a high correlation
of more than 92% with the ask prices. This high correlation has also been shown by Lichters
and Trahe in Lichters and Markus (2016). This indicates that the model choice for the ask
prices would be the same as for the bid prices. Nevertheless, it is important to stress that,
for the simulation of the stochastic processes, both bid and ask data are used.

4.1. Validation of Heston Optimization

Data Overview

The time frame used for testing is 27 April 2015–30 December 2015, the source for the
option data shown in Table 1 and Figure 1 is Interactive Brokers, and the source for the
Euribor interest rate data shown in Table 2 is Bloomberg. We use 1301 call options with
different maturities and different strikes. On average, between 70 and 80 options were
traded daily.

Table 1. Data example for 20 August 2015.

Maturity (Years) Strike Price Stock Price Last Bid Last Ask

1.92 3318 3800 103.6 104.2
1.92 3318 3000 453.4 454.7
3.37 3318 4100 102.0 102.4
3.37 3318 4300 74.9 75.0
1.92 3318 3300 294.1 295.4
1.92 3318 3400 247.0 247.9
1.92 3318 2500 836.9 838.2
3.37 3318 2500 805.5 806.1
4.84 3318 3800 214.5 215.2
6.28 3318 3600 310.0 311.0
1.20 3318 3050 388.2 389.6
1.20 3318 3500 157.0 157.5
1.20 3318 3550 137.0 137.9
1.92 3318 3250 319.8 321.0
1.92 3318 3350 269.7 270.8
1.20 3318 3600 113.6 113.6
1.92 3318 3650 151.0 151.7
1.20 3318 3750 74.5 74.6
1.20 3318 3800 58.0 58.3
1.92 3318 3850 98.5 98.9
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Table 1. Cont.

Maturity (Years) Strike Price Stock Price Last Bid Last Ask

1.20 3318 3900 43.0 43.1
1.20 3318 4000 26.6 26.8
2.64 3318 3500 215.0 215.2
2.64 3318 4000 84.0 84.2
1.20 3318 4100 19.3 19.4
1.20 3318 4400 6.1 6.1
1.20 3318 4500 3.2 3.2
1.20 3318 4600 1.6 1.6
1.20 3318 4700 1.8 1.8
1.20 3318 5000 0.9 0.9
1.20 3318 4150 19.6 19.6
4.84 3318 4300 133.0 133.3
0.84 3318 3300 237.4 238.6
0.84 3318 3400 203.0 204.2
0.84 3318 3450 179.4 180.7
0.84 3318 3500 158.5 159.1
0.84 3318 3550 136.5 137.4
0.84 3318 3600 114.0 114.1
0.84 3318 3650 88.7 89.2
0.84 3318 3700 77.9 78.3
0.84 3318 3800 49.0 49.1
0.84 3318 3850 42.9 43.1
0.84 3318 3900 34.4 34.4
0.84 3318 3950 26.7 26.8
0.84 3318 4000 20.0 20.1
0.84 3318 4100 12.0 12.0
0.84 3318 4200 7.4 7.4
0.84 3318 4250 6.4 6.4
0.84 3318 4300 5.1 5.1
0.84 3318 4350 3.8 3.8
0.84 3318 4400 2.8 2.8
0.84 3318 4450 2.4 2.4
0.84 3318 4600 1.5 1.5
0.84 3318 4500 2.0 2.0
1.20 3318 4550 2.6 2.6

Figure 1. End of day last bid prices of all traded call option on 20 August 2015.
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Table 2. Euribor interest rates on 20 August 2015.

Maturity (Years) Euribor Rate

0.02 −0.14%
0.05 −0.13%
0.08 −0.09%
0.17 −0.05%
0.25 −0.03%
0.50 0.04%
0.75 0.09%
1.00 0.16%

For the estimation of the parameters, we need to use different maturities. For calcula-
tion, we do a linear interpolation by

r(t) = r(t + 1)− r(t− 1)× ∆t− ∆(t− 1)
∆(t + 1)− ∆(t− 1)

, (33)

where rt is the interest rate that needs to be determined at a time t with the maturity ∆t
and r(t− 1), r(t + 1) are the given short rates at a time t− 1, or t + 1, with the maturity
∆(t− 1), or ∆(t + 1), respectively. By interpolation, we obtain the following sequence of
Euribor interest rates (Figure 2):

Figure 2. Interpolated Euribor interest rates on 20 August 2015.

Optimization Options

For the estimation of the Heston parameters, we use the same strat values, same lower
and upper bounds, and the same termination conditions for all four optimization methods
(Tables 3 and 4). These are the optimal start parameters calculated from the historical
bid/ask call data.
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Table 3. Lower bounds, upper bounds, and starting values of parameter estimation.

Kappa Theta Sigma Rho v0

Lower Bounds 0.0001 0.0001 0.0001 −1 0.0001
Upper Bounds 100 10 10 1 10

Start 10.9 0.01 0.3 0.3 0.04

Table 4. Termination conditions.

Maximum Function Evaluation 1000
Maximum Iterations 20,000

Termination Tolerance on the Function Value 0.001

The given input optimization parameters are tested based on all traded bid and ask
options on 20 August 2015. Out of sample testing are the traded options on 21 August 2015.
The calculated optimal Heston parameters are shown in Table 5.

Table 5. Example: Heston parameter estimation for 20 August 2015.

GA PSO LM NMSim

kappa 0.0001 33.97239 11.93285 10.09133
theta 3.044759053 0.013567 0.014003 0.014909

sigma 0.626419737 0.0001 0.331356 0.382673
rho −0.643085008 0.304603 −0.7736 −0.61471
v0 0.063062179 0.48146 0.200713 0.169579

Figures 3 and 4 show the results of calibrating the parameters of the Heston model
both in-sample and out-of-sample.

In-Sample Testing

Figure 3. In-sample market vs. estimated traded call options at 20 August 2015.

Out-of-Sample Testing
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Figure 4. Out-of-sample market vs. estimated traded call options at 21 August 2015.

Parameter Estimation Results by Maturity

We can see in the Tables 6 and 7 that blocks of short maturities lead to smaller RMSEs
in in-sample as well as out-of-sample estimations. In particular, 0–3 months maturity
outperforms longer dated maturities. For the estimation procedure, we can see that LM
+ GA generates the smallest RMSE in this short maturity block in-sample as well as out-
of-sample. In the intermediate (3–6 months) maturities, LM + GA outperforms the other
optimization methods in-sample but not out-of-sample. To summarize, we can see a strong
dominance of the LM + GA method compared to the other optimization methods in-sample
as well as out-of-sample.

Table 6. RMSEs of parameter estimation by maturity in-sample.

Maturity GA PSO LM NMSim LM + GA

0–3 Months 23.21 10.51 8.90 9.56 7.42
3–6 Months 20.99 11.73 9.14 9.74 8.21

6 Months–1 Year 34.02 15.48 9.71 10.86 8.24
>1 Year 64.35 17.56 13.48 12.40 11.32

Table 7. RMSEs of parameter estimation by maturity out-of-sample.

Maturity GA PSO LM NMSim LM + GA

0–3 Months 23.60 15.83 14.66 15.00 13.34
3–6 Months 26.14 17.09 15.16 14.90 15.03

6 Months–1 Year 35.86 18.20 14.58 14.93 14.25
>1 Year 68.58 27.23 24.16 28.31 23.15

Figure 5 shows the option prices for in-sample estimated parameters (27 April 2015–30
December 2015) for a long maturity option with maturity 16 December 2016, Strike = 3800:
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Figure 5. In-sample market vs. estimated traded call option with long maturity.

Figure 6 shows the option prices for of out-of-sample parameter estimation (28 April
2015–30 December 2015) for options with maturity 16 December 2016, Strike = 3800 (Pa-
rameters are estimated using data 24 h prior):

Figure 6. Out-of-sample market vs. estimated traded call option with long maturity.

Figure 7 shows the option prices of in-sample (27 April 2015–30 December 2015) esti-
mated parameters for a short maturity option with maturity 15 January 2016, Strike = 3500:
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Figure 7. In-sample market vs. estimated traded call option with short maturity.

Figure 8 shows the option prices of out-of-sample parameter estimation (28 April 2015–
30 December 2015) for option with maturity 15 January 2016, Strike = 3500 (Parameters are
estimated using data 24 h prior):

Figure 8. Out-of-sample market vs. estimated traded call option with short maturity.

Parameter Estimation Results by Moneyness

In-sample RMSEs are smallest using the LM + GA method for at-the-money as well
as out-of-the-money options. Using the in-the-money option, we can see that the NMSim
method produces the smallest RMSE in-sample (Table 8). We obtain similar results for the
out-of-the-sample test (Table 9), which indicates that LM + GA works best when using at-
the-money as well as out-of-the-money options for parameter estimation, whereas NMSim
generates the smallest RMSE using in-the-money options for parameter estimation. Since
LM + GA provides the strongest test results, we apply this combination for the calibration
of the Heston parameters.
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Table 8. In-sample estimation: RMSE for 27 April 2015–30 December 2015.

Moneyness GA PSO LM NMSim LM + GA

At the money 49.00 18.98 12.59 13.80 11.52
Out of the money 45.53 11.90 8.00 8.20 7.95

In the money 53.84 27.78 22.41 21.62 22.04

Table 9. Out-of-sample estimation: RMSE for 28 April 2015–30 December 2015.

Moneyness GA PSO LM NMSim LM + GA

At the money 36.33 25.40 22.27 23.21 21.34
Out of the money 48.25 16.31 15.26 18.35 13.22

In the money 61.33 34.81 34.35 34.22 34.26

Moreover, we determine the optimal time frame for historic parameter estimation.
From all of these combinations, we then rank the options due to their best calibration
results. Our tests show that the optimal Heston parameters can be calculated using data
from the best 23 options of the last five days, selected by maturity and moneyness.

Next, the corresponding graphs using the LM method are presented. Figures 9–11
show the prices of the at-the-money, out-of-the-money and in-the-money call option prices
for the in-sample calibration.

Figure 9. In-sample market vs. estimated traded call option at-the-money call option.
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Figure 10. In-sample market vs. estimated traded call option out-of-the-money call option.

Figure 11. In-sample market vs. estimated traded call option in-the-money call option.

Figures 12–14 show the prices of the at-the-money, out-of-the-money and in-the-money
call option prices for the out-of-sample calibration.
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Figure 12. Out-of-sample market vs. estimated traded call option at-the-money call option.

Figure 13. Out-of-sample market vs. estimated traded call option out-of-the-money call option.
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Figure 14. Out-of-sample market vs. estimated traded call option in-the-money call option.

RMSE of All Options

The general test results show the smallest RMSE for the LM method, which indicates
that LM is superior to the other optimization methods. Not only does LM generates the
smallest RMSE, but it is also the fastest optimization method in terms of computational
time (Table 10).

Table 10. Estimation RMSEs of all options 27 April 2015–30 December 2015.

GA PSO LM NMSim LM + GA

In Sample 46.85 15.30 11.27 11.85 10.23
Out of Sample 82.78 29.51 19.25 22.45 17.36

Computational Time in Seconds 38.106 61.248 2.610 5.742 42.987

Even though LM yields the best calibration results among all optimization methods,
we can achieve an improvement in the test results via a combination of the LM method and
genetic algorithms.

4.2. Validation of Chi-Square Optimization

For validation of the chi-square test results, we take the historic FESX50 tick data and
accumulate all tick changes, regardless of price or volume changes or new order submission,
at each second. We take the tick data from 26 April 2015 to 30 December 2015 and test
in-sample as well as out-of-sample. The in-sample test comprises 1–50 days, whereas the
out-of-sample test takes these 1–50 in-sample days as an estimation set and tests 1 day
out-of-sample.

Table 11 shows that H0 for the compound Poisson distribution can be rejected for all
tested in-sample time lengths. The real observed order submission arrival times cannot be
described in-sample by a Poisson distribution.
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Table 11. In sample chi-square test results for compound Poisson CDF.

Nmbr. of Days λ χ2 1 − p Sign. Level H0

1 252.69 18,224.5 0.00 0.05 rejected
2 249.09 34,218.95 0.00 0.05 rejected
3 250.71 25,293.35 0.00 0.05 rejected
4 248.54 36,186.20 0.00 0.05 rejected
5 249.74 44,040.30 0.00 0.05 rejected
10 246.60 25,882.64 0.00 0.05 rejected
20 242.14 24,100.07 0.00 0.05 rejected
50 238.20 31,618.24 0.00 0.05 rejected

Table 12 shows that H0 for compound Poisson distribution can be rejected for all tested
out-of-sample time lengths. The real observed order submission arrival times cannot be
described out-of-sample by a Poisson distribution.

Table 12. Out-of-sample chi-square test results for compound Poisson CDF.

Nmbr. of Days λ χ2 1 − p Sign. Level H0

1 266.39 38,640.16 0.00 0.05 rejected
2 266.39 42,448.99 0.00 0.05 rejected
3 266.39 46,458.58 0.00 0.05 rejected
4 266.39 64,251.93 0.00 0.05 rejected
5 266.39 62,840.45 0.00 0.05 rejected
10 266.39 31,743.15 0.00 0.05 rejected
20 266.39 53,555.67 0.00 0.05 rejected
50 266.39 70,273.06 0.00 0.05 rejected

Table 13 shows that H0 for an inverse transformation can be accepted for all tested
in-sample time lengths, meaning that the real observed order submission arrival times can
be described in-sample by an inverse transformation.

Table 13. In-sample chi-square test results for inverse transformation.

Nmbr. of Days λ χ2 1 − p Sign. Level H0

1 252.69 974.55 0.70 0.05 accepted
2 249.09 926.65 0.95 0.05 accepted
3 250.71 1044.85 0.15 0.05 accepted
4 248.54 1016.62 0.34 0.05 accepted
5 249.74 968.73 0.75 0.05 accepted
10 246.60 1047.94 0.14 0.05 accepted
20 242.14 999.89 0.49 0.05 accepted
50 238.20 1042.93 0.16 0.05 accepted

Table 14 shows that H0 for an inverse transformation can be accepted for some tested
out-of-sample time lengths, meaning that real observed order submission arrival times can
partly be described out-of-sample by an inverse transformation.

To summarize, the best estimation result can be achieved by the choice of an inverse
transformation and the selection of a two-day time window.

The graphical representation of the compound Poisson PMFs shows that the historical
bid and ask order submission volumes are not compound Poisson-distributed whereas the
inverse transformation indicates very good chi-square test results.
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Table 14. Out-of-sample chi-square test results for inverse transformation.

Nmbr. of Days λ χ2 1 − p Sign. Level H0

1 266.39 16,446.98 0.25 0.05 accepted
2 266.39 22,647.4 0.57 0.05 accepted
3 266.39 23,652.11 0.00 0.05 rejected
4 266.39 27,027.48 0.01 0.05 rejected
5 266.39 25,916.66 0.48 0.05 accepted
10 266.39 32,191.94 0.00 0.05 rejected
20 266.39 38,135.89 0.21 0.05 accepted
50 266.39 56,267.96 0.00 0.05 rejected

As we can see in Figures 15 and 16, the histogram reveals that there are many seconds
during which there are no changes or new submissions in bid or ask orders. Therefore,
we can see many zeros in our test sample. In order to avoid distortions of the compound
Poisson process, we also test the compound Poisson process without these zero values.

Figure 15. Out-of-sample test results: market vs. estimated ask order volume submission compound
Poisson CDF.

Figure 16. Out-of-sample test results: market vs. estimated ask order volume submission compound
Poisson CDF without zero values.
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In contrast, Figures 17 and 18 show that inverse transform sampling is a better method
for simulating bid and ask volumes.

Figure 17. In-sample test results: market vs. estimated bid order volume submission inverse
transformation.

Figure 18. Out-of-sample test results: market vs. estimated bid order volume submission inverse
transformation.

5. Validation of Liquidity Estimation

After the application of the different optimization methods, we take a look at the
results and compare them to the results that emerge from the Black–Scholes framework
(BS), where the liquidity values were estimated at each minute due to computational
time restrictions. This setup is usually used for simulating price processes by assuming a
complete market. In the Heston framework, we have to deal with an incomplete pricing
world, which leads us to the necessity of adding a contingent claim to the replicating
portfolio. Therefore, BS serves as a benchmark for us. For each optimization technique,
we want to conduct the calibration procedure for estimation of the future market liquidity
and compare it to the estimation quality when using a standard Brownian Motion for
simulation of the bid and ask prices, as well as the traded volumes. This comparison gives
us just a relative measure of quality. Therefore, we also compare the estimated market
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liquidity to the realized one. For this purpose, we perform the market liquidity estimation
for each optimization method.

We can see in the Table 15 and in the Figure 19 or Figure 20 that the Heston model
outperforms the GBM model. This indicates that stochastic volatility is an important factor
in market liquidity modeling. Since GBM assumes a constant volatility, we can see that, by
using a powerful optimization method for parameter estimation, we can generate more
realistic results when modeling market liquidity.

Table 15. RMSEs of Heston and GBM models for liquidity estimation.

Heston 2.2836

GBM 3.2228

Figure 19. Comparison of realized market liquidity (yellow) vs. estimated market liquidity with
Heston model (blue) and GBM model (red) from 27 April 2015–30 December 2015.

Figure 20. Comparison of realized market liquidity (yellow) vs. estimated market liquidity with
Heston model (blue) and GBM model (red) on 21 August 2015.
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6. Conclusions

This work compares the estimation power of the Heston model and the Geometric
Brownian motion (GBM) model as well as inverse transformation sampling and a com-
pound Poisson process. The application is a unique approach to market liquidity estimation.

For the simulation of bid and ask prices, the Heston and GBM models are applied.
To calibrate the Heston parameters, several optimization methods are used, and their
estimation power in-sample as well as out-of-sample are compared by taking historic
data of Euro Stoxx 50 Future options. The estimation procedures for the Heston param-
eters are genetic algorithms (GA), the particle swarm optimization technique (PSO), the
Levenberg–Marquardt method (LM), and the Nelder–Mead Simplex method (SM). A supe-
rior estimation power of the LM method compared to the other optimization techniques
can be found. Further, for different option maturities, as well as for different moneyness
levels, a higher estimation power in shorter dated maturities can be found. The LM method
works best for out-of-the-money and at-the-money options, whereas the SM method works
best for in-the-money options. Generally, the LM method not only generates the smallest
RMSE but also performs best in computational time.

For simulation of the bid and ask volumes, two types of processes are applied: a
compound Poisson process and inverse transformation sampling. For a two-day sampling
window, the chi-square test indicates superiority to the inverse transformation sampling
compared to the compound Poisson process, since the historical bid and ask order sub-
mission volumes are not compound Poisson-distributed. By using inverse transformation
sampling, the forecasting error is significantly lower than with simulated volumes using
the compound Poisson process. This indicates that the best choice for the simulation of bid
and ask volumes is the inverse transformation sampling method.

For liquidity estimation, this means that by simulation of the bid and ask prices,
generated by the calibrated Heston model, it is possible to estimate market liquidity up to
29.14% better than with the GBM model. The results are robust for in-sample as well as
out-of-sample tests. The only drawback of using the Heston model is the high computation
time, which is necessary for calibration of the parameters and simulation of the prices.
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