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Abstract: We implement the VIX methodology on intraday data of a large set of individual equity
options. We thereby consider approaches based on monthly option contracts, weekly option contracts,
and a cubic spline interpolation approach. Relying on 1 min, 10 min, and 60 min model-free implied
volatility measures, we empirically examine the individual equity return–volatility relationship on
the intraday level using quantile regressions. The results confirm a negative contemporaneous link
between stock returns and volatility, which is more pronounced in the tails of the distributions.
Our findings hint at behavioral biases causing the asymmetric return–volatility link rather than the
leverage and volatility-feedback effects.

Keywords: model-free implied volatility; individual equity options; intraday volatility; leverage;
quantile regressions

1. Introduction

Volatility is a key input variable for assessing risk, pricing derivative products, and
developing trading strategies. As such, it has been and still is a central topic of research
in finance. While, in early times, volatility was most commonly calculated as realized
volatility (RV), derived from observed prices and their returns, the advent of exchange-
traded options enabled the derivation of so-called implied volatility (IV). An early example
is the derivation of IV by Latané and Rendleman (1976), who reversed the process of
option pricing to retrieve the volatility that is implied by traders and used the famous
Black and Scholes (1973) (B&S) formula for option pricing. The development of further
option pricing models, e.g., assuming stochastic volatility and interest rates or jumps in
the underlying process, has led to a corresponding development of these model-based
IV methods. Whereas the merit of this IV was initially challenged—based on forecasting
performance—it is nowadays considered the superior method for this purpose (see, e.g.,
the seminal review of Poon and Granger 2003). Despite IV’s superiority, its quality is
restricted by the assumptions and parameters of the option pricing model—unless you
dispense the idea of parametric models. The methodology developed in Britten-Jones and
Neuberger (2000), Demeterfi et al. (1999), and Carr and Madan (1997) uses the fact that
arbitrary payoffs can be replicated using prices from a portfolio of options—a strategy
called “option spanning”, which was developed much earlier by Breeden and Litzenberger
(1978); Green and Jarrow (1987); Nachman (1988). As it turns out, a portfolio of out-of-the-
money put and call options can be used to replicate the risk-neutral expected variance of
the underlying stock, with the only assumptions that its price process is continuous and
there is a constant risk-free rate. The perhaps most prominent application of this method is
the 2003 VIX, a volatility index for the S&P 500, developed and published by the Chicago
Board Options Exchange (CBOE). The VIX is designed to produce 30-day expected volatility
of the U.S. stock market, calculated from mid-quote prices of the S&P 500 Index (SPX)
call and put options. The VIX is defined as implied volatility for a fixed 30-day maturity,

J. Risk Financial Manag. 2024, 17, 39. https://doi.org/10.3390/jrfm17010039 https://www.mdpi.com/journal/jrfm

https://doi.org/10.3390/jrfm17010039
https://doi.org/10.3390/jrfm17010039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://orcid.org/0000-0002-0977-0939
https://orcid.org/0000-0002-5366-2070
https://doi.org/10.3390/jrfm17010039
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm17010039?type=check_update&version=1


J. Risk Financial Manag. 2024, 17, 39 2 of 19

quoted in annualized terms. It was originally founded in 1993 by Robert Whaley as a
model-based IV index on the S&P 100 and was intended to provide a basis for the trading of
volatility derivatives, which can be used for hedging portfolios against the risk of changes
in volatility (see Whaley 1993). Famously called the “Investor Fear Gauge”, it “is set by
investors and expresses their concerns about future stock market volatility” (Whaley 2000,
p. 12), implying that risk-averse investors “fear” increases in volatility. As a matter of fact,
the VIX has a significant negative relationship with the underlying S&P 500 index, which
supports this interpretation, although it is found to be “time-varying, asymmetric and
influenced by VIX-computation errors” (Gonzalez-Perez 2015, p. 3). Since its founding, the
VIX has been intensively studied and has sparked a branch of research on the development
of further model-free IV methods. Empirical research on the VIX covers its distributional
properties, its use as a proxy overall market risk factor, the development and pricing of
volatility derivatives, as well as respective trading strategies and its informational content
with respect to forecasting volatility. However, research on VIX has been mostly conducted
for market indices, like the S&P 100 and 500 and Nasdaq 100, and other national stock
market indices, like the German DAX. The CBOE already publishes VIX-like indices for
various individual equities, with examples including large-cap stocks like Amazon, Google,
Microsoft, Apple, and Goldman Sachs, beyond which research on individual equities is
scarce. On the individual level, Taylor et al. (2010) analyzed the forecasting performance for
the 149 S&P 100 constituents. Dennis et al. (2006) assessed the leverage effect for a portfolio
of 50 individual stocks and the S&P 100. Regarding frequencies, however, research is almost
exclusively conducted on a daily frequency and, if it covers intraday frequencies, employs
data on larger indices and is concerned with the development of model-free IV methods.
In her review, Gonzalez-Perez (2015) found only one paper that used VIX on an intraday
basis in order to assess the financial leverage effect, which was by Ishida et al. (2011), and,
more recently, another paper by Badshah et al. (2016) on intraday leverage using quantile
regressions. On a more general note, Andersen et al. (2021) recently conducted a descriptive
study of high-frequency trade and quote option data and emphasized the usefulness of
high-frequency option data.

We, therefore, calculate model-free implied volatility (MFIV) for individual equities
on an intraday level by using the full universe of options written on individual firm U.S.
equity at a 1-min frequency during the period from 1 February 2017 to 30 June 2017.
We offer descriptive insights into the data requirements, the calculation process, and the
MFIV properties.1 Subsequently, to showcase the usability of such measures, we apply
them to analyze the return–volatility relationship for individual equities on an intraday
basis using quantile regressions. We are able to implement reliable MFIV measures for
a sample of 138 individual equity options, whose available option contracts fulfill the
quality requirements put forward by Jiang and Tian (2005, 2007) at a 1 min frequency.
Concerning the return–volatility relationship, we confirm an asymmetric relationship
between contemporaneous returns and volatility, which is more pronounced within the
tail of the distribution corresponding to previous index-level-based findings for lower
frequencies, which have previously been explained to be potentially caused by behavioral
biases (compare Hibbert et al. (2008), Talukdar et al. (2017), Daigler et al. (2014), and
Badshah et al. (2016)). The remainder of the paper is structured as follows: Section 2
outlines the MFIV (VIX) methodology; Section 3.1 describes the data, while Section 3.2
outlines the implementation of MFIV on individual equity and offers descriptive insights.
Section 4 analyzes the return–volatility relationship, and we conclude in Section 5.

2. The VIX Methodology

Since 2003, the VIX has been calculated from S&P 500 index options, and the model-
free2 approach described by Demeterfi et al. (1999) and Britten-Jones and Neuberger (2000).
Based on an option set of at least 100 strike prices, the VIX replicates a variance swap on the
S&P 500. In its current whitepaper on the VIX, the CBOE (2023) implemented the variance
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replication strategy and calculated implied volatility based on the following formula (for a
detailed derivation, see Appendix A):

σ2 :=
2
T

(
∑

i

∆Ki

K2
i

Q(Ki)erT

)
− 1

T

(
F0

K0
− 1
)2

where r denotes the risk-free rate, K denotes the strike price, and Q(Ki) gives out-of-the
money option prices. Note that the CBOE measures the time T in years and uses calendar
days instead of trading days. The integral underlying this formula (see Appendix A) is
replicated numerically with a weighted sum using the weights ∆Ki := (Ki+1 − Ki)/2. At
the end of the strike-price range, the weight is calculated as the midpoint between the two
last (first) strike prices. F0 represents a theoretical forward price, calculated as

F0 := Ki + erT(C(Ki)− P(Ki))

where the difference between call (C) and put (P) prices, (C(Ki) − P(Ki)), is smallest.
Consequently, K0 represents the strike price immediately at or below F0. The CBOE applies
a selection theme to options, which uses call options for strikes higher than K0 and put
options for calls lower than K0. Ordering the options by their strike prices and ascending
(descending) from K0, all calls (puts) after two consecutive zero-bid quotes are left out of
the calculation.

The CBOE VIX is calculated with a maturity of 30 days. For this purpose, a “near-
term” and a “next-term” contract are designated, for which the MFIV is calculated. The
annualized 30-day MFIV, quoted as a percentage, is then derived via linear interpolation of
the MFIV from both contracts:

σVIX = 100
√(

ωT1σ2
1 + (1 − ω)T2σ2

2
)525, 600

43, 200

with the weights ω = T2−30
T2−T1

, where the subscripts 1 and 2 correspond to the near- and
next-term contracts, respectively.

The replication strategy underlying the above formula relies on the availability of a
continuum of strike prices. Real-world applications, however, are commonly faced with a
limited set of discrete strikes. Jiang and Tian (2007) showed that an insufficient range of
strikes leads to a downward bias in the calculated MFIV. The discreteness of strikes also
introduces errors if strikes are too widely dispersed. As Jiang and Tian (2005) showed,
reliable MFIV estimates can be obtained if the truncation point of each tail is 3.5 standard
deviations (SDs)3 from the at-the-money forward price F0. They further show that the
“discretization error”, which is induced by the spacing between adjacent strike prices, is
negligible below strike-price increments of 0.35 SDs.

Furthermore, prior to the introduction of weekly SPX options in 2014 (2003 VIX
method), the near-term contract was defined as having at least 7 days to expiration and the
next-term contract as the one with the consecutive expiration date. This 7-day minimum
was chosen to minimize pricing anomalies that might occur close to expiration. With the
introduction of the weekly SPX options (2014 VIX method), the selected contracts were
those with expiration dates greater than 23 and smaller than 37 days. Most CBOE equity
option contracts expire monthly on the 3rd Friday. For a subset of individual equity, such
as Apple, Amazon, or Goldman Sachs, contracts with weekly expirations are quoted. This
means that, at best, a constant maturity MFIV of seven days (or multiples of seven days) on
a weekly frequency can be calculated. In order to be able to offer higher frequencies and
other maturities, the CBOE uses intrapolation and extrapolation methods, using the MFIV
of two contracts with neighboring expiration dates.

The CBOE selection rule for the monthly option contracts only allows a minimum of
7 days to expiration, upon which the selection rolls over to the next set of contracts. In
certain cases, the interpolation can become an extrapolation. Jiang and Tian (2007) described
this as a potential source of error. However, weekly options, which allow for a more precise
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interpolation, are not quoted for all stocks, motivating the use of an alternative interpolation
approach. For our implementation on individual equities, we therefore intrapolate the
30-day MFIV using the information from a larger set of options. This should not only
reduce the size of jumps but also use the information content of the term structure.

3. Implementing Model-Free Implied Volatility for Individual Equities
3.1. Data and Data Processing

We obtain 1 min option data from the CBOE data store, which contains NBBO market
quotes for all equity option contracts traded on the CBOE.4 The sample covers the time
period from 1 February 2017 to 30 June 2017 on a 1 min frequency, covering 105 trading
days. The classic monthly contracts expire on the third Friday of each month and make
up the dataset for the 2003 VIX methodology. The 2014 VIX method uses these monthly
contracts and the weekly contracts that expire each Friday. For our cubic spline method,
we select all monthly contracts that have an expiration within 365 days.

The dataset contains 268 stocks, for which both monthly and weekly option contracts
are quoted. We structure our sample into common market capitalization categories defined
as “Mega” (>USD 200B), “Large” (>USD 10B), “Medium” (>USD 2B), and “Small” (>USD
300M) in order to judge the influence of size, as in Dennis et al. (2006). If, for a given minute,
there are no available traded strike prices, MFIV cannot be calculated. Furthermore, we
drop all stocks that exhibit more than 10 such missing values a day, which restricts our
sample to 178 stocks.

In order to prepare the MFIV calculation as per the CBOE (2023) whitepaper, option
prices Q(K) for each strike K are derived as the midpoint of the bid-ask spread. The prices
P for the respective underlyings are calculated in the same manner. The risk-free rate data
are based on “constant maturity treasury” or CMT rates, which can be obtained from the
U.S. Department of Treasury official resource center. Using a cubic spline interpolation and
the daily CMT quotes, the risk-free rate r is then calculated for each time to maturity up to
a one-minute-level precision.

3.2. Descriptive Analyses on Model-Free Implied Volatility for Individual Equities

We calculate the model-free IV for all stocks, times, and maturities, including such
observations where the nest of options has at least one quote for a put and a call. Analo-
gously to the standard VIX calculation, we use out-of-the-money quotes for the near- and
next-term contracts. We refer to the different interpolation methods and their respective
sets of option contracts by “WK” for the weekly 2014 method and “MN” for the monthly
2003 method. An example of option contracts and resulting MFIV for the WK and MN
methods are graphed in Figure 1 and exemplify the differences between the 2003 and 2014
VIX methods, i.e., what we refer to as the WN and MN measures.

At times where weekly and monthly contracts coincide (every third Friday in a month),
both methods have one common contract and show strong convergence, e.g., around the
peak at time t = 5000. However, there are times when no contracts are shared and the
MFIV measures differ systematically.

As panel (a) shows, the WK MFIV is always confined by its narrow corridor near- and
next-term contracts, whereas the MN MFIV in panel (b) has a wider corridor, depicted by the
narrower corridor of the gray lines visible in particular until about half of the depicted time
period. In panel (b), it is also visible that, when extrapolated, the MFIV measure (black line)
breaches the corridor, i.e., it results in values outside the (gray) corridor. This can lead to
substantial differences between the two methods. The idea of our cubic spline interpolation,
which we refer to as “SP”, is to employ the information of the complete term structure of
MFIV in order to reduce these differences and yield an alternative to the MN approach if
weekly contracts are not available. Figure A1 in the appendix illustrates the use of contracts
as near-term or next-term contracts for an exemplary underlying (AAPL). We developed an
R package for these calculations, which is available on https://github.com/m-g-h/R.MFIV,
accessed on 20 November 2023.

https://github.com/m-g-h/R.MFIV
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Figure 1. Option contracts used for the MFIV interpolation (gray) and resulting MFIV (black). Panel
(a) shows the weekly option contracts used for the WK approach, which usually form a narrow
corridor. Panel (b) shows the set of monthly option contracts used for the MN approach, which form
a wider corridor that is sometimes “breached”.

We use the amount, range, and spacing of the option strike prices as indicators of
data quality with respect to the MFIV calculation. Theoretically, MFIV is based on an
option portfolio with a continuum of strike prices ranging from zero to infinity. Empirically,
such a continuum is approximated with a set of quoted discrete strike prices. The CBOE
(2023) example includes 176 strike-price quotes for out-of-the-money calls and puts on the
SPX. Despite the fact that option quotes deep in the tails of the strike-price distribution
receive lower weights (proportional to 1

K2 ) and at some point have a negligible effect on
the resulting MFIV value, a limited strike-price range potentially incurs a “truncation
error”, which implies an underestimation of the true implied volatility, according to Jiang
and Tian (2005, 2007). As mentioned above, Jiang and Tian (2005) advocated a truncation
point of each tail of 3.5 SDs from the at-the-money forward price and spacing between
adjacent strike prices below strike-price increments of 0.35 SDs to derive reliable MFIV
estimates. Panel (a) in Table 1 provides an aggregated overview of our underlying option
data, grouped by the market capitalization of the underlying stocks. On average, the set
of all monthly options within a year, which we employ in our SP approach, shows the
highest strike-price range (Min K and Max K), followed by the MN and WK sets. This
can be explained by noting that the probability of larger price swings increases with the
time to maturity, which, of course, is largest for the SP and smallest for the WK option
set. Regarding the strike-price increment, we observe the opposite relationship, with the
shorter-term WK set exhibiting the smallest spacing.
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As the requirements of the 3.5 SD range and 0.35 SD spacing are not met by all stocks,
we report results on the stocks that fulfill them in panel (b) of Table 1 and refer to these set
of underlyings as “feasible” stocks. While the MN and SP sets are reduced to below 30%
of the original sample size, the WK set retains 138 of the original 178 stocks. Notably, the
set of mega-sized stocks is reduced the most and is empty for the SP set. Considering the
cross-section of stocks by market capitalization, we observe that the average number of
quoted options is decreasing with decreasing market capitalization, which corresponds to
the findings of Dennis et al. (2006).

Table 1. Descriptive statistics. The table groups the stocks by their market capitalization (MC, quoted
in million USD). The average number of call and put options is given by Calls and Puts. The average
range above (Max K) and below (Min K) the current ATM forward price F0, as well as the average
spacing of the strikes (dK), are measured in standard deviations of price. We also report the average
price (P), return (R), standard deviation of return (R(sd)), and MFIV. The number of stocks is given
by n, and “Set” refers to the set of options for the respective interpolation approach.

Size MC Calls Puts Max K Min K dK n P R R (sd) MFIV

WK Set
Any 101,337 11.0 13.8 1.75 2.31 0.274 178 104.37 1.18 × 10−6 0.0008 26.82

Mega 485,985 11.4 18.1 1.93 3.11 0.337 21 205.50 2.24 × 10−6 0.0005 17.84
Large 65,180 11.2 14.0 1.77 2.34 0.275 117 105.33 1.46 × 10−6 0.0008 25.08

Medium 5692 10.0 11.0 1.61 1.82 0.237 33 51.52 3.60 × 10−7 0.0010 36.38
Small 1359 10.8 9.8 1.65 1.67 0.238 7 34.04 −2.84 × 10−6 0.0012 37.73

MN Set
Any 101,337 8.2 10.1 2.06 2.74 0.436 178 104.37 1.18 × 10−6 0.0008 27.02

Mega 485,985 9.1 14.4 2.30 3.84 0.539 21 205.50 2.24 × 10−6 0.0005 18.15
Large 65,180 8.1 9.9 2.06 2.78 0.447 117 105.33 1.46 × 10−6 0.0008 25.34

Medium 5692 8.0 8.4 1.93 2.11 0.344 33 51.52 3.60 × 10−7 0.0010 36.40
Small 1359 8.1 6.7 1.92 1.84 0.374 7 34.04 −2.84 × 10−6 0.0012 37.50

SP Set
Any 101,337 9.0 11.8 3.27 3.80 0.349 178 104.37 1.18 × 10−6 0.0008 26.97

Mega 485,985 9.6 16.4 3.86 5.34 0.407 21 205.50 2.24 × 10−6 0.0005 18.05
Large 65,180 8.8 11.8 3.28 3.90 0.357 117 105.33 1.46 × 10−6 0.0008 25.28

Medium 5692 9.8 2.90 2.74 0.290 33 51.52 3.60 × 10−7 0.0010 36.39
Small 1359 9.2 7.5 3.02 2.43 0.321 7 34.04 −2.84 × 10−6 0.0012 37.51

In Table 2, we report descriptive statistics on the calculated intraday MFIV measure
per size category. We observe a decrease in the average MFIV with increasing market
capitalization, while the average MFIV is highest for the medium-sized category. The
differences between the three different approaches (MN, WK, SP) are remarkably small; we
do not observe any systematic patterns related to the three approaches.

The 1 min frequency of the MFIV measures allows us to analyze some of the commonly
detected stylized facts in high-frequency financial data, as outlined in Cont (2001) or
Andersen et al. (2001). Table 3 shows skewness, kurtosis, and correlations for the MFIV
measures based on weekly options and the 1, 10, and 60 min frequencies for the different
size categories. We observe slightly positive skewed and platokurtic distributions5. These
findings correspond only partly to those of daily realized volatility measures by Andersen
et al. (2001), who also detected slightly positively skewed distributions but observed higher
values for kurtosis.

Considering the correlation of the MFIV measures with stock returns, we detect mostly
negative correlations, which become more pronounced with decreasing sampling frequency,
again corresponding to the stylized facts reported for realized measures by previous studies.
With respect to the time series properties of our intraday MFIV measures, Figure A2 in the
appendix shows the return series over the whole sample period together with the MFIV
autocorrelation functions (ACFs) for a sample stock (Amazon) at 1 min, 10 min, and 60 min
frequencies. The high-frequency return series can be seen to exhibit the typical volatility
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clustering, however, to a lower degree as commonly observed for daily financial data. The
MFIV ACFs show high autocorrelations that decay slowly, in particular at the shortest
frequency of 1 min, indicating the presence of long-range dependence, which is commonly
also detected for daily volatility measures (Cont 2001; Andersen et al. 2001).

Table 2. Descriptives on MFIV measures. The table presents descriptive statistics on MFIV measures
based on monthly options (MN), weekly options (WK), and the interpolation approach (SP) for all
samples and the small, medium, large, and mega cap sample firms.

Mean Std. Dev. Min Max Skewness Kurtosis

All
MFIV (MN) 25.33 9.59 9.02 88.94 1.57 3.19
MFIV (WK) 25.03 9.74 9.71 86.82 1.58 3.33
MFIV (SP) 25.26 9.65 8.23 92.18 1.57 3.19

Mega
MFIV (MN) 22.50 7.35 9.02 88.94 2.27 9.18
MFIV (WK) 22.17 7.51 9.71 82.78 2.27 9.06
MFIV (SP) 22.42 7.38 8.23 92.18 2.24 8.95

Large
MFIV (MN) 33.00 7.37 13.88 68.63 0.63 0.58
MFIV (WK) 32.71 7.13 14.33 74.64 0.68 1.02
MFIV (SP) 32.95 7.45 17.60 65.08 0.73 0.88

Medium
MFIV (MN) 43.82 12.13 20.86 86.57 0.08 −0.91
MFIV (WK) 43.93 12.43 21.44 86.82 0.17 −0.75
MFIV (SP) 43.89 12.21 21.63 87.26 0.09 −0.91

Small
MFIV (MN) 36.82 5.27 29.26 60.25 0.96 0.33
MFIV (WK) 37.77 5.76 26.28 57.44 0.53 −0.93
MFIV (SP) 36.67 5.38 27.79 64.36 1.19 1.37

Table 3. Skewness, kurtosis, and correlations of MFIV measures. The table shows the skewness and
kurtosis of MFIV measures based on weekly options as well as their correlation with stock returns
based on 1 min, 10 min, and 60 min frequencies.

Skewness Kurtosis Corr(MFIV, R)

1 min 10 min 60 min 1 min 10 min 60 min 1 min 10 min 60 min

All 0.61 0.61 0.62 −0.26 −0.25 −0.14 0.000 −0.002 −0.006
Mega 0.6 0.6 0.6 −0.27 −0.28 −0.21 0.000 0.001 0.001
Large 0.62 0.63 0.68 −0.3 −0.21 0.15 −0.001 −0.014 −0.037

Medium 0.68 0.68 0.69 0.18 0.16 0.17 −0.001 −0.004 −0.016
Small 0.54 0.55 0.56 −0.72 −0.71 −0.6 −0.003 −0.007 −0.027

The intraday MFIV also allows us to illustrate potential diurnal patterns. Figure 2
shows the averaged MFIV over a trading day, while Figure A3 in the appendix shows
the intraday (1 min) return and MFIV time series for two sample stocks on a randomly
selected day. For the sample stocks and random day in Figure A3, the MFIV measures
seem to capture the higher fluctuations of the intraday returns at the beginning of the
trading day rather well and subsequent decreases with decreasing variability of the returns
throughout the day. Averaged over trading days and sample stocks, Figure 2 shows that
MFIV increases at the beginning of the trading hours and slightly decreases during the day
until markets close. As noted by Chen et al. (2021), this pattern is consistent with the notion
that non-trading during the overnight period increases uncertainty, while trading, to some
extent, resolves uncertainty. We confirm this pattern for individual equity MFIV and also
find the pattern to be similar for the different size categories (detailed results are available
upon request).
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Figure 2. Diurnal pattern of the MFIV. The graph shows the WK, MN, and SP MFIV measures
averaged over the sample stocks as well as over the sample days.

4. Analyzing the Intraday Return–Volatility Relationship

The 1 min frequency of the MFIV measures allows us to examine whether specific
relationships and stylized facts also hold on an intraday and individual equity level. So
far, the return–volatility relationship in financial markets has been analyzed extensively.
While theoretically higher risks have to be compensated by higher returns, indicating
a positive relationship, empirical studies mostly document a negative and potentially
asymmetric relationship between returns and changes in volatility6. Concerning equity
markets, fundamental theories have been put forward to explain this negative link. The
leverage hypothesis suggested by Black (1976) and Christie (1982) explains an increase
in equity volatility with a decline in the value of the firm, while the volatility-feedback
hypothesis associates an increase in volatility with higher expected returns and lower
current prices7. As explained by Bollerslev et al. (2006), both theories differ mainly by their
implied direction of causality.

More recently, Hibbert et al. (2008) (among others) proposed a behavioral perspective
and associated the negative return–volatility relationship with the presence of different
groups of investors. These groups may differ with respect to the extent to which they are
prone to behavioral biases, such as representativeness, affect, and extrapolation biases. In
contrast to the leverage and volatility-feedback hypothesis, which may take time to establish
and, therefore, are more plausible at lower frequencies, behavioral biases may very well be
present even at intraday frequencies. However, existing studies on the return–volatility
relationship at higher frequencies are rare and have focused mostly on equity indices8.
Therefore, we use our intraday MFIV measures to examine the intraday return–volatility
relationship for the individual equities in our sample.

For the subsequent analysis, we show results using the WK MFIV measures and what
we refer to as the feasible subset of stocks, as outlined in Section 3.2 over the range of our
sampling period. The sample covers the time period from 1 May 2017 to 30 June 2017, and
we conduct our analysis on 1 min, 10 min, and 60 min frequencies. Results based on the
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other measures are qualitatively similar and are available upon request. Despite the fact
that the intraday MFIV measures exhibit only weak diurnal patterns, we conduct some
basic stock-wise deseasonalization via standardization based on the time-day averages
over all the sample days.

We follow Talukdar et al. (2017), Hibbert et al. (2008), Bekiros et al. (2017), and Badshah
(2013) and conduct linear and quantile regressions using intraday stock-specific data on the
1, 10, and 60 min frequencies. We start with the following regressions:

∆MFIVt = β0 +
3

∑
L=1

βL∆MFIVt−L +
3

∑
L=0

γLR+
t−L +

3

∑
L=0

δLR−
t−L + εt

R+
t =

{
Rt if Rt > 0
0 if Rt < 0

R−
t =

{
Rt if Rt < 0
0 if Rt > 0

where ∆MFIVt indicates the first differences of the MFIV measure for a specific underlying
and Rt represents the corresponding (positive and negative) log returns. We run our model
on 1, 10, and 60 min frequencies.

Table 4 gives the regression results averaged over all sample stocks. We observe a
negative average effect of contemporaneous returns (Rt), which increases in strength with
decreasing sampling frequency. The average effect of negative contemporaneous returns
is slightly more pronounced compared to the one of positive returns only for the 1 min
and 60 min samples. Furthermore, the number of significant negative estimates and the
strength of the effect decrease with increasing lag length. These findings constitute some
first evidence that the asymmetric return–volatility relationship is evident on an intraday
and stock-specific level. They correspond to findings on the index level by, e.g., Talukdar
et al. (2017) and Hibbert et al. (2008) in so far as the contemporaneous returns are the most
important factor in determining the current changes in volatility. The results are in line
with the behavioral explanations mentioned by Talukdar et al. (2017) and Hibbert et al.
(2008). However, since the effects of lagged returns are not overall insignificant, leverage or
volatility-feedback phenomena cannot be ruled out as well.

To account for the fact that standard regressions may not constitute an adequate
approach when applied to commonly leptokurtic returns, we conduct quantile regressions
following Koenker and Bassett (1978), Bekiros et al. (2017), Badshah et al. (2016), and
Daigler et al. (2014):

∆MFIVt = β
q
0 +

3

∑
L=1

β
q
L∆MFIVt−L +

3

∑
L=0

γ
q
LRt−L + εt (1)

where ()q refers to the parameter associated with the quantile regression model equation
for the qth quantile. Average results for selected quantiles are shown in Table 5 for the 1 min
frequency; results for 10 and 60 min MFIV are provided in the appendix. We observe a
significant negative effect of contemporaneous returns on volatility changes for the majority
of our sample stocks across all quantiles. We also find this effect to vary in strength across
quantiles, being more pronounced in the tails of the distribution.

Figure 3 illustrates the average coefficients over a larger range of quantiles including
average confidence bounds for 1 min data (results for other frequencies are available upon
request and lead to similar conclusions). The results reveal substantial variation in the
effects depending on the quantiles. We observe an inverted U-shaped pattern for the
contemporaneous returns, where extreme returns have a substantially stronger negative
impact on current volatility compared to those in the center of the distribution. This pattern
corresponds to the one detected by Agbeyegbe (2016) for the U.S. stock market indices.
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Table 4. Average return–volatility regression results. Regression Results for 1, 10, and 60 min
frequencies averaged over the sample stocks. The parameters indicate the effect of positive returns
(γL), negative returns (δL), and first differences in MFIV (βL) on the first differences in MFIV for lags
L of 0 to 3. Numbers in parentheses give the amount of significant negative/significant positive
parameter estimates based on a 5% significance level.

1 min 10 min 60 min

R+
t −7.69 −14.79 −15.17

(66/1) (65/14) (69/15)
R+

t−1 −1.22 −1.98 −2.27
(25/5) (52/9) (31/7)

R+
t−2 −1.22 −1.26 −1.58

(24/1) (28/6) (25/4)
R+

t−3 −0.89 −0.23 −1.35
(21/2) (12/5) (20/5)

R−
t −9.01 −13.17 −15.35

(81/1) (74/14) (74/14)
R−

t−1 −5.03 −4.31 −4.22
(52/1) (47/10) (42/4)

R−
t−2 −2.95 −2.41 −3.02

(35/2) (32/8) (24/7)
R−

t−3 −2.48 −1.53 −2.37
(16/3) (21/6) (19/6)

∆MFIVt−1 −0.12 −0.15 −0.13
(88/0) (92/0) (64/0)

∆MFIVt−2 −0.07 −0.06 −0.05
(55/2) (53/1) (37/1)

∆MFIVt−3 −0.03 −0.02 −0.03
(31/2) (22/0) (26/2)

β0 0.00 0.00 −0.01
(14/25) (39/26) (38/30)

γ0 = δ0 16 60 60
γ1 = δ1 19 38 26

Table 5. Average quantile regression results using 1 min data Average quantile regression results
for individual equity based on Equation (1). Average (over all sample firms) parameter estimates
are reported for different quantiles. Numbers in parentheses give the amount of significant nega-
tive/significant positive parameter estimates based on a 5% significance level.

0.025 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.975

Rt −10.167 −8.763 −7.496 −5.528 −3.860 −5.190 −7.405 −9.082 −10.822
(112/2) (110/3) (108/4) (103/8) (95/5) (100/8) (104/5) (107/2) (106/3)

Rt−1 −2.695 −2.222 −1.880 −1.361 −0.979 −1.260 −1.735 −2.275 −3.166
(67/3) (73/3) (83/5) (82/5) (80/5) (72/5) (73/6) (69/4) ( 64/4)

Rt−2 −1.692 −1.379 −1.181 −0.887 −0.574 −0.804 −1.245 −1.557 −1.759
(50/4) (54/1) (64/0) (73/0) (79/1) (66/1) (60/1) (52/2) ( 43/5)

Rt−3 −1.033 −0.850 −0.711 −0.598 −0.381 −0.594 −0.939 −1.115 −1.756
(32/4) (36/0) (39/0) (52/1) (56/1) (57/2) (45/1) (42/4) ( 39/3)

∆MFIVt−1 −0.06 −0.05 −0.04 −0.03 −0.01 −0.02 −0.03 −0.03 −0.03
(108/4) (107/1) (111/1) (104/0) (90/0) (88/0) (86/5) (83/10) (72/19)

∆MFIVt−2 −0.030 −0.019 −0.010 −0.004 −0.001 −0.003 −0.005 −0.005 −0.005
(95/13) (81/13) (70/13) (42/10) (21/5) (36/7) (41/24) (46/29) (46/33)

∆MFIVt−3 −0.014 −0.008 −0.003 0.001 0.001 0.001 0.002 0.004 0.006
(68/17) (60/21) (23/48) (18/20) (7/11) (10/11) (13/23) (16/35) (25/43)

constant −0.783 −0.527 −0.331 −0.162 −0.037 0.091 0.347 0.608 0.910
(122/0) (121/0) (122/0) (120/0) (61/47) (0/122) (0/122) (0/122) (0/122)
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Figure 3. Quantile regression estimates and confidence intervals. The plots show the average
estimated parameters based on Equation (1) for different quantiles (solid line) together with their
0.95 confidence bounds.

Over all quantiles, contemporaneous returns are the most important factor consistent
with behavioral theories, in particular, those of affect and representativeness.9 Contrary to
Badshah (2013), we find no convincing evidence for loss aversion because extreme changes
in the left tail do not seem to have a systematic higher impact than those in the right tail
(Kahneman and Tversky 2013). Altogether, we find a significant negative contemporaneous
return–volatility relationship on the intraday level for individual equity. The effect increases
with decreasing sampling frequency and is more pronounced in the extreme tails of the
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distributions. Considering the high frequency and the insignificant or small lagged effects,
it is more likely that the asymmetric relationships are caused by behavioral biases rather
than the fundamental theories underlying the leverage or volatility-feedback effects.

5. Conclusions

We implement the CBOE VIX method on intraday option data for individual equi-
ties. In doing so, we analyze the data quality with respect to the MFIV calculation. Our
descriptive data analysis reveals that, for 138 individual equities, weekly options exhibit
a sufficient range of strike prices to avoid significant truncation errors according to Jiang
and Tian (2005). Descriptive analyses of MFIV sample averages based on weekly options,
monthly options, and a cubic spline interpolation approach reveal only marginal differ-
ences. We find the intraday individual equity MFIV measures to exhibit a similar diurnal
pattern as implied volatility indices, such as the VIX, with higher levels after opening hours
and declining levels until closing hours.

We use our estimates to analyze the intraday return volatility–relationship using 1, 10,
and 60 min data. We find a negative relationship between returns and volatility changes,
which is significant for most of our sample stocks when considering contemporaneous
returns. The stronger the link, the lower the frequency. For lagged returns, the effect is less
evident. Quantile regressions reveal a clear inverted U-shaped pattern when considering
contemporaneous returns, which again becomes less evident for lagged returns. These
findings indicate that behavioral biases rather than the fundamental theories of leverage
or volatility-feedback effects cause the asymmetric link between returns and volatility.
Despite offering a starting point for calculating and analyzing individual equity MFIV at
high frequencies, our approach comes with some limitations. The standard VIX calculation
method is prone to have a specific cut-off rule to determine what option quotes are used
in computing the VIX. As outlined by Andersen et al. (2015), this may bias the calculated
MFIV measures. Andersen et al. (2015) offered an improved approach, termed the Corridor
Implied Volatility, which alleviates the potential bias of the standard measure. Moreover,
Andersen et al. (2015) noted that the relationship between returns and volatility is prone
to jumps and co-jumps in both series and may be more complex depending on different
regimes. Subsequently, while our empirical analysis of the return–volatility relationship
may offer a valid starting point, future research should be conducted accounting for a
potential dynamic nature of this relationship. Overall, our individual equity MFIV measure
opens up avenues for further research. The forward-looking nature of implied volatility
may have merits for volatility prediction on an intraday level, as well as on a daily level
for individual equities. Moreover, the derived time series of intraday MFIV measures
will allow us to assess the imminent effect of news on volatility relying on time series
models. They also offer the opportunity to address the impact of attention and sentiment
measures at such high frequencies. It will also be of great interest to extend the sampling
period throughout the pandemic period and analyze the impact of lockdown situations
on the stock volatilities of different industries. In general, MFIV measures also allow
a decomposition into the conditional variance of stock returns and the equity variance
premium, where the latter has been shown to possess predictive power for stock returns.
The proposed MFIV measures can also be used to decompose volatility into a systematic
risk component and idiosyncratic risk, using the VIX index as a measure of market risk.
Such idiosyncratic risk measures, then again, may yield interesting insights into investors’
risk perceptions and resulting investment decisions, potentially depending on and varying
during high and low market volatility regimes.
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Appendix A. Derivation of Model-Free Implied Volatility

Following Demeterfi et al. (1999), assume the asset price S follows a continuous
diffusion process:

dSt = St
(
µ(t, . . . )dt+σ(t, . . . )dZt

)
(A1)

where the drift µ and volatility σ are functions of time t and Zt is a Brownian motion. From
Ito’s lemma, we have

d ln(St) = σ dZt +

(
µ − σ2

2
dt
)

(A2)

as shown in Appendix A. Using Equations (A1) and (A2), we can derive a representation of
the incremental variance as

dSt

St
− d ln(St) = µ dt+σ dZt −

(
µ dt+σ dZt −

σ2

2
dt
)

=
σ2

2
dt

⇔ σ2 dt = 2
(

dSt

St
− d ln(St)

)
(A3)

The realized (integrated) variance V(t, T), with T denoting the time of expiration, is then
given by

V(t, T) =
1
T

∫ T

0
σ2 dt

=
2
T

∫ T

0

(
dSt

St
− d ln(St)

)
=

2
T

[∫ T

0

dSt

St
− ln

(
ST
S0

)]
(A4)

where S0 and ST refer to the initial and final prices of the asset, respectively.
In the next step, we take risk-neutral expectations of Equation (A4):

E
[
V
]
=

2
T

{
E
[∫ T

0

dSt

St

]
︸ ︷︷ ︸

(1)

+E
[
− ln

(
ST
S0

)]
︸ ︷︷ ︸

(2)

}
(A5)

A risk-neutral setting, using the risk-free rate r implies

dSt = Str dt+Stσ dZt

⇔ dSt

St
= r dt+σ dZt

The risk neutral expectation of term (1) in Equation (A5) is subsequently given by

E
[∫ T

0
r dt+σ dZt

]
= rT (A6)

The replication of term (2) of Equation (A5) requires a more intricate methodology. First,
we decompose the logarithmic payoff by introducing the parameter S⋆, which also defines
the boundary between put and call options that are used for the replication:
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− ln
(

St

S0

)
= − ln

(
St

S⋆

)
︸ ︷︷ ︸

(1)

− ln
(

S⋆

S0

)
︸ ︷︷ ︸

(2)

(A7)

While term (2) here is constant, replicating term (1) is where the option methodology comes
in. As Carr and Madan (1997) show in their appendix, any twice-differentiable payoff, f (x),
can be replicated as

f (x) = f (κ)− f ′(x)
[
(x − κ)+ − (κ − x)+

]
+
∫ κ

0
f ′′(K)(K − x)+ dK

+
∫ ∞

κ
f ′′(K)(x − K)+ dK

For our setting, we use f (x) = ln(x), x = ST , κ = S⋆, the functions P(K, S) and C(K, S) to
denote option prices with strike K for underlying price S and the put-call parity to write

ln(ST) = ln(S⋆) +
d ln(St)

dSt

[
C(S⋆, ST)− P(S⋆, ST)

]
+
∫ S⋆

0

d2 ln(K)
d2K

P(K, ST)dK

+
∫ ∞

S⋆

d2 ln(K)
d2K

C(K, ST)dK

⇔ ln
(

St

S⋆

)
=

1
S⋆

(St − S⋆)

−
∫ S⋆

0

1
K2 P(K, ST)dK

−
∫ ∞

S⋆

1
K2 C(K, ST)dK

This replication strategy relies on the availability of a continuum of strike prices.
Taking the risk-neutral expectation for term (1) in Equation (A7) yields

E
[
− ln

(
St

S⋆

)]
= E

[
−ST − S⋆

S⋆
+
∫ S⋆

0

1
K2 P(K, ST)dK +

∫ ∞

S⋆

1
K2 C(K, ST)dK

]
= −

(
S0erT

S⋆
− 1
)
+ erT

∫ S⋆

0

1
K2 P0(K)dK +erT

∫ ∞

S⋆

1
K2 C0(K)dK

where P0, C0, and S0 denote the initial put, call, and underlying prices, respectively. Finally,
we combine above results with Equations (A6) and (A7), and the replication of the expected
variance reads as

E
[
V
]
=

2
T

[
rT −

(
S0erT

S⋆
− 1
)
− ln

(
S⋆

S0

)
+ erT

∫ S⋆

0

1
K2 P0(K)dK (A8)

+ erT
∫ ∞

S⋆

1
K2 C0(K)dK

]
Following Jiang and Tian (2007), it can be shown that the non-integral terms in

Equation (A8) can be restated as

2
T

[
rT −

(
S0erT

K0
− 1
)
− ln

(
K0

S0

)]
=

2
T

[
ln
(

F0

K0

)
−
(

F0

K0
− 1
)]
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Applying the Taylor series expansion and ignoring terms higher than second-order yields

ln
(

F0

K0

)
=

(
F0

K0
− 1
)
− 1

2

(
F0

K0
− 1
)2

which results in the final approximation formula:

2
T

[
rT −

(
S0erT

S⋆
+ 1
)
− ln

(
S⋆

S0

)]
= − 1

T

(
F0

K0
− 1
)2

(A9)

Ito’s Lemma for ln(St)

Applying Ito’s lemma to the natural logarithm function f (St) = ln(St) yields

d ln(St) =
∂ ln(St)

∂t
dt+

∂ ln(St)

∂St
dSt +

1
2

∂2 ln(St)

∂S2
t

(dSt)
2

= 0 +
1
St

St(µ dt+σ dZt)−
1
2

1
(S2

t )
(dSt)

2

= µ dt+σ dZt −
1
2

1
S2

t

[
(Stµ dt)2︸ ︷︷ ︸

dt2=0

+ 2Stµ dt σ dZt︸ ︷︷ ︸
dt dZt=0

+ (Stσ dZt)
2

]

= µ dt+σ dZt −
S2

t σ2(dZt)2

2S2
t

= µ dt+σ dZt −
σ2

2
dt since (dZt)

2 = dt

= σ dZt +

(
µ − σ2

2
dt
)

Appendix B. Additional Figures and Tables
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Figure A1. Exemplary option dataset (AAPL) for the MN method. Each bar represents the option
contracts for a specific maturity and is colored based on its use as near-term (black) or next-term
(dark gray) contract. The width represents the range of offered strike prices each minute. As this
range declines sharply when the near-term contract reaches maturity, the set of contracts switches
5 trading days before that date.
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Figure A2. Return series and autocorrelation functions for MFIV measures. The figure shows the
stock return series over the whole sampling period at the 1 min, 10 min, and 60 min frequencies and
the ACF for the MFIV measures based on weekly options for a sample stock (Amazon).

Figure A3. Cont.



J. Risk Financial Manag. 2024, 17, 39 17 of 19

Figure A3. MVIF measure and stock returns. The figure shows the MFIV measure time series based
on weekly options for a random day and two stocks for the 1 min frequencies.

Table A1. Average quantile regression results using 10 min data. Average quantile regression
results for individual equity based on Equation (1). Average (over all sample firms) parameter
estimates are reported for different quantiles. Numbers in parentheses give the numbers of significant
negative/significant positive parameter estimates based on a 5% significance level.

0.025 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.975

Rt −13.764 −11.538 −9.993 −9.201 −9.043 −9.732 −10.825 −12.316 −14.233
(104/18) (105/17) (110/12) (109/13) (109/13) (110/11) (108/14) (107/15) (104/18)

Rt−1 −1.470 −1.253 −1.015 −0.988 −0.958 −1.154 −1.926 −2.195 −3.723
(87/35) (92/31) (93/28) (93/29) (94/28) (97/25) (94/28) (94/28) (92/30)

Rt−2 −0.438 −0.532 −0.365 −0.182 −0.165 −0.364 −0.763 −1.368 −2.889
(79/43) (81/41) (77/45) (67/55) (71/51) (79/43) (88/34) (85/37) (93/29)

Rt−3 −0.202 −0.552 −0.356 −0.188 −0.228 −0.323 −0.695 −1.203 −1.550
(66/56) (78/44) (78/44) (77/44) (74/44) (70/52) (78/44) (80/42) (82/40)

∆MFIVt−1 −0.12 −0.09 −0.07 −0.05 −0.03 −0.03 −0.05 −0.09 −0.15
(101/21) (103/19) (105/17) (100/22) (91/31) (93/29) (94/28) (90/32) (85/37)

∆MFIVt−2 −0.063 −0.041 −0.029 −0.016 −0.009 −0.009 −0.020 −0.040 −0.071
(89/33) (91/31) (91/31) (90/32) (81/41) (75/41) (90/32) (84/38) (77/45)

∆MFIVt−3 −0.025 −0.017 −0.012 −0.005 0.000 0.000 −0.004 −0.013 −0.032
(89/33) (87/35) (83/39) (83/39) (79/43) (74/48) (81/41) (76/46) (74/48)

constant −0.380 −0.227 −0.135 −0.056 −0.006 0.038 0.132 0.268 0.503
(122/0) (122/0) (122/0) (122/0) (108/4) (0/122) (0/122) (0/122) (0/122)

Table A2. Average quantile regression results using 60 min data. Average quantile regression
results for individual equity based on Equation (1). Average (over all sample firms) parameter
estimates are reported for different quantiles. Numbers in parentheses give the number of significant
negative/significant positive parameter estimates based on a 5% significance level.

0.025 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.975

Rt −13.764 −11.538 −9.993 −9.201 −9.043 −9.732 −10.825 −12.316 −14.233
(104/18) (105/17) (110/12) (109/13) (109/13) (110/11) (108/14) (107/15) (104/18)

Rt−1 −1.470 −1.253 −1.015 −0.988 −0.958 −1.154 −1.926 −2.195 −3.723
(87/35) (92/31) (93/28) (93/29) (94/28) (97/25) (94/28) (94/28) (92/30)

Rt−2 −0.438 −0.532 −0.365 −0.182 −0.165 −0.364 −0.763 −1.368 −2.889
(79/43) (81/41) (77/45) (67/55) (71/51) (79/43) (88/34) (85/37) (93/29)

Rt−3 −0.202 −0.552 −0.356 −0.188 −0.228 −0.323 −0.695 −1.203 −1.550
(66/56) (78/44) (78/44) (77/44) (74/44) (70/52) (78/44) (80/42) (82/40)

∆MFIVt−1 −0.12 −0.09 −0.07 −0.05 −0.03 −0.03 −0.05 −0.09 −0.15
(101/21) (103/19) (105/17) (100/22) (91/31) (93/29) (94/28) (90/32) (85/37)

∆MFIVt−2 −0.063 −0.041 −0.029 −0.016 −0.009 −0.009 −0.020 −0.040 −0.071
(89/33) (91/31) (91/31) (90/32) (81/41) (75/41) (90/32) (84/38) (77/45)

∆MFIVt−3 −0.025 −0.017 −0.012 −0.005 0.000 0.000 −0.004 −0.013 −0.032
(89/33) (87/35) (83/39) (83/39) (79/43) (74/48) (81/41) (76/46) (74/48)

constant −0.380 −0.227 −0.135 −0.056 −0.006 0.038 0.132 0.268 0.503
(122/0) (122/0) (122/0) (122/0) (108/4) (0/122) (0/122) (0/122) (0/122)
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Notes
1 We developed an R package for these calculations, which is currently available on https://github.com/m-g-h/R.MFIV, accessed

on 20 November 2023.
2 Critically assessed, the notion of “model-freeness” is not entirely correct since an assumption about the underlying price process

is still made. However, no option pricing model is required, which frees the IV from limitations due to potentially unrealistic
model assumptions.

3 i.e., multiples of σt
√

τ, with σt the ATM Black & Scholes IV and τ the time to maturity.
4 The VIX method is derived for European-style options only. Individual equity options, however, are American-style options

and may be subject to an early exercise premium. As this premium can be assumed to be relatively small for out-of-the-money
options and since we do not want to rely on a specific option pricing model for estimation, we do not account for it.

5 Jarque-Bera tests indicate the rejection of a normal distribution for all individual equity MFIVs. Detailed results are available
upon request.

6 Compare Dennis et al. (2006), Fleming et al. (1995), Giot (2005), Hibbert et al. (2008), Carr and Wu (2017), and Talukdar et al.
(2017).

7 Compare French et al. (1987), Campbell and Hentschel (1992), and Bekaert and Wu (2000).
8 Compare Andersen et al. (2021), Kalnina and Xiu (2017), Badshah (2013), and Andersen et al. (2015).
9 Among others outlined by Hibbert et al. (2008) and Daigler et al. (2014), investors may view a high return and low risk (decreasing

volatility) as representative of a good investment. Combined with an affect heuristic, where investors’ decisions may be governed
or at least affected by intuition and instincts, they may act on the negative returns and high volatility, which are both negatively
labeled and thereby cause a negative return–volatility relationship.
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