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Abstract: This paper investigates the optimal choices of financial derivatives to complete a financial
market in the framework of stochastic volatility (SV) models. We first introduce an efficient and
accurate simulation-based method applicable to generalized diffusion models to approximate the
optimal derivatives-based portfolio strategy. We build upon a double optimization approach, i.e.,
expected utility maximization and risk exposure minimization, already proposed in the literature,
demonstrating that strangle options are the best choices for market completion within equity options.
They lead to lower investors’ risk exposure for a wide range of strikes compared to the lesser flexibility
of calls, puts, and strangles. Furthermore, we explore the benefit of using volatility index derivatives
and conclude that they could be more convenient substitutes when short-term maturity equity
options are not available.

Keywords: expected utility theory; constant relative risk aversion (CRRA) utility; optimal derivative
choice; volatility risk; volatility index (VIX) options

1. Introduction

Financial markets are often modeled as a system of contingents on states mirroring
the real-world economy. This generates a concept widely used in economic and finance
literature, namely the complete market, which is described as ‘a market for every good’.
Earlier studies assumed that the number of securities equals the number of states of nature
and investigated the optimal allocation, placing all the capital at once (see Arrow 1964;
Arrow and Debreu 1954). Recognizing that investors benefit from adjusting allocation
with a change in market status, more recent researchers have focused on the idea of a
dynamically complete market, which is defined as a market wherein a self-financing
strategy can replicate any contingent claim.

The study of portfolio choice in a dynamically complete market under a continuous-
time framework can be traced back to the seminal work of Merton (1969), who computed
the optimal allocation and consumption policy with a dynamic programming technique, as-
suming that the stock price follows a geometric Brownian motion (GBM). In this framework,
the uncertainty is reflected in the Brownian motion, which captures the randomness of a
stock’s return; hence, investors can achieve the best portfolio performance with investments
only in the stock and a cash account.

However, the financial market is ever-evolving and becoming increasingly complex;
for instance, substantial evidence suggests that a single Brownian motion or source of
randomness is insufficient to explain the movements of a single stock or index. Researchers
have had to incorporate so-called stylized facts such as stochastic volatility (SV) or stochastic
interest rates in their modeling to mimic this new reality. These stylized facts are captured
via adding new ‘state variables’ (e.g., new random processes for SV). These state variables
have been recognized as essential factors in the portfolio allocation process.
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The importance of adding financial derivatives into a portfolio for market completion
was demonstrated in Liu and Pan (2003), confirming that investors can improve portfolio
performance when adding as many linearly independent equity options as new state
variables in the portfolio composition. They do this to hedge the risk of the new state
variables, therefore achieving significant improvement in portfolio performance compared
to incomplete market investment (e.g., investing solely on stock and cash account). This
work was extended in many directions. For example, Escobar et al. (2017) constructed
optimal portfolios with the addition of options to hedge new state variables accounting for
stochastic correlation. Moreover, Li et al. (2018) solved derivative-based strategies under
an asset–liability management (ALM) framework with the mean-variance criterion. In a
similar setting, the optimal complete and incomplete strategy for the 4/2 SV model was
derived in Cheng and Escobar-Anel (2021), which demonstrated the superiority of the
complete market portfolio.

Although the literature cited above strongly supports the addition of derivatives to
complete the market, investors may complete the market in many ways due to the variety of
derivatives in the market. Therefore, investors effectively have a non-unique solution to the
problem (i.e., an infinite number of strategies, each linked to a derivative choice, producing
the same maximum expected utility). The issue of infinitely many solutions and the optimal
choice of derivatives was studied in the recent paper (Escobar-Anel et al. 2022) in the con-
text of the Black—Scholes—Merton model. The paper proposed an optimization criterion
(i.e., additional to the maximization of the utility, namely risk exposure minimization)
to produce a unique, meaningful solution, thus deriving a practical derivative selection
methodology for investors. The inner portfolio optimization solution is derived extending
(Zhu et al. 2023). The risk exposure minimization criterion can be motivated from many
angles, especially regarding regulatory constraints intended to control investors’ exposure
to risky assets and protect investors’ capital in the event of a market crash.

In this paper, we study the optimal financial derivatives for market completion in the
famous setting of SV models, with emphasis on the celebrated Heston model (see Heston
1993). Our findings allow investors to improve the performance of their portfolios while
reducing the overall risk exposure and accounting for the most important stylized fact
of stock prices, stochastic volatility. Details of the contributions will be provided later as
bullet points.

There are two major hurdles for our derivatives-based portfolio allocation problem.
First, given that the complexity of advanced models with many state variables jeopardizes
the solvability of the utility maximization allocation problem, closed-form solutions are
often unavailable. This hurdle can be overcome using approximation methods for dynamic
portfolio choice problems. Brandt et al. (2005), inspired by the least-squares Monte Carlo
method (see Longstaff and Schwartz 2001), recursively estimated the value function and op-
timal allocation following a dynamic programming principle. This method was later named
the BGSS, and Cong and Oosterlee (2017) utilized the stochastic grid bundling method for
conditional expectation estimation, introduced in Jain and Oosterlee (2015), further enhanc-
ing the accuracy of BGSS. Additionally, Zhu and Escobar-Anel (2022) targeted unsolvable
continuous-time models, proposing an efficient and accurate simulation-based method,
namely the polynomial affine method for constant relative risk aversion utility (PAMC). The
second hurdle appears in the complexity of derivatives’ price dynamics, which could lead
to highly non-linear stochastic differential equations in contrast to traditional asset classes.
In this paper, we overcome the two hurdles simultaneously by unifying the PAMC and
using an options Greek approximation technique. Notably, the broad applicability of this
methodology laid the foundation for the derivatives selection study within a generalized
model family.

As mentioned above, we focus on investors concerned about volatility risk and seek
the best derivatives to attain market completion. The seminal paper by Heston (1993)
recognized the mean-reverting pattern of volatilities and introduced the well-known Heston
(GBM 1/2) model. Later, extensions, such as the GBM 3/2 (see Heston 1997) and GBM
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4/2 (see Grasselli 2017), were developed to capture the volatility surface better. These
led to notable successes in the valuation of European equity options and semi-closed-
form solutions for the option price, and Greeks are generally accessible using Fourier
transformation. Popular equity options, such as call, put, straddle, and strangle options,
are ideal for investors to manage the volatility risk. Furthermore, the volatility index (VIX),
a measure of the stock market’s volatility based on S&P 500 index options provided by the
Chicago Board Options Exchange (CBOE), affords investors an alternative way to assess
the volatility risk. The effectiveness of VIX products in portfolio performance enhancement
has been confirmed in the literature: see Doran (2020), Chen et al. (2011), and Warren (2012).
Hence, in this paper, we compare two categories of derivatives, namely equity options and
VIX options, in terms of optimal dynamic completion.

The contributions of the paper are as follows:

1. The multitude of financial derivatives available in the market offers investors non-
unique optimal choices regarding expected utility theory (EUT) maximization. We
are interested in an optimal choice of derivatives. In this paper, we extend the extra
optimization criterion proposed in Escobar-Anel et al. (2022), namely risk exposure
minimization, from the family of GBM to SV models. This aids investors with practical
derivative selection in a popular stock market modeling setting.

2. The PAMC-indirect numerical method is proposed to approximate the optimal alloca-
tion for a constant relative risk aversion (CRRA) investor investing in the derivatives
market. The superior accuracy and efficiency of the methodology are verified using
the Heston model.

3. Targeting equity and volatility risk, we first consider the optimal choice among equity
options (e.g., calls, puts, straddles, and strangles). We demonstrate that strangles are
the best options for minimizing risk exposure. They perform better even for a larger
range of strike prices than the other options.

4. We also investigate the usage of financial derivatives on the VIX to complete the
market, and we conclude that investors would prefer VIX options to equity strangles
when only medium to long-term maturity options are available.

The remainder of this paper is organized as follows: Section 2 presents the investor’s
problem (i.e., the two criteria for optimal allocation [utility maximization] and optimal
market completion [risk exposure minimization]). Section 3 details an efficient approxi-
mation method for derivatives-based portfolio allocation. The optimal market completion
targeting volatility risk within an equity option and a VIX option is studied in Section 4, fol-
lowed by the conclusion in Section 6. Appendix A presents the mathematical proofs, while
Appendix B provides an alternative approximation method and a numerical examination
of accuracy and efficiency for the two methods.

2. Investor’s Problem

In this section, we introduce a market completion framework using financial deriva-
tives. We define a complete probability space (Ω,F ,P) with a right-continuous filtration
{Ft}t∈[0,T]. The market is frictionless (i.e., no transaction cost and market impact), and a
risk-free cash account Mt, a stock St, and an investor with constant relative risk aversion
(CRRA) utility, U(W) = W1−γ

1−γ exist. The market dynamics are summarized as follows:
dMt
Mt

= rdt
dSt
St

= (r + λSσS)dt + σSdBS
t

dHt = µHdt + σHdBH
t

< dBS
t , dBH

t >= ρSHdt.

(1)

where BH
t and BS

t are Brownian motions with correlation ρSH ∈ (−1, 1), and the interest rate
r is constant. We impose a market viability assumption, namely the absence of arbitrage of
the first kind. This is that the discounted asset-prices must be semimartingales; see Kardaras
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and Platen (2011) and the seminal paper of Delbaen and Schachermayer (1994). Our main
result can also be regarded as reminiscent of the Fundamental Theorem of Asset Pricing.
State variable Ht follows a generalized diffusion process, where µH = µH(t, Ht) denotes
the drift and σH = σH(t, Ht) denotes volatility. The market price of risk and the volatility of
stock could be functions of both the stock price and the state variable, respectively; that is,
λS = λS(t, Ht, ln St) and σS = σS(t, Ht, ln St). This framework is quite flexible as it embeds
popular models among practitioners, solvable within portfolio optimization; for instance,
the Heston stochastic volatility (SV) model Heston (1993) solved in Kraft (2005), the 3/2 SV
model of Heston (1997) and the 4/2 SV model Grasselli (2017) solved within Cheng and
Escobar-Anel (2021), various constant elasticity of volatility (CEV)-related models, see Anel
and Fan (2024) for an overview, and recently the stochastic elasticity of volatility with
stochastic volatility (SEV-SV) model in Escobar-Anel and Fan (2023).

In this market, the number of investable risky assets is less than the number of risk
drivers, hence market incompleteness. To eliminate the welfare loss resulting from the
unhedgeable risk drivers, we introduce a set of financial derivatives:

Ω(n)
O =

{
Ōt = [O(1)

t , O(2)
t , ..., O(n)

t ]T | O(i)
t ̸= 0, i = 1, ..., n and rank(Σt) = 2, t ∈ [0, T]

}
.

We can think of these derivatives as having payoff O(i)
t = ξ−i

t E[ξt+TGi(Ht+T , St+T) |
Ft] with ξ being the exogenously given pricing kernel in the economy with dynamics
dξt
ξ = −rdt − ΛtdBt, we will consider specific payoff in the applications. We assume that

an investor allocates in an element of ΩO; that is, a specific Ōt = [O(1)
t , O(2)

t , ..., O(n)
t ]T

(n ≥ 2). Please note that by arbitrage arguments, the dynamics of the extended market are
as follows: 

dMt
Mt

= rdt
dŌt = diag(Ōt)[(r · 1+ ΣtΛ)dt + ΣtdBt]

dHt = µHdt + σHdBH
t

< dBS
t , dBH

t >= ρSHdt,

(2)

where Bt = [BS
t , BH

t ]T and Σt represents the n × 2 variance matrix of Ōt; the first column

(i, 1) represents the sensitivity of O(i)
t to the underlying asset St (i.e., ∂O(i)

t
∂St

St
1

O(i)
t

σS); and

the second column (i, 2) represents the sensitivity of O(i)
t to the state variable Ht (i.e.,

∂O(i)
t

∂Ht
1

O(i)
t

σH). Λ = [λS, λH ]T , where λH = λH(t, Ht, ln St) denotes the market price of

volatility risk. The setting above is also very flexible, as it permits not only any derivatives
but also a variety of models as identified from Equation (1). Rank 2 variance matrix Σt
guarantees the completeness of the market. As observed above, and for simplicity, we
assume that the derivatives in Ω(n)

O will be rolled over; this means they always maintain the
same time to maturity and a non-zero value, see Liu and Pan (2003) for pioneering work
with this common assumption. Please note that the investor is not prohibited from trading
on the stock, which is included in Ω(n)

O as a special derivative.

Let Ω(O)
π denote the space of admissible strategies satisfying the standard conditions,

where the element πt = [π
(1)
t , π

(2)
t , ..., π

(n)
t ]T represents the proportions of the investor’s

wealth in the derivatives Wt satisfies

dWt

Wt
= πT

t diag−1(Ōt)dŌt + (1 − πT
t 1)

dMt

Mt
(3)

= (r + πT
t ΣtΛ)dt + πT

t ΣtdBt.
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The investor’s objective is to maximize the expected utility of their wealth at terminal
time T; this places the problem in the expected utility framework popularized in the seminal
work of Merton (1975); hence, their problem at time t ∈ [0, T] can be written as

V(t, W, H, ln S) = max
πs≥t∈Ω(O)

π

E(U(WT) | Ft), (4)

where U(x) is a flexible utility function, chosen of the type CRRA (constant relative risk
aversion, U(x) = x1−γ

1−γ , γ > 0, γ ̸= 1) as an example 1. Please note that this function could
depend explicitly on the current level of wealth, time, stock price, and variance level; these
are all the Hamilton-Jacobi-Bellman (HJB) equation variables. The associated HJB equation
for the value function V follows the principles of stochastic control and is given by

sup
πt

{
Vt + WtVW(r + πT

t ΣtΛ) +
1
2

W2
t VWW(πT

t ΣtΦΦTΣT
t πt) + WtVWHσH(πT

t Σt A) + WtVW ln SσS(πT
t ΣtB)

}
+VHµH +

1
2

VHH(σ
H)2 + Vln S(r + λSσS − (σS)2/2) +

1
2

Vln S ln S(σ
S)2 + VH ln SσHσSρSH = 0,

(5)

where Φ =

[
1 0

ρSH

√
1 − ρ2

SH

]
, A = [ρSH , 1]T and B = [1, ρSH ]

T .

Next, we change variables to simplify mathematical calculations, similarly to Liu and
Pan (2003), creating a new artificial market. This market consists of three assets: a risk-free
money account Mt and two pure factor assets S(S)

t and S(H)
t :

dMt
Mt

= rdt
dS(S)

t

S(S)
t

= (r + λS)dt + dBS
t

dS(H)
t

S(H)
t

= (r + λH)dt + dBH
t

dHt = µHdt + σHdBH
t

< dBS
t , dBH

t >= ρSHdt.

(6)

Compared to the original market, the market state variable is still Ht; nonetheless, here,
the investor can put their money in the hypothetical pure factor assets S(S)

t and S(H)
t , which

have a unit exposure on BS
t and BH

t , respectively. Let ηt = [η
(1)
t , η

(2)
t ]T be the allocation on

the pure factors (also known as exposures in the literature: see Liu and Pan (2003)); Ŵt
denotes the investor’s wealth process, and V̂(t, Ŵ, H, ln S) represents the value function in
the artificial market. Similarly, the associated HJB equation becomes

sup
ηt

{
V̂t + ŴtV̂Ŵ(r + ηT

t Λ) +
1
2

Ŵ2
t V̂ŴŴ(ηT

t ΦΦTηt) + ŴtV̂ŴHσH(ηT
t A) + ŴtV̂Ŵ ln SσS(ηT

t B)
}

+V̂HµH +
1
2

V̂HH(σH)2 + Vln S(r + λSσS − (σS)2/2) +
1
2

V̂ln S ln S(σ
S)2 + V̂H ln SσHσSρSH = 0.

(7)

If the solution of the associated HJB PDEs exists, then it is easy to verify that

V̂(t, Ŵ, H, ln S) = V(t, W, H, ln S) (8)

Ŵt = Wt (9)

ΣT
t π∗

t = η∗
t . (10)

where we could also write π∗
t = Σt(ΣT

t Σt)−1η∗
t . Furthermore, if the number of derivatives

in Ot is greater than 2 (i.e., n ≥ 2), there are infinitely many optimal strategies, all producing
the same maximum value function.
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Aside from the expected utility maximization, the investor is also concerned with the
size of their risky allocations. For instance, an institutional investor may have to keep their
gross allocation exposure under a certain level due to regulatory constraints. In other words,
even a tiny exposure could be significant for capital safety regarding unmodelable risk,
such as a financial crisis. Hence, we consider an additional derivative selection criterion,
namely risk exposure minimization, introduced in Escobar-Anel et al. (2022):

min
Ōt∈Ω(n)

O

∥∥∥∥∥∥arg max
πt∈Ω(O)

π

E(U(WT) | Ft)

∥∥∥∥∥∥
1

, (11)

where ∥πt∥1 =
n
∑

i=1

∣∣∣π(i)
t

∣∣∣ represents the ℓ1 norm of allocations at time t. Please note that this

objective is equivalent to maximizing the cash position while shorting less. Escobar-Anel
et al. (2022) demonstrated that the redundancy offers no additional help with either the
investor’s expected utility or their risky asset exposure in the case of two one-factor assets2.

In the following proposition, we demonstrate a generalized conclusion that applies to
any diffusion model.

Proposition 1. Assume that an optimal solution for Problem (11) exists for n ≥ 2; then, (11) leads
to the same minimal ℓ1 norm for any n ≥ 2. In addition, an optimal strategy exists for Problem (11)
such that the number of non-zero allocations is less than or equal to 23.

Proof. See Appendix A.1.

Proposition 1 demonstrates that investors do not need to consider a portfolio with size
n > 2. Working with n = 2 is sufficient for both Problems (4) and (11). Hence, we only
study the most straightforward case when given a complete market setting (i.e., n = 2).

3. Polynomial Affine Method for CRRA Utilities in Financial Derivatives Market

In this section, we introduce a methodology to compute derivatives-based portfolio
strategies. This method is required to find the optimal candidate composition Ōt ∈ Ω(2)

O for
risk exposure minimization.

Complexity in assets’ dynamic models often jeopardizes the analytic solvability of HJB
PDE; this means that closed-form solutions are only sometimes available. Motivated by this
fact, Zhu and Escobar-Anel (2022) proposed a simulation-based method to approximate the
optimal strategy for continuous-time portfolios within EUT (i.e., the PAMC). The original
PAMC method only applies to asset classes, such as equity, fixed income, and currency,
where asset dynamics are known explicitly. However, the PAMC can easily be extended
to financial derivatives markets with proper modifications. The new method, namely
the PAMC-indirect, is introduced in Section 3.1. Furthermore, an alternative method is
described in Appendix B. The performances of both methodologies are demonstrated in
the case of the Heston model, and the comparison to the theoretical solution confirms the
excellent accuracy and efficiency of the PAMC-indirect method.

It should be noted that after introducing a sufficient number of derivatives to complete
the market, i.e., fixing the pricing kernel ξ, the CRRA portfolio optimization problem could be
solved via martingale duality. This is, the optimal wealth is proportional to ξ

−1/γ
t f (t, Ht, St),

with optimal exposure obtained numerically via a simulation of f (t, Ht, St)E[(ξT/ξt)1−1/γ |
Ft]. Nonetheless, this approach requires a complete market while our method still works
with fewer derivatives (partially complete, i.e., incomplete markets).



J. Risk Financial Manag. 2024, 17, 457 7 of 20

3.1. The PAMC-Indirect

Inspired by the quadratic affine model family (see Liu 2006), the PAMC approach
assumes that the value function has the following representation:

V(t, W, H, ln S) =
W1−γ

1 − γ
f (t, H, ln S), (12)

where f (t, H, ln S) is approximated by an exponential polynomial function of order k; that
is, exp{Pk}. The PAMC method utilizes the Bellman equation and the fact that the value
function at re-balancing time is the conditional expectation of the value function at t + ∆t;
that is,

V(t, Wt, Ht, ln St) = max
πt

E(V(t + ∆t, Wt+∆t, Ht+∆t, ln St+∆t) | Ft).

The PAMC expands the value function at t + ∆t with respect to wealth W, state
variable H and log stock price ln S, and it considers a sufficiently small re-balancing
interval ∆t such that the infinitesimal o(∆t) terms are omitted. Then, the value function
V(t, Wt, Ht, ln St) is rewritten as a quadratic function of the portfolio strategy, and the
optimal strategy is immediately solved with the first order condition given the information
at t + ∆t. Proposition 2 displays the optimal strategy η∗

t estimation in the artificial pure
factor market (6).

Proposition 2. Given the approximation of the value function at the next re-balancing time t + ∆t
(i.e., W1−γ

1−γ exp{Pk}(t + ∆t, H, ln S)), the optimal strategy at time t is given by

η∗
t =

1
γ
(ΦΦT)−1(Λ +

∂Pk
∂H

σH A +
∂Pk

∂ ln S
σSB). (13)

Proof. See Appendix A.2.

The PAMC-indirect inherits the recursive approximation structure of the PAMC. After
the generation of paths of asset price and state variables, the optimal pure factor strategies at
last re-balancing time T − ∆t can be directly computed with (13) because Pk(T, H, ln S) = 0;
the path-wise expected utilities are obtained through simulation. Furthermore, the expected
utilities are regressed over stock price ST−∆t and state variable HT−∆t, and the regression
function approximates the V(T − ∆t, W, H, ln S). Then, the method moves backward, and
similar procedures are conducted at each re-balancing time until the optimal initial strategy
of the pure factor portfolio (i.e., η∗

0 ) is obtained.
Finally, the PAMC-indirect calculates the portfolio variance matrix Σt, which depends

on the option price Ot, Delta ∂Ot
∂St

and the sensitivity to the state variable ∂Ot
∂Ht

. The optimal
derivatives strategy π∗

0 is solved with (10). Only in some special cases (e.g., the Black-
Scholes model) are option prices solved analytically. Various approximation methods
for option price and Greeks are available in the existing literature. The option style and
underlying assets model should determine the choice of such methods. For example, an
accurate Fourier transform (FT) approximation is an ideal choice when the semi-closed-
form solution of an option is available (e.g., the Heston model, the Ornstein–Uhlenbeck 4/2
model), while a simple Monte Carlo simulation is universal for options with a deterministic
exercise date; and a least-squares Monte Carlo method is applicable when considering
American style options.

We clarify the notation in Table 1 and detail the PAMC-indirect in Algorithm 1.



J. Risk Financial Manag. 2024, 17, 457 8 of 20

Algorithm 1: PAMC-indirect

Input: S0,W0,H0

Output: Optimal trading strategy π∗
0

1 Initialization;

2 Generating nr paths of Bm,S
t , Bm,H

t ,Sm
t , Hm

t ,Sm,S
t ,Sm,H

t f or m = 1...nr;

3 while t = T − ∆t do

4 for m = 1...nr do

5 Directly compute optimal allocation ηm
T−∆t with Equation (13) where Pk = 0

at time T;

6 for n = 1...N do

7 Generate Ŝm,n,S
T and Ŝm,n,H

T given Sm,S
T−∆ and Sm,H

T−∆ ;

8 Compute wealth Ŵm,n
T (ηm

T−∆t) at the terminal time given the wealth at

WT−∆t = W0, the transformed value function is estimated by

v̂m = ln [(1 − γ) 1
N

N
∑

n=1
U(Ŵm,n

T (πm
T−∆t))]− (1 − γ) ln W0 ;

9 Regress v̂m over the polynomial of Hm
T−∆t and ln Sm

T−∆t, and obtain the

function LT−∆t(H, ln S);

10 for t = T − 2∆t to ∆t do

11 for m = 1...nr do

12 Directly compute optimal allocation ηm
t with Equation (13) where

Pk = Lt+∆t(H, ln S);

13 for n = 1...N do

14 Generate Ŝm,n
t+∆t, Ĥm,n

t+∆t, Ŝm,n,S
t+∆t and Ŝm,n,H

t+∆t given Sm
t , Hm

t , Sm,S
t and Sm,H

t ;

15 Compute wealth Ŵm,n
t+∆t(η

m
t ) at the terminal given the wealth at Wt = W0,

the transformed value function is estimated by v̂m =

ln [ 1
N

N
∑

n=1
(Wm,n

t+∆t(π
m
t ))

1−γexp(Lt+∆t(Ĥm,n
t+∆t, ln Ŝm,n

t+∆t))]− (1 − γ) ln W0 ;

16 Regress v̂m over the polynomial of Hm
t and ln Sm

t , and obtain the function

Lt(H, ln S);

17 while t = 0 do

18 η∗
0 is obtained with Equation (13) and where the Pk = L∆t(H, ln S);

19 Apply approximation methods and obtain the price of O0(H0, ln S0) as well as

its sensitivity ∂O0
∂S0

(H0, ln S0) and ∂O0
∂H0

(H0, ln S0) ;

20 Compute the variance matrix Σ0, and the optimal allocation

π∗
0 = Σ0(ΣT

0 Σ0)
−1η∗

0 ;

21 return π∗
0
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Table 1. Notation and definitions.

Notation Meaning

Bm,S
t ,Bm,H

t Brownian motion at time t in mth simulated path
Sm

t Stock price at time t in mth simulated path
Sm,S

t Pure factor asset SS
t at time t in mth simulated path

Sm,H
t Pure factor asset SH

t at time t in mth simulated path
Hm

t State variable Stock price at time t in mth simulated path
Om

t Derivatives price at time t in mth simulated path
nr Number of simulated paths
Σm

t Variance matrix of portfolio composition at time t in mth simulated path
N Number of simulations to compute expected utility for a given set (W0, Sm

t , Hm
t )

Ŵm,n
t+∆t(π

m)
The simulated wealth level at t + ∆t given the wealth, the allocation and other state variables at t are W0, πm, Sm

t ,
and Hm

t
Ŝm,n

t+∆t A simulated stock price at t + ∆t given Sm
t

Ĥm,n
t+∆t A simulated state variable at t + ∆t given Hm

t
Ôm,n

t+∆t A simulated option price at t + ∆t
V(t, W, ln S, H) Value function at time t given wealth W, stock price S and state variable H

v̂m Estimation of Pk(t, ln Sm
t , Hm

t ) = log( f (t, ln Sm
t , Hm

t )) in (12). Regress and in regression; superscript m indicates
the corresponding regressor (ln Sm

t , Hm
t )

Lt(H, ln S) The regression function to be used to approximate Pk(t, ln S, H)
ηm

t Optimal strategy at time t in mth simulated path

4. Derivatives Selection

In this section, we study derivative selection for market completion-that is, (11)—for
n = 2 within subsets of the derivative set Ω(2)

O . The derivative selection problem is
rewritten as

min
Ōt∈Ω(2,C)

O

∥∥∥∥∥∥arg max
πt∈Ω(O)

π

E(U(WT) | Ft)

∥∥∥∥∥∥
1

, (14)

where Ω(2,C)
O is a derivative set defined by

Ω(2,C)
O =

{
Ōt = [St, O(C)

t ]T |O(C)
t ∈ C, t ∈ [0, T]

}
.

The portfolio composition Ōt ∈ Ω(2,C)
O consists of a stock St and a derivative security

O(C)
t ; superscript C represents the candidate set of derivative type; and Top denotes the time

to maturity of O(C)
t . This setting coincides with a popular practical strategic investment

implementation (i.e., eliminating unhedgeable risk factors of a pure-stock portfolio with
financial derivatives). We use the Heston SV model given in (15) as the proxy of the
market dynamics.

dMt
Mt

= rdt
dSt
St

= (r + λXt)dt +
√

XtdBS
t

dXt = κX(θX − Xt)dt + σX√XtdBX
t

dO(C)
t = (rO(C)

t + λ
∂O(C)

t
∂St

StXt + λX ∂O(C)
t

∂Xt
σXXt)dt + ∂O(C)

t
∂St

St
√

XtdBS
t +

∂O(C)
t

∂Xt
σX√XtdBX

t

< BS, BX >t= ρSX

(15)

The Heston model is a specific case of the generalized diffusion model (1) with λS =
λ
√

Xt, λH = λX√Xt, σS =
√

Xt, µX = κX(θX − Xt) and σH = σX√Xt. We employed
a representative market-calibrated set of parameters (see Table 2), given in Liu and Pan
(2003); see also Escobar and Gschnaidtner (2016) for a review of parameter values. The
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optimal allocation for the model (15) can be written explicitly with Equations (13) and (10)
as follows

πS
t =

1
γ(1 − ρ2

SX)
(λ − ρSXλX)− πO

t
St

O(C)
t

∂O(C)
t

∂St

πO
t =

(
O(C)

t
γσX(1 − ρ2

SX)
(λX − ρSXλ) +

O(C)
t
γ

∂Pk
∂Xt

)
1

∂O(C)
t

∂Xt

. (16)

The representation indicates that the optimal allocation on option πO
t solely depends

on the choice of option O(C)
t (i.e., πO

t is a function of the option’s sensitivity to the instan-
taneous variance and option price). In contrast, the optimal allocation on the stock πS

t is
determined by the ratio of the option’s sensitivity to the instantaneous variance and the
sensitivity to the stock.

Table 2. Parameter value for the Heston model.

Parameter Value Parameter Value

T 1 year ρSX −0.4
θX 0.0169 σX 0.25
κX 5.0 λ 4.0
λX −7.1 Top 0.1 year
∆t 1

60 period 60
r 0.05 X0 θX

S0 1.0 M0 1.0
W0 1 γ 4
N 2000 nr 100

4.1. Derivatives Selection within Options on Stock

We start the selection among four popular equity options. Specifically, the candidate
set is given by4

C = {Call option, Put option, Straddle, Strangle}.

For simplicity, we only consider European-style derivatives. Call (i.e., payoff (S−K)+)
and put (i.e., payoff (K − S)+) options are the most common products traded in the market.
Additionally, a straddle (i.e., payoff (S − K)+ + (K − S)+) is a commonly used product
when investors expect the underlying asset to deviate from the spot price; hence, the long
position of a straddle is approximately a long volatility position. Compared with a straddle
synthesized by purchasing a call and a put with the same strike price and maturity, a
strangle (i.e., payoff (S − K1)

+ + (K2 − S)+) has a more flexible structure, as it takes long
positions on out-of-the-money (OTM) put and call, which is a cheaper way to acquire
exposure to volatility5.

Figure 1 displays the risk exposure ∥πt∥1 of portfolios as a function of derivative
moneyness K/S0, where K is the strike price of the options. Figure 1a exhibits risk exposure
given options with maturity Top = 0.1, and Figure 1b displays results when the option
maturity is Top = 0.5. In both cases, investors reduce their risk exposure with OTM
put and call options. Puts and calls could lead to illiquid choices, whereas a straddle
achieves minimum ∥πt∥1 when near at-the-money (ATM). The optimal moneyness of a
straddle option shifts to the right as maturity Top increases. The risk exposure with a
strangle decreases as its component put option moves deeper OTM. Furthermore, even the
strangle consisting of a near-ATM put and call outperforms other options. We consequently
conclude that the strangle minimizes the risk exposure.
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(a) Maturity = 0.1 (b) Maturity = 0.5

Figure 1. The ∥πt∥1 versus moneyness: The Y-axis is the risk exposure of a portfolio containing
different derivatives. The X-axis indicates the moneyness K/S0 of calls, puts, and straddles. The
strangle is synthesized with an OTM put and an OTM call. Given the moneyness of the OTM put
indicated by the X-axis, the strike price of the OTM call is the one achieving minimum ∥πt∥1 within
the range [S0, 110%S0].

The turning point on the left tail of the strangle’s risk exposure in Figure 1 is further
studied in Figure 2, where we illustrate how the optimal moneyness of an OTM call, an
allocation on stock πS

t and an allocation on strangle πO
t vary with the moneyness of an

OTM put. Note the practical range selected for the moneyness of an OTM call; that is,
KCall/S0 ∈ [S0, 110%S0]. It is shown that if the put option’s strike price, starting at the spot
price, moves in the direction of OTM, the corresponding optimal moneyness of the call
option also becomes deeply OTM. The OTM call reaches the boundary earlier than the
put, which leads to the turning point. Before the turning point, allocation on the stock πS

t
continues to be minor, and πO

t gradually approaches 0; hence, the total risk exposure ∥πt∥1
assumes a decreasing trend. However, πS

t increases rapidly after the turning point, and
∥πt∥1 consequently rises as πO

t continues to drop. Moreover, Figure 2a,b compare strangles
with maturity Top = 0.1 and Top = 0.5, respectively. The turning point for a longer maturity
strangle is more easily reached, which makes it less preferable.

(a) Maturity = 0.1 (b) Maturity = 0.5

Figure 2. Impact of the OTM put’s moneyness on the strangle. The left vertical axis indicates the
optimal moneyness of the OTM call within [100%S0, 110%S0]. The right vertical axis indicates the
allocation of the stock and the strangle.

Equation (16) demonstrates that the allocation on the option is determined by the
ratio of the Vega to the option price. Therefore, in Figure 3, we investigate the relationship
between the Vega of the strangle and the time to maturity to provide further insight for
the comparison of maturity in Figures 1 and 2. Figure 3a illustrates the Vega versus the
maturity of an ATM strangle (the moneyness of component put option K/S0 = 100%), and
an OTM strangle (the moneyness of component put option K/S0 = 95%). For an especially
short-term maturity strangle, the terminal payoff does not have sufficient time to react to
the change in the volatility state. Therefore, the Vega is small. For the long-term maturity
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strangle, a change in the instantaneous variance also has a negligible impact on the option
price because of its mean-reverting nature. Hence, the Vegas of both strangles are concave
in time to maturity, which peaks at around 0.3 years. The impact from time to maturity on

the ratio of Vega to price is illustrated in Figure 3b, where ∂O(C)
t

∂Xt
/O(C)

t is always positive
and monotonically decreases with maturity, which leads to an increasing |πO

t |. In Figure 2,
πS

t is close to 0 before the boundary, and |πO
t | increases with maturity; hence, we conclude

that a short-term maturity strangle is preferable.

(a)Vega ∂O(C)
t

∂Xt
(b)Vega to Price ∂O(C)

t
∂Xt

/O(C)
t

Figure 3. Sensitivity of strangle option price O(C)
t to instantaneous variance Xt versus time to maturity

Top. The legend indicates the moneyness of the component put, and the call option achieves minimum
risk exposure. Please note that there is no boundary for the strike price of the component call.

4.2. Derivatives Selection within VIX Products

Next, we study an investor accessing the VIX of the stock at hand, such as the VIX for
the S&P 500. In this case, the investor can directly access the volatility risk by investing in
products based on the VIX. The VIX has drawn investors’ attention since its origin in 1993;
not only is it a real-time indicator of the market sentiment, but also products such as VIX
futures and VIX options are popular for hedging volatility risk. In this section, we explore
products on the VIX. We consider a candidate set

C = {VIX call, VIX put, VIX straddle, Strangle}.

Please note that a strangle is the best option for minimizing risk exposure in Section 4.1.
VIX calls and VIX puts are call and put options, respectively, based on the value of the VIX.
A VIX straddle is an instrument synthesized by the long position of a VIX call and a VIX
put with the same strike price.

Given the definition of VIX as specified in the CBOE white paper (CBOE 2003), Lin
(2007) solved the VIX2 in closed form as a function of instantaneous variance Xt. Under the
Heston model, we have

VIX2
t =

1
τ
(aτXt + bτ)

aτ =
1 − exp−κ∗vτ

κ∗v
, bτ = θ∗v(τ − aτ) κ∗v = κv + λXσv, θ∗v =

κvθv

κ∗v
, τ =

30
365

,
(17)

where VIX2
t is linear with the instantaneous variance Xt. Computing a VIX option’s price

and Greeks is easy via Monte Carlo simulation, enabling us to find elements in the variance
matrix Σt.
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Unlike options on the stock, by investing in VIX products, the investor acquires
exposure only on the volatility risk; hence, the variance matrix Σt is diagonal. Moreover,
the equity-neutral position of VIX products leads to a specific case of (16):

πS
t =

1
γ(1 − ρ2

SX)
(λ − ρSXλX)

πO
t =

(
O(C)

t
γσX(1 − ρ2

SX)
(λX − ρSXλ) +

O(C)
t
γ

∂Pk
∂Xt

)
1

∂O(C)
t

∂Xt

. (18)

In this case, the allocation on the stock is invariant to the choice of VIX products, which
thus becomes a natural lower bound for risk exposure (i.e., ∥πt∥1 ≥ |πS

t |).
The risk exposure when investors hedge the volatility risk with VIX calls and puts

is displayed in Figure 4a. On the one hand, calls and puts on the VIX have properties
similar to those on the stock: OTM options tend to achieve smaller risk exposure. On
the other hand, a VIX straddle is less efficient in hedging the volatility risk because it is
relatively insensitive to the volatility, and a more significant risk exposure ∥πt∥1 is needed
for investors compared to the cases of VIX calls and puts. The risk exposure with the
equity strangle is displayed for comparison purposes; here, the turning point resulting
from the boundary of moneyness on the OTM call is still evident. Moreover, the strangle
achieves a much smaller risk exposure than the VIX products. We therefore conclude that
equity strangle is superior when the time to maturity Top for candidate products is minor
(Top = 0.1).

Figure 4b illustrates how the option maturity Top affects the risk exposure ∥πt∥1. It
indicates that an OTM VIX call and an OTM VIX put are preferable in (a), and a similar
conclusion is verified numerically for any Top ∈ (0, 1]. Therefore, risk exposure for the best
VIX call (K = 105%S0) and VIX put (K = 95%S0) are plotted in Figure 4b. In addition, the
minimum risk exposure within a pre-specified region of moneyness is also displayed. As
the volatility time series exhibits a mean-reverting property, the VIX options with long-
term maturity are insensitive to the instantaneous variance; hence, it has little effect in
hedging the volatility risk. The figure also suggests that a large allocation on the long-term
maturity VIX option is needed, such that the risk exposure increases rapidly with maturity.
A strangle achieves smaller risk exposure when short-term maturity products are available
in the market, aligning with the result in Figure 4a.

(a) (b)

Figure 4. The ∥πt∥1 for VIX products. (a) The ∥πt∥1 versus moneyness: the time to maturity of
both VIX options and the strangle is 0.1 year. The X-axis indicates the moneyness of VIX options
and the OTM put in the strangle; the strike price of the OTM call is the one achieving minimum
∥πt∥1 within the range [S0, 105%S0]. (b) The ∥πt∥1 versus maturity: the strike price of VIX calls is
105%S0. The strike price of VIX puts is 95%S0. The green line shows the smallest ∥πt∥1 is achieved
by the strangle given the OTM put strike price KPut ∈ [95%S0, 100%S0] and the OTM call strike price
KCall ∈ [100%S0, 105%S0].
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According to Figures 1 and 2, the boundary of the OTM call is reached faster as Top
increases, and the boundary significantly restricts risk exposure, thus reducing the effect of
the strangle. This leads to a steep slope of risk exposure for the strangle in Figure 4b. In
summary, depending on the situation, the investor should choose between VIX products
and an equity strangle. The strangle is preferable if the investor has access to short-term
maturity options. However, when only long-term maturity products are available, investors
should choose call options on the VIX for market completion.

5. Additional Discussion

In principle, any financial derivative and the underlying stock can generate a portfolio
that maximizes its utility due to the market’s completeness, as the derivatives act to hedge
the presence of stochastic volatility. However, our findings convey the importance of
properly completing a financial portfolio. As illustrated in Figure 1, even though investors
can maximize their utility by adding a call option or a put option to their portfolio, that
decision could come with exposure to risky assets of over 1000%. Moreover, if investors
want to reduce that exposure while using standard calls and puts, they must acquire
exotic products (e.g., out-of-the-money), which could be hard to sell in illiquid markets.
In reality, most investors would not consider exposures higher than 200% as it would
involve a great level of debt in case of a market crash. As we can see in the same figure, the
derivative choice is very much related to the horizon for the investment; long maturities
could make Straddles as appealing as Strangles, shining a new light on the importance of
these derivatives.

As our model involves stochastic volatility and uses the S&P500 as the exemplary
underlying, we also explore the importance of adding the Volatility Index (VIX) into the
investor’s portfolio. As VIX is not directly tradeable, we consider options on the VIX as the
source of market completion. Figure 4 reveals that using the VIX is sometimes beneficial.
Still, not always; therefore, investors should do their own assessments along the lines of
our methodology to select the proper derivatives in the market to complete their portfolios.

6. Conclusions

This paper explored optimal derivatives-based portfolios to complete a market charac-
terized by volatility risk as a state variable. An accurate and high-speed approximation for
optimal allocations is proposed for the unsolvable problem of optimal derivative exposure.
In addition to the traditional portfolio decision objective (i.e., EUT maximization), we work
with an additional criterion, risk exposure minimization, for derivative selection. This aids
in selecting a meaningful product out of many that maximizes the utility. We found that
strangle options are the best equity option product for managing volatility risk. Moreover,
we demonstrated that options based on the VIX are superior to equity strangles in some
realistic situations.

There are many interesting potential extensions to this line of research. For instance,
investors could incorporate multi-factor models that consider stochastic interest rates,
stochastic correlations, jumps, and stochastic market prices of risk, to mention a few.
Selecting the proper derivatives in such rich settings is likely a more challenging task. Still,
at the same time, failure to act as per our recommendations could lead to either quite high
exposures to risky assets or low-performing portfolios. These are more realistic, solvable
settings within our numerical method, providing investors valuable insight into optimal
high-dimensional portfolios and multi-asset derivatives for sensible, practical investment.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

Let Ot,n = [O(1)
t , O(2)

t , ..., O(n)
t ]T with variance matrix Σt of rank 2 be an optimal subset

of options for problem (11). π∗
t,n is a strategy maximizing the expected utility if and only

if ΣT
t π∗

t,n = η∗
t . Therefore, Ot,n and π∗

t,n is an optimal pair for (11) when π∗
t,n is an optimal

solution for
minimize

πt
||πt||1

subject to ΣT
t πt = η∗

t

(A1)

According to principle 4.5 in Rardin and Rardin (1998), problem (A1) is equivalent to

minimize
δt

1
Tδt

subject to Σ̂T
t δt = η∗

t ,

δt ≥ 0

(A2)

where δt = [α
(1)
t , α

(2)
t , ..., α

(n)
t , β

(1)
t , β

(2)
t , ..., β

(n)
t ]T satisfies α

(i)
t =

|π(i)
t |+π

(i)
t

2 , and β
(i)
t =

|π(i)
t |−π

(i)
t

2 , with

Σ̂t =

[
Σt
−Σt

]
=



f 11
t f 12

t
... ...
f n1
t f n2

t
− f 11

t − f 12
t

... ...
− f n1

t − f n2
t

. (A3)

Theorems 2.3 and 2.4 in Bertsimas and Tsitsiklis (1997) lists the necessary and sufficient
conditions for the extreme point δt, i.e.

1. δt = [δ
(1)
t , δ

(2)
t , ..., δ

(n)
t , δ

(n+1)
t , δ

(n+2)
t , ..., δ

(2n)
t ]T .

2. the q̂th and p̂th rows in Σ̂t are linear independent, δ
(i)
t = 0 if i ̸= q̂ or p̂.

3. δt is feasible solution.

Without loss of generality, we assume the pth and qth rows in Σ are linear independent,
and we consider 4 cases:

δ
[1]
t =

{
[δ

[1],(1)
t , δ

[1],(2)
t , ..., δ

[1],(n)
t , δ

[1],(n+1)
t , δ

[1],(n+2)
t , ..., δ

[1],(2n)
t ]T

δ
[1],(i)
t = 0 if i ̸= q or p

δ
[2]
t =

{
[δ

[2],(1)
t , δ

[2],(2)
t , ..., δ

[2],(n)
t , δ

[2],(n+1)
t , δ

[2],(n+2)
t , ..., δ

[2],(2n)
t ]T

δ
[2],(i)
t = 0 if i ̸= q + n or p

δ
[3]
t =

{
[δ

[3],(1)
t , δ

[3],(2)
t , ..., δ

[3],(n)
t , δ

[3],(n+1)
t , δ

[3],(n+2)
t , ..., δ

[3],(2n)
t ]T

δ
[3],(i)
t = 0 if i ̸= q or p + n

δ
[4]
t =

{
[δ

[4],(1)
t , δ

[4],(2)
t , ..., δ

[4],(n)
t , δ

[4],(n+1)
t , δ

[4],(n+2)
t , ..., δ

[4],(2n)
t ]T

δ
[4],(i)
t = 0 if i ̸= q + n or p + n

(A4)



J. Risk Financial Manag. 2024, 17, 457 16 of 20

There is a non-negative strategy in δ
[1]
t , δ

[2]
t , δ

[3]
t and δ

[4]
t because the ith row in Σ̂ is the

opposite of the (i + n)th row, and the non-negative strategy is feasible and an extreme
point. This proves the existence of an extreme point for problem (A2). Now, Theorem 2.7
in Bertsimas and Tsitsiklis (1997) guarantees an optimal solution, an extreme point for
problem (A2).

With the second necessary and sufficient conditions of the extreme point, we know
that an optimal solution δ∗t for problem (A2) has at most two non-zero elements. This
would imply an optimal solution, denoted by π∗

t,n = [π
(1)
t,n , π

(2)
t,n , ..., π

(n)
t,n ]T , for problem (A1)

with at most two non-zero elements, which would also be the optimal strategy for (11).
Without loss of generality, we assume π

(i)
t,n = 0, i ̸= x, y. Ot,2 = [O(x)

t , O(y)
t ] and

π∗
t,2 = [π

(x)
t,n , π

(y)
t,n ]

T is a feasible strategy for problem (11) with n = 2. We show that it is an
optimal pair by contradiction.

If there is a feasible solution Ôt,n = [Ô(1)
t , Ô(2)

t ] and π̂∗
t,2 = [π̂

(1)
t,2 , π̂

(2)
t,2 ]

T such that

||π̂∗
t,2||1 < ||π∗

t,2||1, then π̂∗
t,n = [π̂

(1)
t,2 , π̂

(2)
t,2 , 0, ..., 0]T is a feasible strategy for (11) such

that ||π̂∗
t,n||1 < ||π∗

t,n||1, which is contradiction to our previous conclusion. Note that
||π∗

t,2||1 = ||π∗
t,n||1, so problem (11) with n = 2 and with n ≥ 2 have the same minimum ℓ1

norm of allocation.

Appendix A.2. Proof of Proposition 2

According to the Bellman equation, the value function can be rewritten as,

V(t, W, H, ln S) = Et(V(t + dt, Wt+dt, Ht+dt, ln St+dt) | W, H, ln S)

= max
ηt

Et(V(t + dt, Wt+dt, Ht+dt, ln St+dt) | W, η, H, ln S). (A5)

We expand V(t + dt, Wt+dt, Ht+dt, ln St+dt) at t + dt in terms of all the variables.

V(t + dt, Wt+dt, Ht+dt, ln St+dt) = V(t + dt, Wt, ln St, Ht) + VWt(t + dt, Wt, Ht, ln St)dWt

+
1
2

VWtWt(t + dt, Wt, Ht, ln St)(dWt)
2 + Vln St(t + dt, Wt, Ht, ln St)d ln St + VHt(t + dt, Wt, Ht, ln St)dHt

+
1
2

Vln St ln St(t + dt, Wt, Ht, ln St)d ln Std ln St +
1
2

VHt Ht(t + dt, Wt, ln St, Ht)dHtdHt

+ VWt ln St(t + dt, Wt, Ht, ln St)dWtd ln St + VWt Ht(t + dt, Wt, Ht, ln St)dWtdHt

+ Vln St Ht(t + dt, Wt, Ht, ln St)d ln StdHt + o(dt).

(A6)

Substituting dWt, d ln St, dHt which can be found in Equation (1), taking conditional
expectation on both sides, and rewriting V(t, Wt, Ht, ln St) in a quadratic form with respect
to η leads to

V(t, Wt, Ht, ln St) = max
ηt

(
2

∑
i,j=1

fi,j(t, Wt, , Ht ln St)η
(i)
t η

(j)
t +

2

∑
i=1

fi(t, Wt, Ht, ln St)η
(i)
t + f0(t, Wt, Ht, ln St)

)

fi,j(t, Wt, Ht, ln St) =
1
2

VWtWt(t + dt, Wt, Ht, ln St)W2
t (ΦΦT)i,jdt

fi(t, Wt, Ht, ln St) = VWt(t + dt, Wt, Ht, ln St)WtΛidt + VWt ln St(t + dt, Wt, Ht, ln St)WtσSBidt

+ VWt Ht(t + dt, Wt, Ht, ln St)WtσH Aidt

f0(t, Wt, Ht, ln St) = V(t + dt, Wt, Ht, ln St) + VWt(t + dt, Wt, Ht, ln St)Wtrdt

+ Vln St(t + dt, Wt, Ht, ln St)(r + λSσS − 1
2
(σS)2)dt + VHt(t + dt, Wt, Ht, ln St)µ

Hdt

+
1
2

VHt Ht(t + dt, Wt, Ht, ln St)(σ
H)2dt +

1
2

Vln St ln St(t + dt, Wt, Ht, ln St)(σ
S)2dt

+ Vln St Ht(t + dt, Wt, Ht, ln St)ρSHσSσHdt.

(A7)
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We assume a sufficiently small dt so that o(dt) terms are omitted when taking condi-
tional expectations. The solution to the system of equations gives the optimal allocation:

2

∑
j=1

2 fi,j(t, Wt, Ht, ln St)η
(∗,j)
t = − fi(t, Wt, Ht, ln St), i = 1, 2. (A8)

With the representation of the value function in Equation (12) and assuming that
f (t, H, ln S) = exp(Pk(t, H, ln S)), the derivatives of value function with respect to each
stock and state variable can be rewritten as,

VW(t + dt, Wt, Ht, ln St) = W−γ
t exp(Pk(t + dt, Ht, ln St))

VWW(t + dt, Wt, Ht, ln St) = −γW−γ−1
t exp(Pk(t + dt, Ht, ln St))

VW ln St(t + dt, Wt, Ht, ln St) = W−γ
t exp(Pk(t + dt, Ht, ln St))

∂Pk(t + dt, Ht, ln St)

∂ ln St

VWHt(t + dt, W, Ht, ln St) = W−γ
t exp(Pk(t + dt, Ht, ln St))

∂Pk(t + dt, Ht, ln St)

∂Ht
.

(A9)

Substituting (A9) into (A8), the optimal strategy can be approximated as follows:

2

∑
j=1

gi,j(t, Wt, Ht, ln St)η
(∗,j)
t = gi(t, Wt, Ht, ln St), i = 1, 2

gi,j(t, Wt, Ht, ln St) = γ(ΦΦT)i,j

gi(t, Wt, Ht, ln St) = Λi +
∂Pk(t + dt, Ht, ln St)

∂ ln St
σSBi +

∂Pk(t + dt, Ht, ln St)

∂Ht
σS Ai,

(A10)

Then, the optimal strategy can be rewritten in matrix form:

η∗
t =

1
γ
(ΦΦT)−1(Λ +

∂Pk
∂H

σH A +
∂Pk

∂ ln S
σSB). (A11)

Appendix B. Alternative Approximation Method and Comparison

Appendix B.1. Direct Method

We introduced an alternative method for derivatives-based portfolio strategy, namely
the PAMC-direct method, which is a straightforward application of the PAMC. At each
re-balancing time, the path-wise option price Ot, Delta ∂Ot

∂St
and the sensitivity to the state

variable ∂Ot
∂Ht

are approximated, so the instantaneous dynamics of derivatives are obtained.
This way, derivatives can be taken as an asset with explicitly identifiable dynamics; the
PAMC method is directly applied. The following proposition shows the estimation of
optimal strategy π∗

t in PAMC-direct.

Proposition A1. Given the approximation of the value function at the next re-balancing time
t + ∆t (i.e., W1−γ

1−γ exp{Pk}(t + ∆t, H, ln S)), the optimal strategy at time t is given by

π∗
t =

1
γ
(ΣtΦΦTΣT

t )
−1(ΣtΛ +

∂Pk
∂H

σHΣt A +
∂Pk

∂ ln S
σSΣtB). (A12)

Proof. Similar to Appendix A.2.

We continue to use the notation in Table 1 and describe the step-by-step algorithm of
the PAMC-direct in Algorithm A1.
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Algorithm A1: PAMC-direct method

Input: S0,W0,H0

Output: Optimal trading strategy π∗
0

1 initialization;

2 Generating nr paths of Bm
t , Bm,H

t ,Sm
t , Hm

t f or m = 1...nr;

3 Apply approximation methods and obtain the price of Ot(Hm
t , ln Sm

t ) as well as its

sensitivity ∂Ot
∂St

(Hm
t , ln Sm

t ) and ∂Ot
∂Ht

(Hm
t , ln Sm

t ) f or t = 0, ∆t, ...T ;

4 while t = T − ∆t do

5 for m = 1...nr do

6 Compute the variance matrix Σm
T−∆t with derivatives price and sensitivity

obtained in step 3 ;

7 Directly compute optimal allocation πm
T−∆t with Equation (A12) where the

Pk = 0 at time T;

8 for n = 1...N do

9 Generate Ŝm,n
T and Ĥm,n

T given Sm
T−∆ and Hm

T−∆ and obtain Ôm,n
T ;

10 Compute wealth Wm,n
T (πm

T−∆t) at the terminal given the wealth at

WT−∆t = W0, the transformed value function is estimated by

v̂m = ln [(1 − γ) 1
N

N
∑

n=1
U(Wm,n

T (πm
T−∆t))]− (1 − γ) ln W0 ;

11 Regress v̂m over the polynomial of Hm
T−∆t and ln Sm

T−∆t, and obtain the

function LT−∆t(H, ln S);

12 for t = T − 2∆t to ∆t do

13 for m = 1...nr do

14 Compute the variance matrix Σm
t with derivatives price and sensitivity

obtained in step 3;

15 Directly compute optimal allocation πm
t with Equation (A12) where the

Pk = Lt+∆t(H, ln S);

16 for n = 1...N do

17 Generate Ŝm,n
t+∆t and Ĥm,n

t+∆t given Sm
t and Hm

t and obtain Ôm,n
t+∆t;

18 Compute wealth Ŵm,n
t+∆t(π

m
t ) at the terminal given the wealth at Wt = W0,

the transformed value function is estimated by v̂m =

ln [ 1
N

N
∑

n=1
(Wm,n

t+∆t(π
m
t ))

1−γexp(Lt+∆t(Ĥm,n
t+∆t, ln Ŝm,n

t+∆t))]− (1 − γ) ln W0;

19 Regress v̂m over the polynomial of Hm
t and ln Sm

t , and obtain the function

Lt(H, ln S);

20 while t = 0 do

21 Compute the variance matrix Σ0 with derivatives price and sensitivity

obtained in step 3, and the optimal allocation π∗
0 is obtained with Equation

(A12) and where the Pk = L∆t(H, ln S);

22 return π∗
0
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Appendix B.2. Comparison between the PAMC-Direct Method and the PAMC-Indirect Method

In this section, we implement the PAMC-direct and PAMC-indirect methods on the
Heston SV model given in (15) for comparison purposes. Given the Heston model, the
derivatives-based portfolio was first studied in Liu and Pan (2003), where the author con-
structed a portfolio with derivative securities and stock to manage volatility risk. The
optimal strategy stock-derivatives portfolio is solved in closed form. The accuracy and effi-
ciency of the PAMC-direct and the PAMC-indirect are compared to the analytical solution.

We continue to use the market-calibrated set of parameters in Table 2. For simplicity,
we let Ot be a delta-neutral straddle because the delta-neutral position keeps the straddle
near-the-money, and the liquidity should not be a concern.

Figure A1a,b compare the optimal allocation on the stock and straddle across different
values of risk aversion level γ. We let the re-balancing frequency of the PAMC-indirect
method be 60 times per year, i.e., investors roughly adjust their positions weekly. Optimal
allocation from the PAMC-indirect method and theoretical solution (re-balancing contin-
uously) are visually overlapped; the PAMC-indirect method exhibits excellent accuracy
in this case. The allocation from the PAMC-direct method with 60 re-balances per year is
subject to a substantial error; on the other hand, the gap to the theoretical solution shrinks
if we let the re-balancing frequency be 300 times per year (roughly daily re-balance). We
expect the gap will vanish as the frequency of re-balancing continues to increase. The
computational times of the PAMC-direct and PAMC-indirect methods are compared in
Figure A1c; the time required for the PAMC-indirect method is significantly smaller than
the time for the PAMC-direct method. The PAMC-indirect is superior to the PAMC-direct in
accuracy and computational efficiency; hence, we use only the PAMC-indirect in Section 4.

(a) Allocation on stock (b) Allocation on straddle option (c) Computational time

Figure A1. Allocation on straddle versus γ.

Notes
1 The methodology can be applied to more general utilities like hyperbolic absolute risk aversion (HARA) or S-curves from

behavioral finance. The accuracy of the solutions shall be explored in detail.
2 Other ideas could be explored like minimization of L2 norm of positions, lifetime or average exposure, or total risk of selected

derivatives. All proposals would have limitations, hence the need for future studies and comparison.
3 The result can be easily extended to a higher dimension. When a model contains m ≥ 2 independent risk factors (Brownian

motions), an optimal strategy exists for Problem (11) such that the number of non-zero allocations is less than or equal to m.
4 Many other derivatives and their combinations, or even leveraged exchange-traded fund, could be considered. Our work set the

ground for further research in this area.
5 Elements in variance matrix Σt, which are functions of option prices and Greeks, can be obtained with numerical integration

method (see Rouah 2013, chp. 11). Specifically, we utilized the formula given in Heston (1993) and computed numerical
integration with the Newton-Cotes formulas.
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