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Abstract: Optimizing resource allocation often requires a trade-off between multiple objectives. Since
projects must be fully implemented or not at all, this issue is modeled as an integer programming
problem, precisely a knapsack-type problem, where decision variables are binary (1 or 0). Projects
may be complementary/supplementary and competitive/conflicting, meaning some are prerequi-
sites for others, while some prevent others from being implemented. In this paper, a two-objective
optimization model in the energy sector is developed, and the Non-dominated Sorting Genetic
Algorithm III (NSGA III) is adopted to solve it because the NSGA-III method is capable of handling
problems with non-linear characteristics as well as having multiple objectives. The objective is to
maximize the overall portfolio’s EVA (Economic Value Added). EVA is different from traditional
performance measures and is more appropriate because it incorporates the objectives of all stakehold-
ers in a business. Furthermore, because each project generates different kilowatts, maximizing the
total production of the portfolio is appropriate. Data from the Greek energy market show optimal
solutions on the Pareto efficiency front ranging from (14.7%, 38,000) to (11.91%, 40,750). This paper
offers a transparent resource allocation process for similar issues in other sectors.

Keywords: portfolio management; mathematic programming; finance; decision-making; multi-
objective optimization; mathematics of quantitative finance; mathematical models in optimal portfo-
lio theory

1. Introduction

The rational allocation of resources is vital in both public and private sectors. A
significant subset of the above is the problem of where to implement any project; the whole
project must be completed rather than part of it. In this paper, we focus on the knapsack
problem type according to Dantzig (1957). Particularly in Greece, due to the decade-long
economic crisis and the coronavirus crisis, it is appropriate to allocate the limited budget
as rationally and optimally as possible. The knapsack problem is a subclass of integer
programming, achieving the optimal solution. Much scientific research has dealt with this
issue, but it has yet to receive the appropriate attention in Greece.

We focus on the energy sector in Greece, which is developing rapidly and is attracting
increasing interest in investment. In recent years, due to climate change, there has been an
urgent need for conversion to alternative energy sources in line with the European policy
objective of substantially increasing the share of renewable energy sources in electricity
generation and more excellent absorption of funds from the European Recovery Fund.

In Greece, this interest is particularly evident in the case of the exploitation of wind
energy due to the favorable legislative framework and the significant wind potential
that exists in several Greek regions. Private investors are strongly motivated towards
the exploitation of wind energy, mainly because the associated investment costs are not
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prohibitive, and a somewhat favorable legislative framework ensures satisfactory rates
of return (Mavrotas et al. 2003). Consequently, composing a portfolio with an optimal
allocation of resources and an excellent strategic alignment based on future returns is crucial
for companies to avoid fines and comply with legislation, as well as to develop scientific
and technological capabilities that can help them drive innovation and gain competitive
advantage (Bin et al. 2015).

The energy sector satisfies the knapsack problem’s conditions and attracts attention
to these problems. The challenges of traditional methods, including many runs, can be
overcome using evolutionary strategies. In addition to guiding the search towards the
Pareto optimal front, the goal of the multi-objective optimization technique is to main-
tain population diversity within a collection of non-dominated solutions. Among the
most significant multi-objective optimization algorithms available today, the NSGA-III
(Deb and Jain 2013; Jain and Deb 2013) is a potent strategy to overcome the shortcomings
of NSGA-II, including its lack of uniform diversity and lateral diversity preserving operator.
NSGA-III is selected among these algorithms because of its uniform diversity in obtaining
the Pareto optimal front from a group of non-dominated solutions and its relatively greater
capacity to handle many objectives.

Our approach takes into account the fact that some projects depend on others for im-
plementation, such as an intermediate power station, while others cannot proceed without
certain prerequisites being met. We categorize these dependencies into two matrices of
complementary and conflicting investment projects and then use integer programming
to identify the best investment option. Our approach differs from previous research as
we utilize the EVA (Economic Value Added) index as an optimization goal. Typically, it is
possible to select some investments with negative EVA if necessary to achieve maximum
Eva for the portfolio as Sharma and Kumar (2010) found. When projects have different
rates of return, cost and production must be considered during the maximization process.
Each project’s different production in megawatts results from different guaranteed price
contracts (feed-in tariffs) or the exchange market, which varies over time.

Our model is further differentiated and idealized as an additional target of total
portfolio energy production is added. This helps both to cover the investor in the event
of a price decline and simultaneously meet each region’s energy needs in the context of
sustainable development. Our article first contributes to the debate on the use of EVA
against revenue and the use of suitable data in a unique knapsack model for the energy
sector of Greece that professionals and academics use. We attempt to use data from the
Greek energy market that would be implemented in other countries’ energy markets. The
literature review and the main features of the energy sector selection are then presented, as
well as the conclusions and discussion.

In the Section 2, we analyze the literature review relevant to the problem we consider.
In the Section 3, we present the main research question. In the Section 4, we provide our
data and the specific form of our model. In the Section 5, we provide the estimates and
results. In the Section 6, we summarize all the above with our evaluation and attempt to
find the rational answer to the main question.

2. Literature Review

Most research on knapsack problems has dealt with the version with a single con-
straint, e.g., Balas and Zemel (1980), Horowitz and Sahni (1974), Salkin and Kluyver (1975).
Although the single-constraint version of this problem has received a lot of attention, the
multi-constraint knapsack problem has not received proper attention in the Greek context
(Jaszkiewicz 2004; Erlebach et al. 2002; Zitzler and Thiele 1999; Klamroth and Wiecek 2000).
One of the first references to the multiple-constraint knapsack problem is by
Lorie and Savage (1955) and Manne and Markowitz (1957) as a capital budgeting model.
In Greece, a related study is provided by Florios et al. (2010).

The first accurate algorithms for the multi-constraint knapsack problem started in
the 1960s. Gilmore and Gomory (1966) described a dynamic programming algorithm.
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Later, Shih (1979) presented a branching and bounding algorithm for the multidimensional
knapsack problem (MKP). In recent years, with the development of artificial intelligence,
genetic algorithms can solve knapsack-type problems much faster with equally good results
as the traditional methods (Kellerer et al. 2004; Khuri et al. 1994).

This paper divides the constraints into two categories: complementary and disjunctive.
We use the negative disjunctive constraint as a particular case of a disjunctive constraint
(Pferschy and Schauer 2017). Some papers dealing with the disjunctive constraint are
Yamada et al. (2002), where a branch-and-bound algorithm is presented, and more recent
exact computation algorithms are presented in Hifi and Otmani (2012) and Hifi et al. (2014).
The 0-1 knapsack problem can be applied to various financial planning and portfolio
management models. It determines which subset of assets provides the highest return
under a given budget. The knapsack problem is a well-known combinatorial optimization
problem with a wide range of business applications in capital budgeting (Bas 2011) and
production planning (Camargo et al. 2012), among others.

Recent advancements in multi-objective optimization for the knapsack problem, par-
ticularly in energy portfolios, have introduced innovative methodologies. Notably, the
Factored NSGA-II framework enhances exploration through overlapping subpopulations,
effectively addressing multiple objectives such as profit maximization and weight min-
imization (Peerlinck and Sheppard 2022). Additionally, robust optimization algorithms
have emerged, focusing on solutions resilient to variable changes, thereby broadening the
solution space compared to traditional methods (Miyamoto and Fujiwara 2022).

The integration of quantum computing via the Quantum Approximate Optimization
Algorithm (QAOA) presents a novel approach, demonstrating significant improvements
in asset allocation within financial portfolios, which can be analogous to energy portfolio
optimization (Huot et al. 2024), a great improvement on the previous topic provided by
Awasthi et al. (2023). These methods collectively enhance the efficiency and effectiveness
of solving complex multi-objective knapsack problems in energy contexts.

Faia et al. (2018) propose a portfolio optimization model using particle swarm opti-
mization. This model addresses multi-objective challenges in energy markets by balancing
risk and profit in energy portfolio decisions.

The hybrid algorithm combines k-nearest neighbor with quantum cuckoo search
to enhance resource allocation solutions for the multidimensional knapsack problem,
outperforming state-of-the-art algorithms in most instances (García and Maureira 2021).

The Harmony Search (HS) algorithm is a prominent heuristic for solving both single-
and multi-objective 0-1 knapsack problems (KPs) and effectively solves single and multi-
objective 0-1 knapsack problems (Adamuthe et al. 2020). Furthermore, innovations like
the hybrid HS with distribution estimation have been proposed to avoid local optima,
improving the algorithm’s global search capabilities (Liu et al. 2022).

Dynamic Evolutionary Optimization (DEO) is increasingly applied to the multi-objective
knapsack problem (MKP), addressing the complexities of real-world scenarios where objec-
tives and constraints can change over time (de Queiroz Lafetá and Oliveira 2020).

Cacchiani et al. (2022) provide an excellent overview of solving techniques for the
knapsack problem, especially the quadratic form. A novel optimization algorithm is de-
signed to tackle the multidimensional knapsack problem (MKP), classified as NP-hard. This
algorithm is an enhancement of the traditional moth search algorithm (MS), incorporating
self-learning mechanisms to improve its efficiency and effectiveness (Feng and Wang 2022).

Lin et al. (2022) propose a single-preference-conditioned model to directly generate
approximate Pareto solutions for any trade-off preference and design an efficient multi-
objective reinforcement learning algorithm to train this model. Sur et al. (2022) adopted
a deep reinforcement learning (DRL)-based approach; the experimental results indicate
that the proposed method outperforms the random and greedy methods, particularly
when the profits and weights of items have a non-linear relationship, such as quadratic
forms. Nomer et al. (2020) introduce a heuristic solver based on neural networks and deep
learning for the knapsack problem.
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Olivas et al. (2021) conclude that incorporating fuzzy logic into hyperheuristics
provides a robust mechanism for improving solutions to the knapsack problem. This
approach enhances adaptability and results in better performance across various instances
of the problem.

A new class of optimization problems called Mixed Pareto-Lexicographic Multi-
objective Optimization Problems (MPL-MOPs) provides a suitable model for scenarios
where some objectives have priority over others (Lai et al. 2020).

In the investment area, financial ratios such as the internal rate of return (IRR) and
the Weighted Average Cost of Capital (WACC) play a vital role in the selection process of
available investments (Kos et al. 2009). The financial measure IRR (internal rate of return) is
widely applied in the financial and investment sector and, in many cases, is preferred to the
NPV (Net Present Value), although NPV provides the highest accuracy. In this paper, we
prefer IRR to reduce the computational cost to produce EVA, a critical investment indicator.
EVA is a reliable way to evaluate whether some investments should be completed; it is
possible to select some investments with a negative EVA if necessary to achieve maximum
EVA for the portfolio (Sharma and Kumar 2010).

By integrating data science and advanced management strategies, organizations can
optimize their portfolios to enhance profitability while minimizing environmental impacts.
In recent years, scholars have been increasingly focused on EVA in relation to other methods
of evaluating business performance. EVA has grown at a CAGR of 9.60%, compared to
other business performance evaluation methods, which have only grown at a CAGR of
5.67%, as per publications in Scopus-listed journals (Tripathi et al. 2022).

In general, there are conflicting studies on EVA as a financial metric;
(Faiteh and Mohammed 2023) state that EVA demonstrates superiority over traditional met-
rics for listed companies and can be adapted for unlisted firms using accounting beta, making
it a versatile financial metric for value creation. According to Dobrowolski et al. (2022), on
the other hand, EVA is not a universal financial metric; it fails to accurately reflect conditions
in unstable markets, leading to potential mismanagement and limited shareholder value.

Chen et al. (2023b) found that EVA-related metrics naturally induce long-term, strate-
gic and sustainable decision-making without limiting executives to overly focus on short-
term profitability or develop a pseudo environment to illustrate EVA’s managerial benefits
and potential to cultivate sustainable growth.

A recent study relates to developing a mixed integer non-linear programming (MINLP)
model that incorporates financial risk metrics into a robust closed-loop supply chain design,
considering the unpredictability of final product demand to maximize EVA (Polo et al. 2019).
Multi-objective optimization methods significantly impact optimization outcomes.

One well-known way to deal with this is the Weighted Sum Method. The objectives
are often combined into a single objective, and conventional optimization procedures are
employed to find the best solution. In this strategy, decision-makers must determine the
weights. This method requires correct objective function weights and may not be suitable
for nonconvex issues. Di Somma et al. (2018) suggested a stochastic integer programming
model that converts the minimization of total energy costs and carbon dioxide emissions
into a single objective using the weighted sum approach; then, they employed the branch-
and-cut method to solve the researched issue.

In multi-objective evolutionary algorithms, a set of potential non-dominated solutions
must be generated first, and the decision-maker selects from these solutions. There have
been several reviews on the methods and application of multi-objective optimization
(MOO). One of the most used methods is the Pareto method (Ehrgott 2005). The Pareto
method is based on the principle of dominance where a dominated and a non-dominated
solution emerges constantly from a continuously updated algorithm. The solution using
the Pareto method generates a Pareto optimal front where it reflects the amount that must
be sacrificed from the optimal solution of one objective to improve another objective.

In finance (Tapia and Coello 2007), to identify critical technical analysis patterns in
financial time series, the niched-Pareto genetic algorithm (NPGA) is used. An alternative
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method is the e-constraint method (Haimes et al. 1971) where all constraints are trans-
formed into equality by adding or removing the appropriate constant (Mavrotas 2009;
Mavrotas and Florios 2013). Mesquita-Cunha et al. (2023) developed a recent improve-
ment of this algorithm for integer programming problems for knapsack-type resource
allocation problems.

Genetic algorithms can also be applied to portfolio management (Metawa et al. 2016;
Liu and Xiao 2021; Krink and Paterlini 2011). Giagkiozis and Fleming (2015) and
Gunantara (2018) provide two comprehensive literature reviews of multi-objective op-
timization methods.

In the energy sector, optimizing portfolios is a critical concern, as it involves balancing
various factors such as cost, risk, and renewable energy integration (Schönberger 2016).
One approach to address this challenge is the use of the knapsack problem, a well-known
optimization problem in the field of operations research (Ioannou et al. 2017)

The most common type of MOEA mentioned in the literature is dominance-based
algorithms, specifically NSGA-II. Li and Qiu (2016) used an improved version of the
NSGA-II to optimize a hydro-photovoltaic power system model, considering both power
output smoothness and annual power generation. Noorollahi et al. (2017) created NSGA-II
to solve a multi-objective problem. Indicator-based algorithms use indicator functions
to assess population quality in MOEAs. Keshavarzzadeh and Ahmadi (2019) compared
various strategies for optimizing a multi-objective model, including NSGA-II, generalized
differential evaluation, indicator-based evolutionary algorithms, speed-constrained multi-
objective algorithm, and strength Pareto algorithms.

The population quality in MOEAs is measured using indicator functions on indicator-
based algorithms. Keshavarzzadeh and Ahmadi (2019) optimized a well-known multi-
objective model using a variety of techniques, including NSGA-II, generalized differential
evaluation, an indicator-based evolutionary algorithm, a speed-constrained multi-objective
algorithm, and strong Pareto evolutionary algorithms. They then compared the outcomes
of these algorithms.

Zhou et al. (2024) addresses the critical need for effective planning in integrated
energy systems (IESs) to support energy revolution and sustainability goals. The authors
propose a novel planning framework that integrates multi-objective optimization with
fuzzy multi-criteria decision-making (MCDM). This framework is designed to tackle the
complexities of IES planning by modeling it as a multi-objective optimization problem. The
optimization problem is solved using a multi-objective state transition algorithm based on
decomposition (MOSTA/D). This method generates a Pareto set that allows for trade-offs
among conflicting objectives, which is a common challenge in multi-objective optimization.

The knapsack problem involves selecting a subset of items from a given set, where
each item has a weight and a value, and the goal is to maximize the total value while
staying within a weight constraint (Göteman et al. 2020).

Recent research has shown a significant increase in the application of optimization
techniques, including the knapsack problem, to address energy-related challenges. For
example, goal programming has been used to balance the trade-off between the cost per
kWh of an electricity generation portfolio and the total risk for an investor-owned utility
(Ioannou et al. 2017).

Chen et al. (2023a) reviewed multi-objective optimization in long-term energy systems,
emphasizing the need to consider economic, environmental, and energy security objectives
to address complex energy demands.

Recent advanced studies have used machine learning or reinforcement learning in
portfolio management. Vaish et al. (2024) introduce the use of the Random Forest (RF)
model, a popular machine learning algorithm, for optimizing microgrid configurations. The
paper compares the RF model’s performance with other methodologies, such as particle
swarm optimization (PSO) and artificial neural networks (ANNs), indicating a growing
trend in applying machine learning techniques to energy optimization problems.
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A comprehensive overview of new machine learning techniques in the field of the
energy sector is provided by Alazemi et al. (2024).

An alternative approach is the RNN for asset allocation management
(Giacomazzi Dantas 2021; Milhomem and Dantas 2021; Tao et al. 2021). deLlano-Paz et al. (2017)
provide a comprehensive literature survey on applying Modern Portfolio Theory (MPT) in
energy planning.

The model proposed by Roques et al. (2010) seeks to identify the portfolio consisting of
those European plants (inter-State12) that minimize the variability of the wind production
output for a specific production level as an objective function. They propose an alternative
definition for return, referring to it as the mean capacity factor for the different locations.
Risk is defined as the hourly variability of production (Rombauts et al. 2011).

Overall, the literature review highlights the growing importance of the knapsack
problem in optimizing energy portfolios, as it provides a valuable tool for balancing
various objectives and constraints in the energy sector.

3. The Main Question from a Theoretical Point of View—Methodology

Our main question is, “Is there a rational and efficient way to allocate a given amount
of budget to a set of projects among alternatives to achieve maximum profitability?”. Our
variables are Boolean for selected and unselected projects. In this way, the problem is
treated as a budget problem (knapsack). A project is selected to be covered by the budget if
the total profitability of the selected projects is maximum. We develop our model to solve
this problem by answering the main question.

We consider the classical 0-1 knapsack problem, where a subset of n data projects must
be allocated to a knapsack of capacity c. Each project has a profit rj and a weight wj, and
the goal is to select a fraction of projects that maximize the total profit without exceeding
the available budget. A binary variable Xj = 0 or 1 is defined because each project must
be implemented as a whole or not at all. Several variations of the knapsack problem have
been proposed to help organizations make sound project selection decisions in different
sectors (Martello and Toth 1990).

We use an integer programming formulation (0-1) where there is a binary decision
variable for each alternative, and these take values of 0 (alternative not selected) or 1
(alternative selected). In the case of a target, an integer programming (IP) formulation is
usually preferred, particularly the knapsack formulation. We construct the model using
linear algebra to achieve a practical way to implement several subproblems with different
efficiency rates. Another subproblem arises among projects: One project is independent of
another; one project is complementary to another; one project is disjoint-conflicting. Thus,
the model is defined for the three categories of constraints as follows:

Matrix of Decision Variables X

X1×n = [xi] = [x1,x2, x3, . . . .xn] ∀i = 1, 2 . . . n projects (1)

where xi is the binary variable 1 or 0 if the project i is implemented or not.
Matrix cost of projects C

C1×n = [ci] = [c1,c2, c3, . . . .cn] ∀i = 1, 2 . . . n projects (2)

where ci is the specific cost for each project construction.
Matrix of Production of Projects

P1×n = [pi] =
[
p1,p2, p3, . . . .pn

]
∀i = 1, 2 . . . n projects (3)

where pi is the specific production for each project at Megawatts (MW).
Matrix of Return of Projects

R1×n = [ri] = [r1,r2, r3, . . . .rn] ∀i = 1, 2 . . . n projects (4)
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where ri is the specific return for each project as a percentage of the cost.
Matrix ROICC= Return − OPPEX

R′
1×n =

[
r′i
]
=

[
r′1,r′2, r′3, . . . .r′n

]
∀i = 1, 2 . . . n projects (5)

WACC = is
E

E + DTE ∗ E
+ (1 −φ)iD

DTE ∗ E
E + DTE ∗ E

(6)

Objective Function (O.F)

Max O.F 1 X1×n × (ROICC − WACC) ∀i = 1, 2 . . . n projects (7)

Max O.F 2 X1×n × P1×n
T ∀i = 1, 2 . . . n projects (8)

Constraints:
Budget restriction

KNAPSACK X1×n × CT
1×n = KNAPSACK1×1 ∀i = 1, 2 . . . n projects (9)

Nowadays, particularly in Greece because of the prolonged recession after the eco-
nomic crisis of 2008 and the current coronavirus pandemic, it is imperative to use the
available budget in the best possible way. To achieve this, the key role is in the conversion
of traditional investments to alternative and modern investments such as renewable sources
of energy. In this area, another critical issue emerges, which is the complementarity and
competitiveness of projects.

Complementarity is very important because it indicates that implementation of a
project is impossible and unprofitable without another project being completed first. This
second point reveals a precise need for further research on the subject. It is possible that
a project is not only necessary for the realization of an investment but may also meet the
needs of other investments that can be carried out with the remaining available budget.
A feature example is an energy station that meets the energy needs of multiple energy
investments, such as photovoltaics or windmills.

On the other hand, competitiveness means that if an investment is made, one or more
available investments cannot be created. It is very important that the available budget
is not wasted and that the selection of investments is carried out objectively so that the
plurality of all types of investments in the portfolio is appropriate. In the energy sector,
this is achieved by not allowing several investments of one type to be made at the same
time and by not making more investments in an area where the availability of energy
needs is met.

Conflict projects A
An×k = [a ij

]
where i = projects and j = group of conflict projects

So i = n and j = k, aij = [1, 0] where 1 means projects are conflicting and zero in any
other cases.

X1×n × An×k ≤ 11×k ∀i = 1, 2 . . . n projects (10)

Complementary projects S
Sn×m = [b ij

]
where i = projects and j = group of projects in combination.

So i = n and j = m, bij = [1,−1, 0] where 1 and −1, respectively, mean projects are in
combination, and 0 in any other cases.

X1×n × Sn×m ≤ 01×m ∀i = 1, 2 . . . n projects (11)

To reduce the dimension of the table: If there are z projects in combination with
another project, respectively, the table of complementary projects is transformed.
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i = n and j = m, bij = [1,−z, 0] where 1 is if the project is combined with another and
-z indicates an energy station project to be created if any of the above is carried out, and 0
for all other cases.

X1×n × Sn×m ≤ 01×m ∀i = 1, 2 . . . n projects (12)

With the last two equations from the financial position, we ensure that the concentra-
tion risk in our portfolio is kept low, and from the ethical point of view, we avoid a biased
position in a particular type of investment.

WACC = is ×
S

D + S
+ iD × (1 −φ)× D

D + S
(13)

According to the INTERNATIONAL VALUATION STANDARDS COUNCIL (IVSC)
each investor requires a different rate of return (is) depending on the type of investment
(photovoltaics or windmill). Similarly, banks vary the mortgage rate (iD) according to the
type of investment and, in addition, the creditworthiness of the investor. For this reason, in
our model, each project has a different rate of return. Another important measure is the
ratio of investors’ capital S/(D + S) and banks’ D/(D + S) achieved through the leverage,
processing the essential capital to maximize profit, and φ represents tax rate.

The Weighted Average Cost of Capital (WACC) represents the average rate of return a
company must pay to finance its assets, calculated as a weighted sum of the costs of equity
and debt. It reflects the minimum return required by investors and is crucial for evaluating
investment decisions, as it serves as the discount rate in capital budgeting and valuation
models. WACC incorporates the firm’s capital structure and market risk to provide a
comprehensive financing cost.

Another question that arises about the profitability of this project is as follows: We
first assume that profitability is equal to the NPV of each project. If the profitability of the
rate of return is IRR, then we lose the upper part of our profit using the discount factor
of the NPV of each project if we replace the rate of return with the Average Return on
Invested Capital (AROIC) of each project. The ROIC substitution must be calculated using
present values to turn our problem into a linear algebra problem where a matrix R or X or
C must be diagonal, and we choose C because the investment amount of each project cost
is not involved with complementarity and discrimination-conflict constraints. Based on
Liapis (2010), we would also like to produce an EVA vector of each project (Stewart 2009).
The reason for all this transformation is to introduce the EVA theory into the problem.

Economic Value Added (EVA) is a performance measurement tool used to assess a
company’s ability to generate value beyond the required return on its invested capital. It is
calculated by subtracting the cost of capital from the firm’s net operating profit after taxes
(NOPAT). EVA emphasizes the importance of creating shareholder wealth by ensuring
returns exceed the opportunity cost of capital employed.

Subtracting (12) by (5), the O.F gives the following:

X1×n × CD
n×n × R′T

n×1 −
X1×n × CD

n×n × WACCn×1 ⇔
X1×n × CD

n×n ×
[
R′T −WACC]n×1 ⇔

X1×n × CD
n×n × EVAn×1 = Profit1×1 ∀i = 1, 2 . . . n projects

(14)

With the abovementioned approach, an EVA vector is critical for knapsack fulfillment.
All the above transformations give the value of a different approach to decision-making for
the multiple-investment problem under knapsack constraints.

Many projects may have negative EVA in addition to our constraints so a new filter
should be imposed as follows: Eva ≥ 0 or Ri ≥ WACC

C × Xi could be a stepwise product, but for EVA to be accurate for each project, WACC
should be a vector with the same number of elements.
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Another issue concerning WACC is the combination of different types of capital
reflected through leverage, which can vary from project to project. Using the preferred
capital, competitiveness and complementarity between projects, in addition to technical
and economic reasons, depends on environmental and socio-regulatory factors.

We selected the NSGA III algorithm to address the given problem as the Pareto front
(trade-off) between objectives is nonconvex and because the problem has complex non-
linear characteristics.

1. NSGA-III is designed to handle more difficult computations and constraints, especially
in cases with many decision variables. The algorithm manages to simultaneously
optimize multiple dimensions without degrading the quality of solutions and offers
better allocation in problems with complex solution sets.

2. In problems with many iterations (looping structures) and complex constraints, NSGA-
III can handle complexity better because it searches in multidimensional space and
uses reference points to find solutions in each part of the objective space. The con-
straints are considered through the non-dominated classification process and the
distance strategy from the reference points.

3. NSGA-III is known for its ability to explore the multidimensional solution space more
fully through the Niche Preservation process and the way it manages benchmarks.
This allows it to find solutions that may not be easily identified by NSGA-II. In NSGA-
II, solutions close to the Pareto front can be clustered in specific regions, leaving other
regions empty. NSGA-III, however, uses a strategy that ensures that solutions are
evenly distributed along the Pareto front.

4. A better advantage of NSGA-III is that it does not require additional parameters
compared to NSGA-II.

The Non-dominated Sorting Genetic Algorithm III (NSGA-III) is a powerful multi-
objective optimization technique designed to handle problems involving many objectives.
It extends the concepts of NSGA-II by introducing a reference-point-based approach to
maintain a well-distributed set of Pareto optimal solutions. Unlike NSGA-II, which uses
crowding distance to promote diversity, NSGA-III uses predefined reference points to guide
the search process toward a more uniform spread across the objective space. This makes
it particularly useful in high-dimensional objective spaces, where maintaining diversity
becomes challenging.

NSGA-III begins by generating an initial population, evaluating it based on the objec-
tives, and sorting individuals into different Pareto fronts. It then associates each solution
with the nearest reference point, preserving niche diversity by selecting one solution per
reference point. The population evolves through evolutionary operators such as selection,
crossover, and mutation, iteratively refining the Pareto front. The algorithm continues until
a stopping criterion is met, such as a maximum number of generations or a convergence
criterion where the solutions do not significantly improve. NSGA-III’s ability to produce
diverse solutions makes it suitable for complex, real-world applications with multiple
conflicting objectives.

Step-by-step representation of NSGA III pseudo code is shown in Appendix A.
An overview of this paper is shown in Figure 1.
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4. Data and Model

We use data from the Greek green energy market; we have fifteen alternative invest-
ment types of projects: four windmills, thirteen photovoltaics, and three power stations.
A budget volume analysis is conducted of the windmills, photovoltaics and mandatory
connection infrastructure. These types of projects have a mean rate of return, and the
infrastructure has returns derived from other projects. Our specific model and data tables
are provided below. The budget volume is allocated between equity or equity capital and
debt capital using a leverage ratio, a financial metric that measures the proportion of a
company’s capital that comes from debt. The energy station is expressed at 0.2€ and a return
of 6%, which is identical to the WACC because the energy station does not individually
generate ROIC but is suitable to generate another project.
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Objective Function:
O.F1 = ∑20

i=1 [Xi ×
(ROICCi − WACCi)]

∀ i = 1, 2 . . . n projects (15)

O.F2 = ∑20
i=1 [Xi × (Pi

T)] ∀ i = 1, 2 . . . n projects (16)
EVAT = [EVAi] =
[EVA1, EVA2, . . . EVA20]

∀ i = 1, 2 . . . n projects (17)

EVAi = r′ i − wacci ∀ i = 1, 2 . . . n projects (18)
r′ i =ROIC of each project ∀ i = 1, 2 . . . n projects

Budget = 15 million €
WACC: A table of WACC for each project

is = 15%, id = 6%, φ = 22%

P8, P13, and P15 represent the energy plants where they do not provide a profit on their
own but are necessary for the operation of the other types of investments, and therefore,
EVA = 0.

Restrictions:
P1 or P3 or P14 (19)
P12 and P5 and P16 then P8 (20)
P11 and P4 then P15 (21)
P7 or P9 (22)
X12 × P12 + X5 × P5 + X16 × P16 ≥ 14000 (23)
X11 × P11 + X4 × P4 ≥ 3000 (24)
∑20

i=1 Xi × Ci ≤ Budget ∀ i = 1, 2 . . . n projects (25)

Explanations of the restrictions:
Only one of the investments P1, P2, and P14 can be implemented according to

x1 + x3 + x14 ≤ 1. (26)

P8 represents a power station, and P4, P5, and P17 are photovoltaic investments that
will be built in the same area. If at least one of the three is implemented, it is appropriate to
create P8 because it will meet the energy needs of all 3. The equation that represents this is

x12 + x5 + x16 − 3x8 ≤ 0. (27)

P15 represents a power station, and P11 and P6 are photovoltaic investments that will
be created in the same area. If at least one of the two is implemented, P15 is appropriate to
be created because it will meet the energy needs of both. The equation representing this is

x11 + x4 − 2x15 ≤ 0. (28)

Only one of P4 and P6 can be implemented according to the following equation:

x7 + x9 ≤ 1. (29)

Projects under constraint 2 must, if an energy station is built, cover the minimum
energy needs of the region.

Projects falling under restriction 3 must, if an energy station is built, cover at least the
minimum energy needs of the area.

The total cost must not exceed the available budget:

Budget ≤ 15000000 € (30)

In Table 1, the cost and ROIC of available investment projects and power plants
provide information on the investment projects.
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Table 1. Data on investment projects.

Cost Production Price Revenue Type DTE

P1 5.00 € 18,000 50 € 0.9 € Windmill 4

P2 3.00 € 9750 40 € 0.39 € Windmill 2

P3 4.00 € 10,000 60 € 0.6 € Windmill 3

P4 1.00 € 2300 65 € 0.15 € Photovoltaics 4

P5 0.75 € 1200 68 € 0.081 € Photovoltaics 2

P6 1.50 € 2800 70 € 0.196 € Photovoltaics 3

P7 0.60 € 1250 72 € 0.09 € Photovoltaics 4

P8 0.20 € Electric Station

P9 0.40 € 850 75 € 0.063 € Photovoltaics 4

P10 0.50 € 750 66 € 0.049 € Photovoltaics 2

P11 1.00 € 1500 74 € 0.111 € Photovoltaics 2

P12 0.50 € 700 65 € 0.045 € Photovoltaics 2

P13 0.20 € Electric Station

P14 4.00 € 14,000 45 € 0.63 € Windmill 4

P15 0.20 € Electric Station

P16 5.00 € 13,500 63 € 0.85 € Photovoltaics 4

P17 0.70 € 830 67 € 0.055 € Photovoltaics 2

P18 0.80 € 770 70 € 0.053 € Photovoltaics 2

P19 2.00 € 4750 63 € 0.299 € Photovoltaics 4

P20 1.45 € 2230 65 € 0.15 € Photovoltaics 2
Source: Data from the Greek energy market.

5. Estimations and Results

Using the NSGA III algorithm and matrix calculations, our findings are provided below:
In Table 2, the appropriate formulation gives the table for constraint Equations (26)–(29)

according to a general form of Equations (10)–(12) (e.g., if project 1 and project 2 are
conflicting, then the equation representing them is x7 + x9 ≤ 1. If projects 3 and 4 are
complementary to project 5 of the energy station, then the corresponding equation is
x11 + x4 − 2 × x15 ≤ 0).

Table 2. Matrixes of complementary and conflict projects.

Conflict Complementary

X1 1 0 0 0

X2 0 0 0 0

X3 1 0 0 0

X4 0 0 0 1

X5 0 0 1 0

X6 0 0 0 0

X7 0 1 0 0

X8 0 0 −3 0

X9 0 1 0 0

X10 0 0 0 0
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Table 2. Cont.

Conflict Complementary

X11 0 0 0 1

X12 0 0 1 0

X13 0 0 0 0

X14 1 0 0 0

X15 0 0 0 −2

X16 0 0 1 0

X17 0 0 0 0

X18 0 0 0 0

X19 0 0 0 0

X20 0 0 0 0

RESTRICTIONS RESTRICTIONS

X × A 1 0 X × S −1 0

≤ ≤
LIMIT OF RESTRICTIONS LIMIT OF RESTRICTIONS

1 1 0 0
Source: Author’s calculations.

In Table 3, the appropriate formulation gives the table for constraint
Equations (23) and (24).

Table 3. Matrixes of complementary and conflict projects.

Production Conflict

X1 18,000 0 0

X2 9750 0 0

X3 10,000 0 0

X4 2300 0

X5 1200 0 0

X6 2800 0 0

X7 1250 0 1

X8 0

X9 850 0 1

X10 750 0 0

X11 1500 0

X12 700 700 0

X13 0 0

X14 14,000 0 0

X15 0 0

X16 13,500 13,500 0

X17 830 0 0

X18 770 0 0
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Table 3. Cont.

Production Conflict

X19 4750 0 0

X20 2230 0 0

RESTRICTIONS

X × PT 14,200 38,000

≥
LIMIT OF RESTRICTIONS

14,000 30,000

Table 4 presents the details of each eligible or ineligible project.

Table 4. Structure of an optimal portfolio.

EVA = ROIC − WACC ROIC WACC COST D X SELECTED PROJECTS

X1 6% 13% 6.7% 5.00 € 0 WINDMILL

X2 0% 8% 8.1% 3.00 € 1 -

X3 3% 10% 7.3% 4.00 € 0 -

X4 3% 10% 6.7% 1.00 € 1 -

X5 −2% 6% 8.1% 0.75 € 0 PHOTOVOLTAICS

X6 1% 8% 7.3% 1.50 € 0 PHOTOVOLTAICS

X7 3% 10% 6.7% 0.60 € 0 -

X8 0% 0% 0% 0.20 € 1 ENERGY STATION

X9 4% 11% 6.7% 0.40 € 0 -

X10 −3% 5% 8.1% 0.50 € 0 -

X11 −2% 6% 8.1% 1.00 € 1 PHOTOVOLTAICS

X12 −4% 4% 8.1% 0.50 € 1 PHOTOVOLTAICS

X13 0% 0% 0% 0.20 € 0 -

X14 4% 11% 6.7% 4.00 € 1 WINDMILL

X15 0% 0% 0% 0.20 € 1 ENERGY STATION

X16 5% 12% 6.7% 5.00 € 1 PHOTOVOLTAICS

X17 −5% 3% 8.1% 0.70 € 0 -

X18 −4% 4% 8.1% 0.80 € 0 -

X19 0% 3% 6.7% 2.00 € 0 -

X20 1% −3% 8.1% 1.45 € 0 -

Source: Author’s calculations. D referred to diagonal matrix.

The EVA of power stations is 0% because they do not generate a profit, but they are
suitable for the creation of another project.

Table 5 presents an estimation of the Objective Functions (OFs)—total EVA or PROFIT,
total production, and total budget,
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Table 5. Optimal portfolio OF.

MAX EVA OF KNAPSACK 11.91%

FULFIL OF KNAPSACK = X × C 14.9 €

MAX PRODUCTION 40,750
Source: Author’s calculations.

Figure 2 reflects the Pareto efficient front, and the optimal solutions (Max EVA, Max
Production) range from 14.7% (38,000) to 11.91% (40,750).
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Data from any project similar to the data we used from the Greek Green Energy Market,
which are taken from a case study, can be used.

From the above estimation, it is concluded that the optimal portfolio structure is
as follows:

1. Fulfilling the knapsack—budget: In our example, the optimal budget to be consumed
is 14.9 M€.

2. Selection of projects xi: Our optimal portfolio structure includes projects P1, P4, P11,
P12 and P19, P16 and power plants P8 and P15.

3. OF 1: The optimal profit is 11.91%.
4. OF 2: Optimal production 40,750.

6. Discussions and Conclusions
6.1. Discussions and Key Findings

The paper aims to extend the existing literature on portfolio optimization in the energy
market. From the overall analysis carried out in this case study, its contribution to the
optimal allocation of budget resources lies in constructing a specialized model for energy
projects based on the data of the Greek energy market.

The paper presents a novel optimization approach to resource allocation in the en-
ergy sector, employing a combination of Economic Value Added (EVA) and the knapsack
problem. The authors developed a double optimization model within a knapsack-type
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framework using the NSGA III algorithm. The research focuses on maximizing EVA along-
side production levels to enhance decision-making in the energy sector, particularly in
Greece. Applying the model to the Greek energy market offers valuable insights, espe-
cially in balancing investments in renewable energy, such as wind power, against overall
portfolio returns.

This study has several findings.
First, complementarity and competitiveness between projects are key issues addressed

in this paper. Its contribution to this issue is that the creation of alternative constraints
to the primary Boolean type of problem of the variable to perform or not to perform a
project is always an integer, which does not allow continuous mathematical approximations
(Pferschy and Schauer 2017).

Second, in this paper, financial science enters the problem, and mainly the objective
function, by maximizing the Economic Value Added (EVA) in the optimal projects for the
part of the Economic Value Added that constitutes the knapsack budget
(Dluhopolskyi et al. 2021). In this way, the optimal projects that constitute the portfolio
knapsack are decided by the firm’s management, not by the shareholders or banks.

Third, maximizing EVA while maximizing production using the NSGA III algorithm
(Eftekharian et al. 2017) that we carried out in our paper is an innovation that focuses
on decision-making according to the objectives of the company’s management while
meeting the energy needs of the region through maximizing production, ensuring that in a
period of price decrease, there will not be a significant impact on the EVA of the portfolio
(Vazhayil and Balasubramanian 2014).

Fourth, introducing the constant WACC vector per project allows the introduction of
leverage per project and the differentiation of the cost of each project while differentiating
the cost of capital per project type in energy from the IVSC studies. Finally, for a given
budget, it seems that if you want to increase production, the increase in production must
“sacrifice” some of the EVA. This is because elective projects are likely to have higher costs.

The strength of the paper lies in its straightforward methodological approach and the
innovative use of EVA as a financial metric alongside a traditional knapsack problem to
address the complexities of energy portfolio management. The authors differentiate their
approach from previous work by introducing a constant WACC vector per project and
incorporating the concept of sacrificing some EVA for production maximization, offering a
fresh perspective in multi-objective optimization.

6.2. Theoretical Implication and Practical Implication

This study enriches the theoretical research of optimal allocation and portfolio opti-
mization approach in the energy market. The originality lies in the contribution of a specific
methodology to decision-making for selecting specific projects in the energy sector instead
of the simple and project-specific financial methods, NPV–IRR. The theoretical implication
of the article contributes to the academic debate on whether the EVA index can offer better
results than traditional indicators, especially in the energy sector (Dobrowolski et al. 2022).

Also, following the multi-objective optimization approach, it tries to find the balance
between the optimization of the financial objective (EVA), ensuring that in a period of price
decrease, there will not be a significant impact on the EVA of the portfolio. The second
objective is to maximize the production of the portfolio covering, in addition to the above
objective, the objective of sustainable development meeting the energy needs of each region.
The practical application depends on the fact that the model we develop is not a theoretical
model but a model of operational research for market practitioners. Each investor can
adjust the model to his needs depending on the specific characteristics of the projects they
have to choose from and the regions where they are located. Data from the Greek energy
market were used to further enrich scientific approaches in the professional field, helping
qualified executives make more rational decisions.
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6.3. Restrictions and Future Work

Although this study provides valuable insights, there are some restrictions. First, the
data on the Greek energy market we used are limited. A second observation is that the
decline in portfolio EVA is disproportionate to the increase in the output provided by this
“sacrifice”. This is probably due to the specific projects to be selected. Third, the optimal
solution to the problem is reached relatively quickly, which explains why the Pareto front
of this form is, as in Figure 1, influenced by the above two factors.

The next stage of the research will be to expand the available projects for selection
and to see if this problem has been eliminated. However, as these projects belong to
the photovoltaic sector, the result is expected to stay the same. A large part of the cost
comes from creating energy plants, a sufficient and necessary condition that increases costs
without producing a direct economic benefit. The restriction to cover the energy needs of
each region has also been introduced, which ‘sacrifices’ part of the purely financial objective
for the benefit of society.

An extension of our research would be the introduction of the theory of representation
and the constraints it defines between the management–shareholder–banking relations.
According to agent theory and Stewart’s EVA, it seeks to build a portfolio that satisfies all
three parties (banks, shareholders, and managers) because investors handle money from
funds and form portfolios from managers, so it is more appropriate to choose the EVA
which managers use to secure their fees, and when EVA is positive, both managers and
creditors are satisfied. The specific data refer to Greece; any international investor can use
the model by importing data from another economy.

Future research should consider networks’ availability regarding loads at different
times and other technical specifications. Network inefficiencies, which result from losses for
both the type of project and the area of implementation, affect both production and price.

Author Contributions: K.L., in collaboration with T.P., conceived the idea and wrote the conclusions.
P.P. wrote the introduction, the literature review, and the empirical results. E.C. performed the
empirical evidence and wrote the final text. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data we use for our calculations are derived from the Greek
Energy Market.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Algorithm A1: Generation t of NSGA-III Procedure

Input: H structured reference points Z* or supplied aspiration points Z*, parent population Pt
Output: Pt + 1
1. St = ∅
2. Qt = Recombination + Mutation (Pt)
3. Rt = Pt ∪ Qt
4. (F1, F2, ...) = Non-dominated-sort (Rt)
5. repeat
6. St = St ∪ Fi and i = i + 1
7. until |St| ≥ N
8. Last front to be included: Fl = Fi
9. if |St| = N then
10. Pt + 1 = St, break
11. else
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Algorithm A1: Cont.

12. Pt+1 =
l−1⋃
j=1

Fj

13. Point to chosen from Fl: K = N − |Pt + 1|
14. Normalize objectives and create reference set Z*:
Normalize (fn, St, Zr, Zs, Za )
15. Associate each member s of St with a reference point:
[π(s),d(s)] = Associate (St, Z*)
16. Compute niche count of reference point
j ∈ Z*: ρj = ∑

s∈st/Fi

((π(s) = j)?1 : 0)

17. Choose K members one at a time from Fl to construct Pt + 1:
Niching(K, ρj, π, d, Zr, Fl, Pt + 1)
18. end if

Step-1 Normalize fn, St, Zr, Zs/Za) procedure
Input: St, Zs (structured points) or Za (supplied points)
Output: fn, Zr (reference points on normalized hyper-plane)
1. for j = 1 to M do
2. Compute ideal point: zj

min = mins ∈ St fj(s)
3. Translate objectives: fj’(s) = fj(s) − zj

min ∀s ∈ St
4. Compute extreme points: zjmax = s:
argmins ∈ St ASF(s, wj) = (ϵ, ..., ϵ)T),
ϵ = 10-6 and wi

j = 1
5. end for
6. Compute intercepts aj for j= 1, M
7. Normalize objectives (fn) using

fi
n(X) = f ′ i(X)

ai−Zi
min , for i = 1, 2, ..., M

8. if Za is given then
9. Map each (aspiration) point on normalized hyper-plane
and save the points in the set Z’
10. else
11. Zr = Zs

12. end if

Step-2 Associate (St, Zr) procedure
Input: St, Zr

Output: π (s ∈ St), d(s ∈ St)
1. for each reference point Z ∈ Zr do
2. Compute reference line w = z
3. end for
4. for each (s ∈ St) do
5. for each w ∈ Zr do
6. Compute d⊥(s, w) = s − wTs / ||w||
7. end for
8. Assign π(s) = w: argmin w ∈ Z

r d⊥(s, w)
9. Assign d(s) = d⊥(s, π(s))
10. end for

Step-3 Niching (K, ρj, π, d, Zr, Fl, Pt + 1) procedure
Input: K, ρj, π(s ∈ St), d(s ∈ St), Zr, Fl
Output: Pt + 1
1. k = 1
2. while k ≤ K do
3. Jmin = {j: argmin j ∈ Zr ρj}
4. J = random (jmin)
5. Ij = {s: π(s) = j, s ∈ Fl}
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Algorithm A1: Cont.

6. if IJ ̸= ∅ then
7. if ρj = 0 then
8. Pt + 1 = Pt + 1 ∪ {s: argmin s ∈ IJ ds}
9. else
10. Pt + 1 = Pt + 1 ∪ random

(
IJ )

11. end if
12. ρj = ρj + 1, Fl = Fl/s
13. k = k + 1
14. else
15. Zr = Zr/{J}
16. end if
17. end while
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