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Abstract: This study evaluated the forecasting accuracy of various models over 5-day and 10-day
trading horizons to predict the prices of orange juice futures (OJ = F). The analysis included tra-
ditional models like Autoregressive Integrated Moving Average (ARIMA) and advanced neural
network models such as Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN),
Backpropagation Neural Network (BPNN), Support Vector Regression (SVR), and Convolutional
Long Short-Term Memory (ConvLSTM), incorporating factors like the Commodities Index and the
S&P500 Index. We employed loss function metrics and various tests to assess model performance.
The results indicated that for the 5-day horizon, the LSTM and ConvLSTM consistently outperformed
the other models. LSTM achieved the lowest error rates and demonstrated superior capability in
capturing temporal dependencies, especially in single-factor and S&P500 Index predictions. Con-
vLSTM also performed strongly, effectively modeling spatial and temporal data patterns. In the
10-day horizon, similar trends were observed. LSTM and ConvLSTM models had significantly lower
errors and better alignment with actual values. The BPNN model performed well when all factors
were included, and the SVR model maintained consistent accuracy, particularly for single-factor
predictions. The Diebold–Mariano (DM) test indicated significant differences in forecasting accuracy,
favoring advanced neural network models. In addition, incorporating multiple influencing factors
further improved predictive performance, enhancing investment outcomes and reducing risk.

Keywords: orange juice futures price; time series forecasting; LSTM; RNN; BPNN; SVR; ConvLSTM;
machine learning; commodities

1. Introduction

The study of commodity market dynamics has been a cornerstone of financial
research, offering valuable perspectives on price formation, risk management, and
market efficiency. The global economy relies heavily on commodities, particularly the oil
and natural gas sector, as well as other important commodities such as energy, agriculture,
minerals, and metals. Among the range of commodities, orange juice futures (OJ = F) have
been a particularly interesting area of study already for several decades (Roll 1984) due
to their distinctive market traits and the significant impact of both natural and economic
factors. In addition, evaluating orange juice prices is crucial because several interrelated
factors significantly impact the global market and consumer behavior (Wang and Wei 2021;
Zhang et al. 2018).

Is it possible to reliably predict commodity prices? This question has been the subject
of ongoing discussion in the financial and economic literature. For example, the recent
surge in orange juice prices can be attributed to extreme weather events and persistent
diseases affecting major orange-producing regions, i.e., hurricanes and pest infestations
(Durbin and Pollastri 2024). Weather greatly influences orange juice production, unlike
other widely produced commodities. Nevertheless, commodity prices are generally con-
sidered more unpredictable than stock prices or exchange rates, posing challenges for
accurate forecasting. Factors like the interaction of demand and supply, economic expan-
sion, market predictions, government regulations, and unexpected events such as spillover
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effects, pandemics, war, and global debt crises all have an impact on commodity futures
prices (Zhao et al. 2016). These complex factors are the primary drivers of the significant
price fluctuations in the spot market prices of commodities. As a result, the expectation is
that predicting commodity price trends, specifically, in this case, the orange juice futures
prices, will not only help mitigate volatility and reduce risk in commodity markets but
can also support governmental entities in making sound and long-term economic choices.
Therefore, the motivation for this research is tied to the unique characteristics of the orange
juice futures market, which is heavily influenced by various factors that create challenges
for traders and investors. The study highlights the need to develop robust forecasting
models to improve investment outcomes and reduce market risks, especially given the
significant volatility of orange juice futures prices compared to other commodities like gold
or oil.

Given the latest technological advancements, various methods are being utilized to fore-
cast prices in the financial industry (Ampountolas 2023; Gupta and Nigam 2020). Although
traditional econometric techniques, for example, the vector autoregressive model (VAR)
struggle to accurately predict the non-linear aspects of commodity prices due to their robust
linear assumptions (Sun et al. 2022; Wang and Fang 2022), advanced models such as machine
learning techniques have gained significant attention due to their ability to observe volatility
characteristics, non-linear information, and historical data effectively (Ampountolas 2024;
Butler et al. 2021; Zhao et al. 2017) or combining models (Barrow and Crone 2016). There-
fore, in the financial and economics literature, we have encountered many authors since the
early years, for example, Kroner et al. (1995) who employed machine learning techniques,
such as the Support Vector Regression (SVR), Long Short-Term Memory (LSTM), Recurrent
Neural Networks (RNNs), Multi-Layer Perceptron (MLP), convolutional neural networks
(CNNs), gate recurrent units (GRUs), backpropagation (BPNN) models, and many other
models to validate the impact of various factors on predicting commodity futures prices.

Limited literature examines the price forecasts of orange juice futures (OJ = F) as an
independent asset. Most research focuses on commodities like gold or oil, with many papers
examining multiple commodities inclusively. Motivated by this and the enormous price
growth during the last two years, we examine various forecasting models—ARIMA, LSTM,
RNN, BPNN, SVR, NAR, and ConvLSTM—to predict commodity futures market’s prices
of orange juice futures prices. We also include other factors such as commodity futures
(ES = F) and S&P500 Indexes. Therefore, we employ two forecasting horizons: 5 trading
days and 10 trading days. Thus, this study aims to contribute to current research by
analyzing and predicting the price trends of orange juice futures in the selected commodity
markets. Additionally, we present a comparative analysis of the forecasting models based
on loss functions and performance metrics. As such, predicting orange juice futures prices
is essential because this market is highly volatile and affected by a range of unpredictable
factors that have significant economic impacts. Accurate predictions can help stakeholders
mitigate volatility, manage risk, and make more informed decisions in the commodity
market. Moreover, given the increasing price volatility in recent years, enhanced forecasting
methods can improve profitability for stakeholders involved in futures trading.

Our results revealed that for both the 5-day and 10-day horizons, advanced neu-
ral network models, particularly LSTM and ConvLSTM, consistently outperformed the
other forecasting models. These models achieved the lowest error rates and demon-
strated superior capability in capturing temporal dependencies, with ConvLSTM also
effectively modeling spatial and temporal data patterns. The directional accuracy and
Diebold and Mariano (1995) test supported the findings. In the 10-day horizon, the LSTM
and ConvLSTM models again showed significantly lower errors and better alignment with
actual values than ARIMA, which had the highest error rates. The BPNN model performed
well when all factors were included, and the SVR model maintained consistent accuracy,
especially for single-factor predictions. The DM test indicated significant differences in
forecasting accuracy, favoring advanced neural network models.
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Section 2 briefly overviews the current literature, and Section 3 discusses the relevant
forecasting models and performance assessment metrics and details the data. Section 4 then
presents an analysis of the empirical study’s findings. Section 5 summarizes the study’s
conclusions and outlines potential directions for future research.

2. Literature Review

In one of the earliest studies, Roll (1984) confirmed that the weather condition variable
impacts the market for frozen concentrated juice. Orange juice prices are impacted by
high volatility as a result of concerns about extreme weather events that could affect
production. However, he demonstrated that weather accounts for only a small portion
of the fluctuations seen in futures prices. In another work, Kroner et al. (1995) utilized
time-series approaches to generate long-term predictions of commodity price volatility
by integrating investors’ anticipated volatility. The authors assessed various forecasts of
commodity price volatility, categorizing them into three groups: (1) forecasts based solely
on expectations derived from options prices, (2) forecasts relying exclusively on time-series
modeling, and (3) forecasts that combine market expectations and time-series techniques.
They concluded that the forecasts proposed in category (3) outperformed the other two
categories. Brooks et al. (2013) analyzed whether there is consistency in the evidence
supporting two theories on commodity future pricing over time. The authors explored if
the ability of commodity futures to predict prices is related to their seasonal fluctuations,
and they also examined if there are changes in the pricing relationships at different times.
They found more compelling evidence of seasonal patterns in the basis, which aligns with
the storage theory. The findings reveal that structural changes mainly involve adjustments
in the starting points rather than the trends, indicating that the predictive power of the basis
remains consistent across various economic conditions. The study by Black et al. (2014)
investigates how stock and commodity prices are related and whether this connection can
be utilized to predict stock returns. Since both prices are associated with anticipated future
economic performance, they are expected to have a lasting relationship, while shifts in
sentiment toward commodity investments may impact how the response to imbalances
occurs. The findings indicated that there is a long-term relationship between stock and
commodity prices, and further tests identify disruptions in the predictive regression. The
paper by Atsalakis et al. (2016) introduces an innovative method for predicting the price
direction of 25 commodities on the global market using a neuro-fuzzy controller. The
prediction system utilizes two adaptive neural fuzzy inference systems (ANFISs) to create
an inverse controller for each commodity. The findings demonstrate a 68.33% hit rate with
a significant improvement in return on equity compared to the buy-and-hold strategy.

In addition to traditional econometric approaches, various machine learning tech-
niques are used to uncover the inherent complexity of commodity prices. The most
common machine learning methods include neural networks (NN) and support vector
machines (SVM), which are favored for their ability to model intricate characteristics like
nonlinearity and volatility. Hybrid models have also demonstrated superior forecasting
accuracy compared to their machine learning models. Drachal and Pawłowski (2021)
briefly overviews how genetic algorithms (GA) are used to predict commodity prices. The
authors concentrated on a hybrid method (i.e., combining genetic algorithms with other
approaches) used in situations like determining if a complete forecasting technique can
be split into two or more distinct parts, with one part being based on a GA and the other
parts based on different methods. Another study by Jiang et al. (2022) utilized various
machine learning techniques to confirm the influence of investor sentiment on estimating
the price of crude oil futures. The authors included several forecasting models, such as the
MLP, LSTM, SVR, RNN, and GRU models. The results indicated that the Long Short-Term
Memory model yielded the best results when combined with the composite sentiment
index. This was attributed to a reduced rate of accuracy errors and improved directional
accuracy when forecasting next-day-ahead prices for time-series analysis. In a similar
study, Guo et al. (2023) utilized machine learning to analyze historical data, volatility, and
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non-linear characteristics. They assessed the predictive capabilities of neural network
models such as the GRU, MLP, LSTM, RNN, CNN, SVR, and BPNN models on crude
oil futures. The set of assessment tests illustrated that the GRU model surpassed other
models in terms of accuracy and performance when forecasting crude oil futures prices.
Moreover, the incorporation of relevant factors resulted in enhanced forecast accuracy for
the proposed models. A recent study by Zheng et al. (2024) reported the effectiveness of
hybrid models in enhancing the accuracy of crude oil price forecasts when compared to
single models. Their research introduces an innovative interval-based approach. Initially,
they apply variational mode decomposition (VMD) to split the original training series
into low- and high-frequency components. The low-frequency component is considered
an inseparable random set. It is forecasted using a newly developed autoregressive con-
ditional interval (ACI) model, while the high-frequency component is predicted using
interval Long Short-Term Memory (iLSTM) networks. The final interval-valued prediction
is obtained by combining the forecasts of both components. Additionally, the study designs
and implements a daily trading strategy based on interval-valued data.

Ren et al. (2024) introduced an innovative imaging technique to predict the daily
price data of crude oil futures. Utilizing convolutional neural networks (CNNs), they
achieved higher accuracy in predicting future price trends than other standard forecasting
methods. The findings indicate that images can capture more nonlinear information, which
is advantageous for energy price prediction, particularly during significant fluctuations
in crude oil prices. In a different study, Ampountolas (2024) studied GARCH models and
the Support Vector Regression (SVR) model to understand better how volatility changes in
commodity returns, like gold and cocoa, as well as the financial market index S&P500. The
evaluation showed that Support Vector Regression (SVR) performs better than traditional
GARCH models for short-term forecasting, suggesting it could be a valuable alternative for
predicting financial market trends. These results highlight the importance of choosing the
right modeling techniques for specific types of assets and forecasting time frames.

In conclusion, an extensive body of literature discusses predicting volatility in com-
modity futures markets, mainly for energy, crude oil, or metals. Throughout the years,
forecasting techniques have progressed from traditional econometric approaches to innova-
tive machine learning methods. Consequently, the accuracy of forecast models is gradually
increasing, and at the same time, it has been demonstrated that the variables influencing
the prediction of commodity futures prices are varied.

3. Data and Methodology
3.1. Data

This study’s data set contained daily historical time series data for three financial
assets: orange juice futures (OJ = F), S&P500 futures (ES = F), and the S&P500 Index
(GSPC). The dependent variable for this study is the price of orange juice futures. We aim
to accurately forecast the price of orange juice futures in the USA market. The dataset
covers the period from July 2022 to June 2024 and has 504 observations. The data were
obtained from Yahoo Finance. In addition, we utilized the S&P500 futures index and the
stock market, i.e., the S&P500 Index, as impact factors in the orange juice futures price
estimation model.

3.2. Descriptive Statistics
3.2.1. Dataset Trend

Figure 1 illustrates a noticeable upward trend in the price of orange juice futures
(OJ = F) over the two years, characterized by substantial volatility and periodic corrections.
Similarly, the trend index confirms the bullish trajectory, with the futures price increasing
by 145.17% from the beginning date for the dataset. In this context, the analysis highlights
the potential for significant returns while emphasizing the volatility of commodity futures
markets. Such insights are vital for investors and market analysts to make informed trading
and investment decisions.
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Figure 1. Orange juice futures price and trend.

3.2.2. Summary Statistics

Moreover, Table 1 reports a comprehensive overview of the study’s summary statistics
of the three financial assets: OJ = F, ES = F, and GSPC. OJ = F has a standard deviation
of 82.74, which, relative to its mean, suggests significant variability in prices. This is also
supported by the OJ = F price range, which shows a broad price range that aligns with
its high standard deviation. In contrast, ES = F and GSPC have higher absolute standard
deviations of 483.97 and 478.46, respectively, but these are small relative to their higher
mean values and thus have relatively low volatility compared to OJ = F. Finally, OJ = F has a
kurtosis of −1.1256, suggesting less frequent extreme deviations from the mean. ES = F and
GSPC have kurtosis values of −0.7725 and −0.7436, respectively, indicating a similar but
slightly less pronounced platykurtic distribution. At the same time, OJ = F shows a slight
positive skewness of 0.1262, suggesting a marginally longer right tail. The financial indices,
ES = F and GSPC, have higher positive skewness values of 0.5726 and 0.5850, respectively,
indicating a more noticeable asymmetry with a longer right tail.

Table 1. Dataset summary statistics.

Asset Obs Mean Std. Dev Min Max Kurtosis Skewness

OJ = F 504 289.4238 82.7351 150.6500 487.2000 −1.1256 0.1262
Financial Indices
ES = F 504 4394.4995 483.9666 3588.5000 5491.0000 −0.7725 0.5726
GSPC 503 4376.1165 478.4562 3577.0300 5487.0298 −0.7436 0.5850

3.3. Forecasting Models
3.3.1. Autoregressive Integrated Moving Average (ARIMA)

The Autoregressive Integrated Moving Average (ARIMA) model is a prominent statis-
tical forecasting technique within the ARMA linear model class. According to Hyndman
and Athanasopoulos (2018), the development of exponential smoothing models hinges on
identifying trends and seasonality in the data. In contrast, ARIMA models are adept at
handling stationary, non-stationary, and seasonal processes of order (p, d, q). The general
form of the ARIMA model is represented as

(1 − ϕ1B) (1 − Φ1B4)(1 − B)(1 − B4)yt = (1 + θ1B) (1 + Θ1B4)εt (1)

In this equation, yt denotes the observed value at time t, and εt represents the error
term, assumed to be white noise with a Gaussian distribution, having a mean of zero and a
constant variance σ2. The ARIMA model is denoted by ARIMA(p, d, q), where selecting
the appropriate order (p, d, q) is a critical aspect of the ARIMA modeling procedure.
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ARIMA models can be applied to both seasonal and non-seasonal data. Seasonal
ARIMA requires a more intricate specification of the model components. Prior to estimating
the time series models, it is essential to perform the augmented Dickey–Fuller (ADF) test
Dickey and Fuller (1979) to determine the stationarity of the dataset. If the series is found
to be non-stationary, data transformation is necessary. The ADF test is defined as follows:

∆xt = α0 + b0xt−1 +
k

∑
i=1

c0∆xt−1 + wt (2)

Here, ∆ denotes the difference operator; α0, b0, and c0 are coefficients to be estimated; x
is the variable under examination; and w is the white noise error term. The null hypothesis
(b0 = 0) indicates that the series is non-stationary, while the alternative hypothesis (b0 < 0)
suggests that the series is stationary.

3.3.2. Recurrent Neural Network (RNN)

The RNN is structured with input, hidden, and output layers, allowing it to handle
and retain new data simultaneously, thus enabling information transfer to subsequent
periods (Henrique et al. 2018). Due to its feedback mechanism, the RNN incorporates
historical data in its predictions. However, it struggles with retaining long-term data and
may suffer from gradient explosion issues (Jiang et al. 2022). The RNN calculations are
as follows:

ht = fh(utxt + Wt−1ht−1) (3)

yt+T = fy(vtht + by) (4)

where ht represents the hidden layer vector, xt is the input layer vector, yt+T is the output
layer, ut is the input-to-hidden weight at time t, vt is the hidden-to-output weight at time t,
and Wt−1 is the weight from the output state at time t − 1 to the hidden state at time t.

3.3.3. Long Short-Term Memory (LSTM)

LSTM is an advanced version of RNN featuring forget, input, and output gates. It
leverages RNN’s strengths while mitigating its weaknesses, making it suitable for time
series prediction. Based on Jiang et al. (2022), the transfer process is detailed as follows:

Ft = ρ(W f xxt + W f hht−1 + b f ) (5)

It = ρ(Wixxt + Wihht−1 + bi) (6)

Ot = ρ(Woxxt + Wohht−1 + bo) (7)

Ct = ft ◦ ct−1 + it ◦ tanh(Wcxxt + Wchht−1 + bc) (8)

ht = ot ◦ tanh(ct) (9)

where Ft is the forget gate at time t, W is the weight matrix, xt is the input vector at time t, b
the bias parameter, ht is the hidden state vector at time t, It is the input gate at time t, Ot is
the output gate at time t, ρ and tanh are the activation functions, and Ct is the candidate set.

3.3.4. Convolutional Long Short-Term Memory (ConvLSTM)

The Convolutional Long Short-Term Memory (ConvLSTM) model represents an ad-
vanced neural network architecture specifically designed to handle spatiotemporal data by
integrating convolutional operations within the LSTM framework. The traditional fully
connected LSTM (FC-LSTM) is powerful for sequence modeling but lacks the capability
to effectively capture spatial correlations, as it uses fully connected layers that disregard
spatial information. ConvLSTM addresses this limitation by incorporating convolutional
structures in both the input-to-state and state-to-state transitions, allowing it to capture
local spatial dependencies better.
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The fundamental equations governing ConvLSTM are as follows:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (10)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ) (11)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (12)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (13)

Ht = ot ◦ tanh(Ct) (14)

Here, it, ft, and ot represent the input, forget, and output gates, respectively. The
symbols Xt and Ht denote the input and hidden state at time t, while Ct is the cell state.
The convolution operator is represented by *, and the Hadamard product is represented
by ◦.

The ConvLSTM model thus maintains the advantages of traditional LSTM in handling
long-term dependencies while enhancing its ability to process data with spatial structures.
This makes ConvLSTM particularly suitable for applications like precipitation nowcast-
ing, where capturing both spatial and temporal patterns is crucial. By stacking multiple
ConvLSTM layers and forming an encoding–forecasting structure, the model achieves ro-
bust performance predicting future states from historical data, significantly outperforming
traditional FC-LSTM models in spatiotemporal sequence forecasting tasks.

3.3.5. Backpropagation Neural Network (BPNN)

The Backpropagation Neural Network (BPNN) is among the most popular and exten-
sively used models in artificial neural networks, renowned for its robustness and simplicity.
BPNN employs a Multi-Layer Perceptron structure, typically consisting of an input layer,
one or more hidden layers, and an output layer. The core principle of BPNN is the back-
propagation algorithm, which adjusts the network weights to minimize the error between
the predicted outputs and the actual targets. This is achieved through an iterative process
of forward and backward passes.

During the forward pass, input data are propagated through the network, generating
an output. The error is then calculated using a loss function, such as the mean squared
error (MSE):

E =
1
2

n

∑
i=1

(yi − ŷi)
2 (15)

where yi is the actual target value and ŷi is the value predicted by the network.
This error is propagated backward through the network to update the weights in

the backward pass. The learning algorithm performs a gradient descent optimization on
the weights linking the nodes in each layer. The weight update rule is derived from the
gradient descent method, where the weights are adjusted in the direction that reduces the
error. The update for a weight wij from neuron i to neuron j is given by

∆wij = −η
∂E

∂wij
(16)

where η is the learning rate, controlling the step size of the weight update. The partial
derivative ∂E

∂wij
is computed using the chain rule, which involves calculating the gradient of

the error concerning the weights.
Despite its advantages, BPNN has shortcomings, such as long training times and

potential overtraining. However, its robustness and generally good performance across a
wide range of applications make it a valuable tool in neural network modeling. Due to its
effectiveness and ease of use, BPNN is often considered a benchmark for comparing the
performance of other neural network models. This iterative weight adjustment process
continues until the network converges to a state where the error is minimized, thereby
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improving the model’s accuracy. BPNN’s ability to fine-tune weights through gradient
descent is highly effective for various applications, including pattern recognition, time
series forecasting, and complex function approximation.

3.3.6. Support Vector Regression (SVR)

Support Vector Regression (SVR) is a non-linear regression technique based on Support
Vector Machine (SVM) principles. SVR excels in approximating functions and works by
identifying a regression hyperplane in a high-dimensional feature space with minimal risk.
According to Kazem et al. (2013), the formulation of SVR can be expressed as follows:

f (x) = wTϕ(x) + b (17)

Minimize
1
2
||w||2 + C

n

∑
i=1

(ξi + ξ∗i ) (18)

Subject to
yi − (w · ϕ(xi) + b) ≤ ϵ + ξi (19)

(w · ϕ(xi) + b)− yi ≤ ϵ + ξ∗i (20)

ξi, ξ∗i ≥ 0 (21)

In this formulation, xi ∈ Rk for i = 1, 2, ..., n and yi ∈ R. Here, yi represents the target
value of xi, w is the weight vector, ϕ(x) denotes a non-linear mapping function and b is a
bias term. The variables ξi and ξ∗i are slack variables that account for deviations from the
margin of tolerance ϵ.

SVR aims to determine the optimal hyperplane that approximates the data with a
minimal margin of error and maintains the model’s generalization ability by managing the
trade-off between the hyperplane’s flatness and the error tolerance.

3.3.7. Non-Linear Autoregressive (NAR) Neural Network

A neural network is a computational model designed for data processing that can
capture relationships within data. One of the significant advantages of artificial neural
networks (ANNs) over other forecasting and modeling approaches is their ability to ap-
proximate complex functions with high precision and identify nonlinear patterns in input
data without preset assumptions. Dynamic neural networks, particularly the NAR model,
are extensively utilized for modeling and forecasting time series data, such as financial
time series.

The NAR model addresses nonlinear time series problems by utilizing a single time
series and predicting its future values based solely on its past values. Mathematically, the
future value of a time series Yt is forecasted using its previous values Yt−1, Yt−2, . . . , Yt−d,
where f represents the mapping function performed by the neural network:

Yt = f (Yt−1, . . . , Yt−d) (22)

This model aims to learn the optimal weights for the neurons to minimize the error
between the network’s output and the actual values. A crucial aspect of neural-network-
based forecasting is the network’s architecture, which defines the number of neurons in
each layer and the connections between them. A feed-forward network with a hidden
layer is commonly employed for time series modeling and forecasting. The NAR neural
network typically features a feed-forward structure with a tansigmoid transfer function in
the hidden layer and a linear transfer function in the output layer.

Determining the number of hidden neurons and the number of delays in observa-
tions (denoted by d) is essential because these parameters significantly influence the
autocorrelation structure of the time series. Researchers often rely on trial-and-error
experiments to choose these parameters due to the lack of a theoretical method for their
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determination. In one-step-ahead forecasting tasks, the number of neurons in the output
layer is usually set to one.

3.4. Assessment Indicators
3.4.1. Loss Functions

The study presents a comprehensive analysis of the forecasting accuracy of various
loss functions, including the commonly used Mean Absolute Percentage Error (MAPE), as
well as the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).

Mean Absolute Error: MAE =
1
h

h

∑
j=1

∣∣yt+j − ŷt+j
∣∣, (23)

Root Mean Square Error: RMSE =

√√√√1
h

h

∑
j=1

(
yt+j − ŷt+j

)2, (24)

Mean Absolute Percentage Error: MAPE =
1
h

h

∑
j=1

yt+j − ŷt+j

yt+j
, (25)

where ŷt+j indicates the model’s forecast at time t. yt+j refers to the dataset’s actual
values, h refers to the forecasting horizon, and finally, j indicates the number of historical
observations. A lower value obtained from these evaluation indicators signifies a smaller
error, indicating that the predictive model effectively converges toward accurate results.

3.4.2. Forecasting Performance Metrics

In addition, we utilize the directional accuracy (DA) and accuracy improvement (AI)
metrics and the Diebold and Mariano (DM) test to evaluate the performance of forecast-
ing models.

The directional accuracy (DA) is a metric used to assess forecasting models by measur-
ing their ability to predict the direction of changes in observed values. This is especially
valuable in financial forecasting, where accurately predicting whether prices will increase
or decrease is often more important than predicting the exact value. A higher DA indicates
better forecasting model performance in predicting the direction of changes.

DA =
100
T

T

∑
t=1

dt (26)

where dt is defined as

dt =

{
1 if (Y(t)− Y(t − 1))

(
Ŷ(t)− Ŷ(t − 1)

)
≥ 0

0 otherwise
(27)

where Y(t) and Ŷ(t) are the actual and predicted values at time t, respectively, and T is the
sample size. The indicator function dt checks whether the predicted change in the value
(from t − 1 to t) matches the actual change in the value. If both the actual and predicted
changes are in the same direction (both up or both down), dt equals 1, indicating a correct
prediction. If the directions do not match, dt equals 0, indicating an incorrect prediction.

We have also employed the accuracy improvement (AI) and the Diebold and Mariano
(DM) tests to compare the forecasting models more accurately.

The accuracy improvement (AI) is designed to compare two forecasting models. The
accuracy improvement is defined as

AI =
S − Sp

S
× 100% (28)
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where the sum of the absolute errors for a specified model is denoted as S, and the sum of
the absolute errors for the proposed model is denoted as Sp. If AI > 0, it indicates that the
proposed forecasting model performs better, whereas if AI < 0, it implies that the proposed
model has not overcome the specified model’s drawback. The index AI provides a more
intuitive way to compare precision.

Finally, we used the predictive accuracy test suggested by Diebold and Mariano (1995)
to assess the statistical significance of enhancements in forecast accuracy. This test is
commonly utilized to compare the predictive capabilities of various models and ascertain
if the differences in accuracy are statistically meaningful.

DM =
d̄√

σ̂2
d /T

(29)

where d̄ refers to the mean of the loss differential series dt and dt represents the difference
between the loss from the first model and the loss from the second model. T represents the
number of observations and σ̂2

d indicates an estimate of the variance of dt.

4. Estimation Results

This study’s estimation results present forecasts with a horizon of 5 trading days
and 10 trading days. According to the whole evaluation forecasting model, we initially
conducted a forecast without influencing factors (single factor—OJ = F). Then, considering
the influencing variables, we added the ES = F factor along with the OJ = F. Afterward,
we introduced the OJ = F and the S&P500 Index factor, conducting a new estimation, and
finally, we performed estimations including all factors in the forecasting process.

4.1. Forecast Results in the 5-Trading Day Horizon

Table 2 presents the forecast accuracy results for the study’s various models and the
evaluation indicators across different financial indices (Single-factor (OJ = F), Commodities
Index, S&P500 Index, and a combined category of all factors) in a 5-trading-day horizon
(steps). Compared to advanced models, the traditional ARIMA model shows the highest
error rates across all metrics, indicating its limited capacity to handle complex time series
data. LSTM stands out with the lowest error rates, particularly excelling in single-factor
and S&P500 Index predictions, showcasing its strength in modeling temporal dependencies
with high accuracy (e.g., MAE of 12.4155 and 9.4766 and MAPE of 3.1107% and 2.4010%,
respectively). RNN and BPNN also perform well, though RNN shows higher errors
in the Commodities Index, indicating variability in performance across different data
types. SVR exhibits consistent but moderate accuracy, with relatively low errors but less
effectiveness than neural networks. BPNN shows low errors, specifically when introducing
the Commodities Index and when we combine all factors to forecast the daily price of orange
juice futures. While improving over ARIMA, NAR still presents higher errors, especially in
the combined category of all factors. ConvLSTM demonstrates robust performance with low
errors across most categories, second only to LSTM, highlighting its efficacy in capturing
spatial and temporal data patterns. Overall, the results emphasize the superiority of
advanced neural network models, particularly BPNN, LSTM, and ConvLSTM, in achieving
accurate forecasts in financial time series data.

Table 3 compares the performance of various models in terms of directional accuracy
and average improvement over a 5-day prediction period. The ARIMA model, serving as
a baseline, shows a directional accuracy of 50.53%. The ConvLSTM model outperforms
all others, with the highest directional accuracy of 62.11% and an average improvement
of 65.33%. SVR also demonstrates strong performance with a 58.95% directional accuracy
and 56.13% average improvement. The LSTM and BPNN models provide moderate en-
hancements, with directional accuracies of 55.79% and 51.58%, respectively, and average
improvements of 39.11% and 51.82%. Interestingly, despite its poor directional accuracy of
46.32%, the NAR model shows the highest average improvement at 66.86%, suggesting it
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may excel in other prediction aspects. RNN, with a directional accuracy of 47.37%, shows a
significant average improvement of 53.59%. Overall, ConvLSTM is the most reliable model
for directional predictions, followed by SVR, while NAR and RNN might enhance different
prediction metrics beyond directional accuracy.

Table 2. Accuracy of models’ forecasting results in 5-trading-day steps.

Models Metrics Single Factor Commodities Index S&P500 Index All

ARIMA

MAE 75.3148 77.0628 52.4859 52.3981
MSE 6904.3332 7212.5565 3565.8827 3546.0604
RMSE 83.0923 84.9268 59.7150 59.5488
MAPE 18.8555 19.2984 13.0741 13.0551

LSTM

MAE 12.4155 19.1915 9.4766 14.4386
MSE 254.8753 522.2959 158.0147 341.6509
RMSE 15.9648 22.8538 12.5704 18.4838
MAPE 3.1107 4.8310 2.4010 3.5943

RNN

MAE 13.7396 26.1952 14.7374 14.3007
MSE 316.8579 970.6563 401.1044 329.8499
RMSE 17.8005 31.1554 20.0276 18.1618
MAPE 3.4733 6.6225 3.6936 3.6512

BPNN

MAE 8.4186 42.2337 10.2134 9.9090
MSE 137.5138 1943.8305 155.2525 159.2351
RMSE 11.7266 44.0889 12.4600 12.6188
MAPE 2.1074 10.9688 2.6142 2.5316

SVR

MAE 8.6390 10.7829 10.8827 10.1447
MSE 142.4235 165.7649 166.9276 156.7200
RMSE 11.9341 12.8750 12.9200 12.5188
MAPE 2.1728 2.8067 2.8366 2.6253

NAR

MAE 14.1338 13.7667 13.6553 19.1757
MSE 289.0329 288.4339 288.7256 501.5138
RMSE 17.0010 16.9833 16.9919 22.3945
MAPE 3.6222 3.5077 3.4741 4.9971

ConvLSTM

MAE 11.4094 11.4070 10.4159 14.5008
MSE 185.1033 182.2130 162.6494 272.5280
RMSE 13.6053 13.4986 12.7534 16.5084
MAPE 2.9474 2.9387 2.6706 3.7759

Table 3. Directional accuracy and accuracy improvement—5-day steps (all factors).

Models Directional Accuracy (%) Average Improvement (%)

5-day steps ARIMA 50.53 –
LSTM 55.79 39.11
RNN 47.37 53.59
BPNN 51.58 51.82
SVR 58.95 56.13
NAR 46.32 66.86
ConvLSTM 62.11 65.33

Next, in Figure 2, we compare each prediction model’s estimated results and actual
values in the 5-trading day horizon. We observe that the ARIMA model shows poor
performance, as its forecasted values are flat and do not capture the trend and volatility
of the actual data. LSTM and ConvLSTM models, on the other hand, performed well,
closely aligning with the actual data and accurately capturing both the upward trend
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and fluctuations. The RNN model shows moderate accuracy, better than ARIMA, but
still missed some key variations in the data. The BPNN also performs reasonably well,
capturing the overall trend with some deviations. However, the SVR displayed substantial
divergence from the actual data, indicating its inadequacy in this forecasting context. The
NAR model improves upon ARIMA and SVR, capturing the general trend but still missing
several peaks and troughs. We conclude that advanced neural network models, particularly
LSTM and ConvLSTM, demonstrate superior forecasting capabilities and effectively handle
the complexities and nonlinearities present in the time series data.

Figure 2. Comparison of forecasting models’ actual and predicted values—5-day steps.

Finally, in Table 4, we present the results of the Diebold–Mariano test. The findings
reveal significant differences in forecasting accuracy among various models, with ARIMA
showing highly significant differences (p < 0.01) compared to all other models, suggesting
its distinct performance characteristics. Notably, LSTM consistently outperforms other
models, as indicated by significant positive DM statistics across all comparisons (p < 0.01).
In contrast, RNN exhibits a notable negative DM value when compared with the BPNN,
indicating inferior performance while showing better performance against SVR, NAR,
and ConvLSTM. The BPNN model shows significant differences with SVR, NAR, and
ConvLSTM, highlighting its unique predictive capabilities. The SVR and NAR comparisons
also indicate significant differences, suggesting varied forecasting strengths. Furthermore,
the comparison between ConvLSTM and NAR shows no significant difference, implying
similar performance. As such, we observe that the DM test results underscore the variability
in forecasting accuracy among the models.
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Table 4. Diebold–Mariano (DM) test results among forecasting models in 5-day steps.

Models
Benchmark

LSTM RNN BPNN SVR NAR ConvLSTM

ARIMA 17.8053 *** 24.3258 *** 20.7271 *** 25.5028 *** 24.4659 *** 22.6057 ***
LSTM 16.8237 *** 26.5703 *** 50.8174 *** 26.8106 *** 30.5143 ***
RNN −1.9965 ** 3.0291 * 18.2003 *** 9.1926 ***
BPNN 9.5119 *** 18.0418 *** 19.7829 ***
SVR 11.7014 *** 12.5263 ***
NAR −1.6399
Note: * Significance at 10% level, ** at the 5% level, *** at the 1% level.

4.2. Forecast Results in 10-Trading Day Horizon

Table 5 presents the accuracy of the forecasting models evaluated over 10-day
(horizon—trading day) steps across different datasets, similar to 5-day steps. The ARIMA
model consistently shows the highest error rates across all metrics and datasets, with an
MAE ranging from 51.4101 to 75.0684 and a MAPE from 12.8525% to 18.8773%, indicating
its limited efficacy in forecasting complex time series data. In contrast, the LSTM model
demonstrates significantly lower errors, with an MAE between 17.7515 and 19.3754 and
a MAPE around 4.4288% to 4.7611%, highlighting its superior ability to capture temporal
dependencies. The RNN model also performs well, particularly for the Commodities
Index, but shows higher variability with an MAE from 18.9532 to 40.0245 and a MAPE
from 4.6796% to 10.0940%. The BPNN model exhibits robust performance with the
lowest errors among the neural networks in the category of all factors, achieving an
MAE of 11.7737 and a MAPE of 2.9399%. The SVR outperforms the other models and
maintains consistent, higher accuracy across datasets with an MAE from 12.4496 to
13.9587 and a MAPE of around 3.0931% to 3.4438%. It is noticeable that the SVR is
the most accurate model for a single factor, including the Commodities Index and the
S&P500 Index. While improving over ARIMA, the NAR model still shows higher errors
than LSTM and BPNN, with an MAE between 18.7106 and 19.4742 and a MAPE from
4.7287% to 4.8448%. Lastly, ConvLSTM displays strong forecasting capability, excelling
in the Commodities Index with the lowest MSE of 407.6756 and an RMSE of 20.1910 and
maintaining a competitive performance across other datasets. These empirical results
indicate that the SVR model and, in one case, the BPNN model are the most accurate
models for the forecasting of orange juice futures prices, even if additional influencing
factors are included in the prediction process. These findings are, to an extent, similar to
the estimation results in the 5-trading day horizon, although in the 5-day step forecasts,
the LSTM and the ConvLSTM demonstrated superior forecasting accuracy in some cases.
Additionally, concurrently incorporating extra relevant factors can enhance all predictive
models’ performance. Thus, it has been shown once more that integrating influencing
factors can decrease the forecasting model’s prediction error and boost the accuracy of
forecasting orange juice (OJ = F) futures prices.

Table 6 presents the results of the directional accuracy (DA) and accuracy improvement
(AI) criterion for various forecasting models over 10-day steps. Directional accuracy
measures the percentage of the correctly predicted direction of changes, while AI reflects
the percentage improvement over a baseline model, in this study the ARIMA model.
ARIMA shows a directional accuracy of 48.89%, serving as the AI baseline. Among the
models, BPNN achieves the highest directional accuracy at 54.44%, indicating superior
predictive capability in capturing the direction of changes. ConvLSTM, despite having a
directional accuracy of 50.00%, shows the most substantial average improvement (63.75%)
over ARIMA, highlighting its efficacy in enhancing forecasting accuracy. NAR and LSTM
exhibit notable average improvements despite lower directional accuracies (45.56% and
44.44%). RNN and SVR demonstrate moderate directional accuracies (51.11% and 52.22%)
but differ in accuracy improvement, with RNN showing a significant improvement (33.30%)
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compared to SVR (8.20%). Therefore, the results suggest that while directional accuracy
varies across models, advanced neural networks like ConvLSTM and NAR substantially
improve forecasting accuracy.

Table 5. Models forecast results accuracy in 10-trading day horizon.

Models Metrics Single Factor Commodities Index S&P500 Index All

ARIMA MAE 67.8574 75.0684 51.4101 51.4660
MSE 5836.0380 6898.8519 3465.5084 3473.0407
RMSE 76.3940 83.0593 58.8686 58.9325
MAPE 17.0000 18.8773 12.8525 12.8667

LSTM MAE 18.8399 19.2947 17.7515 19.3754
MSE 640.2273 668.2661 586.0565 707.8805
RMSE 25.3027 25.8508 24.2086 26.6060
MAPE 4.6487 4.7541 4.4288 4.7611

RNN MAE 40.0245 20.8836 18.9532 21.0377
MSE 2206.0296 812.4532 647.3866 900.3059
RMSE 46.9684 28.5036 25.4438 30.0051
MAPE 10.0940 5.1418 4.6796 5.1378

BPNN MAE 14.5993 17.1953 14.3158 11.7737
MSE 377.5428 426.3074 344.9291 256.9264
RMSE 19.4305 20.6472 18.5723 16.0289
MAPE 3.6595 4.4805 3.5939 2.9399

SVR MAE 12.9888 12.4810 12.4496 13.9587
MSE 345.7689 285.5075 284.0731 374.0397
RMSE 18.5949 16.8970 16.8545 19.3401
MAPE 3.1915 3.1000 3.0931 3.4438

NAR MAE 18.7106 18.9656 18.9775 19.4742
MSE 622.8136 621.6618 633.2322 649.2775
RMSE 24.9562 24.9331 25.1641 25.4809
MAPE 4.7287 4.7720 4.7523 4.8448

ConvLSTM MAE 19.2422 15.5235 15.8455 17.5845
MSE 621.6677 407.6756 408.7932 495.4774
RMSE 24.9333 20.1910 20.2186 22.2593
MAPE 4.9771 3.9664 4.0803 4.5623

Table 6. Directional accuracy and accuracy improvement—10-day steps (all factors).

Models Directional Accuracy (%) Average Improvement (%)

10-day steps ARIMA 48.89 –
LSTM 44.44 40.33
RNN 51.11 33.30
BPNN 54.44 42.88
SVR 52.22 8.20
NAR 45.56 47.96
ConvLSTM 50.00 63.75

Then, we evaluated the forecasted values from the estimation models, which take into
account all the relevant factors with the actual value, as shown in Figure 3. We can observe
that the ARIMA model significantly underperforms, failing to capture the upward trend
and volatility, indicating its limitations in forecasting complex, nonlinear patterns. On the
other hand, the LSTM and ConvLSTM models demonstrate a closer alignment with actual
values, particularly in capturing the general upward trend and peak levels, highlighting
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their superior ability to handle time series data with temporal dependencies. The RNN
and BPNN models exhibit moderate performance, capturing some trends but with notable
deviations and missed volatility. The SVR model shows substantial divergence from actual
values, at least in this context, reflecting its inadequacy. Finally, while better than ARIMA,
the NAR model still shows significant discrepancies, particularly in capturing peak values.
Therefore, by comparing the predicted and actual values, we find that the LSTM and
ConvLSTM models stand out for their enhanced forecasting capabilities, which effectively
model the underlying patterns and trends in the data.

Figure 3. Forecasts model comparison of actual and predicted values—10-day steps.

Finally, we employed the Diebold–Mariano (DM) test to examine the forecasting ac-
curacy of the various models over 10-day steps. Table 7 presents the test results. More
specifically, the ARIMA model shows highly significant differences (p < 0.01) with all
models except SVR, where it slightly underperforms (−0.6466 ***), suggesting ARIMA’s
generally distinct predictive behavior. LSTM exhibits significantly better performance
compared to RNN (−8.3953 ***) and SVR (−17.9334 ***) but slightly outperforms BPNN
(1.8406 ***) and demonstrates superior accuracy against NAR and ConvLSTM. RNN’s per-
formance is significantly worse than SVR (−16.0307 ***) but better than BPNN (5.8633 ***)
and significantly improved over NAR and ConvLSTM. BPNN shows similar trends, un-
derperforming against SVR (−16.2270 ***) but outperforming NAR and ConvLSTM. SVR
demonstrates significant superiority over NAR (16.5782 ***) and ConvLSTM (19.7874 ***).
Lastly, NAR’s performance is significantly outperformed by ConvLSTM (15.6224 ***). In
these findings, we observe that the variable forecasting capabilities across models with
advanced neural networks like LSTM and ConvLSTM often exhibit superior performance
compared to traditional models such as ARIMA, particularly in handling complex time
series data.
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Table 7. Diebold–Mariano (DM) test results among forecasting models in 10-day steps.

Models
Benchmark

LSTM RNN BPNN SVR NAR ConvLSTM

ARIMA 18.5606 *** 17.0005 *** 17.7258 *** −0.6466 *** 18.1408 *** 21.2885 ***
LSTM −8.3953 *** 1.8406 *** −17.9334 *** 8.5297 *** 19.5791 ***
RNN 5.8633 *** −16.0307 *** 14.6996 *** 19.0879 ***
BPNN −16.2270 *** 3.1734 *** 19.2480 ***
SVR 16.5782 *** 19.7874 ***
NAR 15.6224 ***
Note: *** Significance at the 1% level.

5. Conclusions

This study evaluated the forecasting accuracy of various models with different config-
urations over 5-day and 10-day trading horizons to forecast orange juice futures (OJ = F)
prices. We have employed a dataset from July 2022 to June 2024. Our analysis included
traditional models like ARIMA and advanced neural network models such as LSTM, RNN,
BPNN, SVR, and ConvLSTM, with varying influencing factors like the Commodities Index
and the S&P500 Index. In addition, we have adopted a set of loss function metrics to
evaluate the accuracy of each model and various tests to assess the performance of each
forecasting model.

For the 5-trading day forecasting horizon, the advanced neural network models,
particularly LSTM and ConvLSTM, consistently outperformed traditional models like
ARIMA. LSTM achieved the lowest error rates and demonstrated superior capability in
capturing temporal dependencies, especially in single-factor and S&P500 Index predictions.
ConvLSTM also exhibited strong performance, highlighting its effectiveness in modeling
spatial and temporal data patterns. The directional accuracy and Diebold–Mariano test
further supported the superiority of LSTM and ConvLSTM over other models.

In the 10-trading day forecasting period, we observed similar trends. While ARIMA
displayed the highest error rates, the LSTM and ConvLSTM models showed significantly
lower errors and better alignment with actual values. The BPNN model also performed
well, mainly when we incorporated all factors. The SVR model maintained consistent
accuracy across datasets, especially for single-factor predictions. The Diebold–Mariano
test results indicated significant differences in forecasting accuracy, with advanced neural
network models generally outperforming traditional models.

The findings of this study demonstrate that advanced models such as LSTM and
ConvLSTM outperform traditional methods like ARIMA in forecasting orange juice futures
prices. Specifically, LSTM achieved the lowest error rates across various factors, includ-
ing the Commodities Index and S&P500 Index. This differs from previous research on
commodities such as crude oil and gold, which favored machine learning techniques (e.g.,
LSTM, GRU) while emphasizing different influencing factors such as investor sentiment
and macroeconomic indicators. For example, research by Guo et al. (2023) highlighted
the superior performance of GRU in crude oil forecasting, particularly when considering
relevant factors like volatility and historical data. Furthermore, while previous studies
applied hybrid models to energy commodities, this study demonstrates the advantage
of neural network models for commodity markets, emphasizing the need to customize
forecasting tools to the distinctive characteristics of each market.

Our empirical results also have practical implications. Therefore, investors and ana-
lysts can promptly analyze market trends and identify potential risks based on the fore-
casting model results. As we have observed, the findings emphasize the superiority of
advanced neural network models, particularly LSTM and ConvLSTM, in forecasting com-
plex time series data. These models effectively capture underlying patterns and trends,
offering enhanced forecasting capabilities compared to traditional models like ARIMA.
Incorporating influencing factors further improves the predictive performance of these
models, underscoring the importance of considering multiple variables in the forecasting
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of financial assets. This optimization enhances investors’ investment performance and
reduces risk. Therefore, the DM test in both periods supports the above findings by indicat-
ing that models like LSTM and ConvLSTM not only provide statistically better predictions
but also can offer traders and investors more reliable forecasts for decision-making. This
could lead to improved returns and reduced risks, especially in volatile markets such as
orange juice futures.

Limitations and Further Research

Despite the promising results, this study, like any other, has limitations that warrant
further research. First, the dataset was limited to specific financial indices and assets. As
such, future research could explore a broader range of variables and datasets to enhance
the generalizability of the findings. In addition, we observed only two forecasting
horizons (5-trading day and 10-trading day steps). Examining shorter- or longer-term
forecasting estimations could provide more insights into the robustness and reliability
of these models.

Second, while advanced neural network models showed superior performance, model
optimization is also very important. Future studies should explore different optimization
methods to enhance forecasting accuracy or incorporate additional forecasting models,
such as hybrid models and parameters. At the same time, although neural networks like
LSTM and ConvLSTM can effectively model nonlinear relationships, they require extensive
data for training to avoid overfitting, especially in highly volatile markets like orange juice
futures. Additionally, neural networks are computationally intensive, requiring significant
time and resources for both training and fine-tuning, particularly as the complexity of the
network increases. Finally, another practical consideration is the interpretability of these
models. Neural networks are often seen as black boxes, making it difficult for users to
understand how predictions are derived.

Finally, the study primarily focused on point forecasts. Introducing probabilistic
forecasting methods could offer a more comprehensive evaluation of model performance
by considering uncertainty and confidence intervals in predictions. Furthermore, the
economic implications of these forecasts were not analyzed. Future research should assess
the practical applications and financial benefits of employing advanced neural network
models for trading and investment strategies.

Nevertheless, the study demonstrated the potential of the models utilized in financial
forecasting, and further research could lead to even more robust and practical forecast-
ing solutions.
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