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Abstract: This paper proposes and implements a methodology to fit a seven-parameter Generalized
Tempered Stable (GTS) distribution to financial data. The nonexistence of the mathematical expression
of the GTS probability density function makes maximum-likelihood estimation (MLE) inadequate
for providing parameter estimations. Based on the function characteristic and the fractional Fourier
transform (FRFT), we provide a comprehensive approach to circumvent the problem and yield
a good parameter estimation of the GTS probability. The methodology was applied to fit two
heavy-tailed data (Bitcoin and Ethereum returns) and two peaked data (S&P 500 and SPY ETF
returns). For each historical data, the estimation results show that six-parameter estimations are
statistically significant except for the local parameter, µ. The goodness of fit was assessed through
Kolmogorov–Smirnov, Anderson–Darling, and Pearson’s chi-squared statistics. While the two-
parameter geometric Brownian motion (GBM) hypothesis is always rejected, the GTS distribution fits
significantly with a very high p-value and outperforms the Kobol, Carr–Geman–Madan–Yor, and
bilateral Gamma distributions.

Keywords: Generalized Tempered Stable (GTS); fractional Fourier transform (FRFT); function
characteristic; Kolmogorov–Smirnov (K-S); maximum-likelihood estimation (MLE)

1. Introduction

Modeling high-frequency asset return with the normal distribution is the underlying
assumption in many financial tools, such as the Black–Scholes–Merton option pricing
model and the risk metric variance–covariance technique for value at risk (VAR). However,
substantial empirical evidence rejects the normal distribution for various asset classes
and financial markets. The symmetric and rapidly decreasing tail properties of the nor-
mal distribution cannot describe the skewed and fat-tailed properties of the asset return
distribution.

The α-stable distribution has been proposed (Nolan 2020; Sato 1999) as an alternative to
the normal distribution for modeling asset return and many types of physical and economic
systems. The theoretical and empirical argument is that the stable distribution generalizes
the Central Limit Theorem regardless of the variance nature (finite or infinite) (Nzokem
2024; Rachev et al. 2011). There are two major drawbacks (Borak et al. 2005; Nolan 2020):
firstly, the lack of closed formulas for densities and distribution functions, except for the
normal distribution (α = 2), Cauchy distribution (α = 1), and Lévy distribution (α = 1

2 )
(Tsallis 1997); secondly, most of the moments of the stable distribution are infinite. An
infinite variance of asset return leads to an infinite price for derivative instruments such
as options.

The Generalized Tempered Stable (GTS) distribution was developed to overcome the
shortcomings of the two distributions, and the tails of the GTS distribution are heavier than
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the normal distribution but thinner than the stable distribution (Grabchak and Samorodnit-
sky 2010; Kim et al. 2009). The general form of the GTS distribution can be defined by the
following Lévy measure (V(dx)) (1):

V(dx) =

(
α+e−λ+x

x1+β+
1x>0 +

α−e−λ− |x|

|x|1+β−
1x<0

)
dx (1)

where 0 ≤ β+ ≤ 1, 0 ≤ β− ≤ 1, α+ ≥ 0, α− ≥ 0, λ+ ≥ 0, and λ− ≥ 0. More details on the
Tempered Stable distribution are provided in (Küchler and Tappe 2013; Rachev et al. 2011).

The rich class of the GTS distribution (1) has a myriad of applications ranging from
financial to mathematical physics and economic systems. However, few studies (Fallahgoul
and Loeper 2021; Massing 2024; Nzokem and Montshiwa 2022) have covered the methods
and techniques to estimate the parameters of the GTS distribution. This study aims to
contribute to the literature by providing a methodology for fitting the seven-parameter GTS
distribution. As illustrations, the study used four historical prices: two heavy-tailed data
(Bitcoin and Ethereum returns) and two peaked data (S&P 500 and SPY ETF returns). The
GTS distribution is fitted to the underlying distribution of each data index and goodness-
of-fit analysis is carried out. The main disadvantage of the GTS distribution is the lack of
the closed forms of the density, cumulative, and derivative functions. We use a computa-
tional algorithm, called the enhanced fast FRFT scheme (Nzokem 2023a), to circumvent
the problem.

The rest of the paper is organized as follows: Section 2 provides some theoretical
framework of the GTS distribution. Section 3 presents the multivariate maximum-likelihood
(ML) method and the analytic version of the two-parameter normal distribution. Section 4
presents the results of the GTS parameter estimations, along with the associated statistical
tests for the heavy-tailed Bitcoin and Ethereum returns. Section 5 fits the GTS distribution
to the traditional indices S&P 500 and SPY ETF returns, while Section 6 presents the results
of the goodness-of-fit test. Section 7 provides the concluding remarks.

2. Generalized Tempered Stable (GTS) Distribution

The Lévy measure of the GTS distribution (V(dx)) is defined in (2) as a product of a
tempering function q(x) and a Lévy measure of the α-stable distribution Vstable(dx):

q(x) = e−λ+x1x>0 + e−λ− |x|1x<0

Vstable(dx) =
(

α+
1

x1+β+
1x>0 + α−

1
|x|1+β−

1x<0

)
dx

V(dx) = q(x)Vstable(dx) =

(
α+

e−λ+x

x1+β+
1x>0 + α−

e−λ− |x|

|x|1+β−
1x<0

)
dx

(2)

where 0 ≤ β+ ≤ 1, 0 ≤ β− ≤ 1, α+ ≥ 0, α− ≥ 0, λ+ ≥ 0 and λ− ≥ 0.
The six parameters that appear have important interpretations. β+ and β− are the

indexes of stability bounded below by 0 and above by 2 (Borak et al. 2005). They capture
the peakedness of the distribution similarly to the β-stable distribution, but the distribution
tails are tempered. If β increases (decreases), then the peakedness decreases (increases).
α+ and α− are the scale parameters, also called the process intensity (Boyarchenko and
Levendorskii 2002); they determine the arrival rate of jumps for a given size. λ+ and λ−
control the decay rate on the positive and negative tails. Additionally, λ+ and λ− are also
skewness parameters. If λ+ > λ− (λ+ < λ−), then the distribution is skewed to the left
(right), and if λ+ = λ−, then it is symmetric (Fallahgoul et al. 2019; Rachev et al. 2011).
α and λ are related to the degree of peakedness and thickness of the distribution. If α
increases (decreases), the peakedness and the thickness decrease (increase). Similarly, if λ
increases (decreases), then the peakedness increases (decreases) and the thickness decreases
(increases) (Bianchi et al. 2019). For more details on the tempering function and Lévy
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measure of the tempered stable distribution, refer to (Küchler and Tappe 2013; Rachev et al.
2011).

The activity process of the GTS distribution can be studied from the integral (3) of the
Lévy measure (2):

∫ +∞

−∞
V(dx) =

{
+∞ if 0 ≤ β+ < 1 ∧ 0 ≤ β− < 1
α+λ+

β+Γ(−β+) + α−λ−
β−Γ(−β−) if β+ < 0 ∧ β− < 0.

(3)

As shown in (3), if β+ < 0 and β− < 0, GTS(β+, β−, α+, α−, λ+, λ−) is of a finite ac-
tivity process and can be written as a compound Poisson (Barndorff-Nielsen and Shephard
2002). When 0 ≤ β+ < 1 and 0 ≤ β− < 1, this Lévy density (V(dx)) is not integrable as it
goes off to infinity too rapidly as x goes to zero (Barndorff-Nielsen and Shephard 2002),
which means in practice that there will be a large number of very small jumps. As shown
in (3), GTS(β+, β−, α+, α−, λ+, λ−) is an infinite activity process with infinite jumps in any
given time interval.

In addition to the infinite activities process, the variation in the process can be studied
through the following integral:∫ 1

−1
|x|V(dx) =

∫ 0

−1
|x|V(dx) +

∫ 1

0
|x|V(dx)

= α−λ
β−−1
− γ(1 − β−, λ−) + α+λ

β+−1
+ γ(1 − β+, λ+)

where γ(s, x) =
∫ x

0 ys−1e−ydy is the lower incomplete gamma function.
And we have:∫ 1

−1
|x|V(dx) < +∞ if 0 < β− ≤ 1 & 0 < β+ ≤ 1. (4)

As shown in (4), GTS(β+, β−, α+, α−, λ+, λ−) generates a finite variance process,
which is contrary to the Brownian motion process. GTS(β+, β−, α+, α−, λ+, λ−) generates
a type B Lévy process (Ken-Iti 2001), which is a purely non-Gaussian infinite activity Lévy
process of finite variation whose sample paths have an infinite number of small jumps and
a finite number of large jumps in any finite time interval.

The GTS distribution can be denoted by X ∼ GTS(β+, β−, α+, α−, λ+, λ−) and X =
X+ − X− with X+ ≥ 0, X− ≥ 0. X+ ∼ TS(β+, α+, λ+) and X− ∼ TS(β−, α−, λ−). By
adding the location parameter, the GTS distribution becomes GTS(µ, β+, β−, α+, α−, λ+, λ−),
and we have (5):

Y = µ + X = µ + X+ − X−, Y ∼ GTS(µ, β+, β−, α+, α−, λ+, λ−). (5)

2.1. GTS Distribution and Characteristic Exponent

Theorem 1. Consider a variable Y ∼ GTS(µ, β+, β−, α+, α−, λ+, λ−). The characteristic expo-
nent can be written as:

Ψ(ξ) = µξi + α+Γ(−β+)
(
(λ+ − iξ)β+ − λ+

β+

)
+ α−Γ(−β−)

(
(λ− + iξ)β− − λ−

β−
)

. (6)

Proof. V(dx) in (2) is a Lévy measure. The following relation is satisfied from (4):∫ +∞

−∞
Min(1, |x|)V(dx) < +∞.

More details on the proof are provided in (Nzokem and Maposa 2024).
The Lévy–Khintchine representation (Barndorff-Nielsen and Shephard 2002) for non-

negative Lévy process is applied on Y. Y = µ + X = µ + X+ − X− and we have:
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Ψ(ξ) = Log
(

EeiYξ
)
= iµξ + Log

(
EeiX+ξ

)
+ Log

(
Ee−iX−ξ

)
= iµξ +

∫ +∞

0

(
eiyξ − 1

)α+e−λ+y

y1+β+
dy +

∫ +∞

0

(
e−iyξ − 1

)α−e−λ−y

y1+β−
dy,

(7)

∫ +∞

0

(
eiyξ − 1

)α+e−λ+y

y1+β+
dy = α+λ

β+
+ Γ(−β+)

+∞

∑
k=1

Γ(k − β+)

Γ(−β+)k!
(

iξ
λ+

)k

= α+λ
β+
+ Γ(−β+)

+∞

∑
k=1

(
β+

k

)
(− iξ

λ+
)k

= α+Γ(−β+)
(
(λ+ − iξ)β+ − λ

β+
+

)
.

(8)

Similarly, we have :

∫ +∞

0

(
e−iyξ − 1

)α−e−λ−y

y1+β−
dy = α−Γ(−β−)

(
(λ− + iξ)β− − λ

β−
−

)
. (9)

The expression in (7) becomes:

Ψ(ξ) = iµξ + α+Γ(−β+)
(
(λ+ − iξ)β+ − λ

β+
+

)
+ α−Γ(−β−)

(
(λ− + iξ)β− − λ

β−
−

)
.

Theorem 2. Consider a variable Y ∼ GTS(µ, β+, β−, α+, α−, λ+, λ−).
If (β−, β+) → (0, 0), GTS becomes a bilateral Gamma distribution with the following

characteristic exponent:

Ψ(ξ) = µξi − α+ log
(

1 − 1
λ+

iξ
)
− α− log

(
1 +

1
λ−

iξ
)

. (10)

In addition to (β−, β+) → (0, 0), if α− = α+ = α, GTS becomes a Variance-Gamma (VG)
distribution with parameter (µ, δ, σ, α, θ)

δ = λ− − λ+ σ = 1 α = α− = α+ θ =
1

λ−λ+

and the following characteristic exponent:

Ψ(ξ) = µξi − α log
(

1 − λ− − λ+

λ+λ−
iξ +

1
λ+λ−

ξ2
)

. (11)

Proof.

Γ(−β+) = −Γ(1 − β+)

β+

lim
β+→0

Γ(−β+)
(
(λ+ − iξ)β+ − λ

β+
+

)
= − log

(
1 − 1

λ+
iξ
)

.
(12)

Similarly, (12) works for β− → 0, and we have the characteristic exponent (10).
In addition, if α− = α+ = α, from (10), the characteristic exponent becomes:

Ψ(ξ) = µξi − α log
(

1 − λ− − λ+

λ+λ−
iξ +

1
λ+λ−

ξ2
)

,

which is a Variance-Gamma (VG) distribution with parameter (µ, λ− − λ+, 1, α, 1
λ−λ+

). For
more details on the VG model, refer to (Madan et al. 1998; Nzokem 2023c).
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Theorem 3 (Cumulants κk). Consider a variable Y ∼ GTS(µ, β+, β−, α+, α−, λ+, λ−). The
cumulants κk of the GTS distribution are defined as follows:

κ0 = 0

κ1 = µ + α+
Γ(1 − β+)

λ
1−β+
+

− α−
Γ(1 − β−)

λ
1−β−
−

κk = α+
Γ(k − β+)

λ
k−β+
+

+ (−1)kα−
Γ(k − β−)

λ
k−β−
−

∀k ∈ N \ {0, 1}.

(13)

Proof. We reconsider the characteristic exponent Ψ(ξ) in (7):

Ψ(ξ) = iµξ +
∫ +∞

0

(
eiyξ − 1

)α+e−λ+y

y1+β+
dy +

∫ +∞

0

(
e−iyξ − 1

)α−eλ−y

y1+β−
dy

= iµξ + α+
+∞

∑
k=1

Γ(k − β+)

λ
k−β+
+

(iξ)k

k!
+ α−

+∞

∑
k=1

Γ(k − β−)

λ
k−β−
−

(−iξ)k

k!

= iµξ +
+∞

∑
k=1

1
k!

(
α+

Γ(k − β+)

λ
k−β+
+

+ α−
Γ(k − β−)

λ
k−β−
−

(−1)k

)
(iξ)k

=
+∞

∑
k=0

κk
k!
(iξ)k.

(14)

Hence, the k-th order cumulant κk is given by comparing the coefficients of both
polynomial functions in iξ. For more details on the relationship between the characteristic
exponent and cumulant functions, refer to (Feller 1971; Kendall 1945).

2.2. GTS Distribution and Lévy Process

Corollary 1. Let Y = (Yt) be a Lévy process on R+ generated by GTS(µ, β+, β−, α+, α−, λ+, λ−),
and then

Yt ∼ GTS(tµ, β+, β−, tα+, tα−, λ+, λ−) ∀t ∈ R+. (15)

Proof. Let Ψ(ξ, t) be the characteristic exponent of the Lévy process Y = (Yt). By applying
the infinitely divisible property, we have:

Ψ(ξ, t) = Log
(

EeiYtξ
)
= tLog

(
EeiXξ

)
= tµξi + tα+Γ(−β+)

(
(λ+ − iξ)β+ − λ

β+
+

)
+ tα−Γ(−β−)

(
(λ− + iξ)β− − λ

β−
−

)
and we deduce that Yt ∼ GTS(tµ, β+, β−, tα+, tα−, λ+, λ−).

Theorem 4 (Asymptotic distribution of Generalized Tempered Stable distribution process).
Let Y = Yt be a Lévy process on R generated by GTS(µ, β+, β−, α+, α−, λ+, λ−). Then, Yt
converges in distribution to a Lévy process driving by a normal distribution with mean κ1 and
variance κ2

Yt
d→ N(tκ1, tκ2) as t → +∞ (16)

where

κ1 = µ + α+
Γ(1 − β+)

λ
1−β+
+

− α−
Γ(1 − β−)

λ
1−β−
−

κ2 = α+
Γ(2 − β+)

λ
2−β+
+

+ α−
Γ(2 − β−)

λ
2−β−
−

.
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Proof. The proof relies on the cumulant-generating function. As in (14), the characteristic
exponent (Ψ(ξ)) can be written as follows:

Ψ(ξ) = Log
(

EeiYξ
)
=

+∞

∑
j=0

κj
(iξ)j

j!
. (17)

Let ϕ(ξ, t) be the characteristic function of the stochastic process Yt−tκ1√
tκ2

and we have:

ϕ(ξ, t) = E

(
e

i Yt−tκ1√
tκ2

ξ
)

= e
−i tκ1√

tκ2
ξ
E

(
e

i ξ√
tκ2

Yt

)

= e
−i tκ1√

tκ2
ξ
e

tΨ( ξ√
tκ2

)
= e

−i tκ1√
tκ2

ξ
e

∑+∞
j=0

tκj
j! (i

ξ√
tκ2

)j

= e
− ξ2

2 +∑+∞
j=3

tκj
j! (i

ξ√
tκ2

)j

,

(18)

lim
t→+∞

+∞

∑
j=3

tκj

j!
(i

ξ√
tκ2

)j = 0 lim
t→+∞

ϕ(ξ, t) = lim
t→+∞

e
− ξ2

2 +∑+∞
j=3

tκj
j! (i

ξ√
tκ2

)j

= e−
1
2 ξ2

.

(19)

3. Multivariate Maximum-Likelihood Method
3.1. Maximum-Likelihood Method: Numerical Approach

From a probability density function f (x, V)with parameter V = (µ, β+, β−, α+, α−, λ+, λ−)
and sample data x =

(
xj
)

1≤j≤m, we define the likelihood function and its first and second
derivatives as follows:

Lm(x, V) =
m

∏
j=1

f (xj, V), lm(x, V) =
m

∑
j=1

log( f (xj, V))

dlm(x, V)

dVj
=

m

∑
i=1

d f (xi ,V)
dVj

f (xi, V)

d2lm(x, V)

dVkdVj
=

m

∑
i=1

 d2 f (xi ,V)
dVkdVj

f (xi, V)
−

d f (xi ,V)
dVk

f (xi, V)

d f (xi ,V)
dVj

f (xi, V)

.

(20)

To perform the maximum of the likelihood function ( Lm(x, V)), we need the gradient
of the likelihood function ( dlm(x,V)

dV ), also known as the score function, and the Hessian

matrix ( d2lm(x,V)
dVdV′ ), which is the variance–covariance matrix generated by the likelihood

function.
Given the parameters V = (µ, β+, β−, α+, α−, λ+, λ−) and the sample data set X, we

have the following quantities (21) from the previous development:

I′m(X, V) =

(
dlm(x, V)

dVj

)
1≤j≤p

, I′′m(X, V) =

(
d2lm(x, V)

dVkdVj

)
1≤k≤p
1≤j≤p

. (21)

We use a computational algorithm built as a composite of a standard FRFT to compute
the likelihood function and its derivatives (20) in the optimization process. More details on
applying the composite of FRFTs for parameter estimations are provided in (Nzokem 2021b,
2021c; Nzokem and Montshiwa 2022, 2023); for other computations (such as probability
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density and cumulative functions), see (Cherubini et al. 2010; Eberlein 2014; Eberlein et al.
2010; Nzokem 2023b; Nzokem and Maposa 2024).

The computational algorithm yields a local solution, V, and a negative semi-definite
matrix, I′′m(x, V), when the following two conditions are satisfied:

I′m(x, V) = 0, UTI′′m(X, V)U ≤ 0 , ∀U ∈ Rp. (22)

The solutions, V, in (22) are provided by the Newton–Raphson iteration algorithm
Formula (23):

Vn+1 = Vn −
(

I′′m(x, Vn)
)−1 I′m(x, Vn). (23)

More details on the maximum-likelihood and Newton–Raphson iteration procedures
are provided in (Giudici et al. 2013).

3.2. Asymptotic Distribution of the Maximum-Likelihood Estimator (MLE)

Theorem 5 (Cramer-Rao). Let T = T(X1, . . . , Xm) be a statistic and write E[T] = k(θ). Then,
under suitable (smoothness) assumptions,

Var[T] ≥
( dE[T]

dθ )2

mI(θ)
. (24)

For the proof of Theorem 5, refer to (Casella and Berger 2024; Van den Bos 2007).

Theorem 6 (Consistency Estimator). Let X1, . . . , Xm be independent and identically distributed
(i.i.d) random variables with density f (x|θ) satisfying some regularity conditions (Lehmann 1999).
Let θ be the true parameter; then, there exists a sequence θ̂m = θm(X1, . . . , Xm) of local maxima of
the likelihood function Lm(θ) which is consistent, that is, which satisfies

θ̂m
a.s.→ θ as m → +∞. (25)

More details on the proof of Theorem 6 are provided in (Casella and Berger 2024;
Lehmann 1999).

Theorem 7 (Asymptotic Efficiency and Normality). Let X1, . . . , Xm be independent and identi-
cally distributed (i.i.d) random variables with density f (x|θ) satisfying some regularity conditions
in (Lehmann 1999). There exists a solution θ̂m = θm(X1, . . . , Xm) of the likelihood equations which
is consistent, and any such solution satisfies:

θ̂m − θ
d→ N

(
0, I−1

m (θ)
)

as m → +∞, (26)

where θ = (θ1, . . . , θk) is the actual parameter and Im(θ) is the Fisher information matrix.

More details on the proof of Theorem 7 are provided in (Hall and Oakes 2023; Lehmann
1999; Olive 2014).

Theorem 8 (Likelihood Ratio Test). Suppose the assumptions of Theorem 7 hold and that
(θ̂1n, . . . , θ̂kn) are consistent roots of the likelihood equations for θ = (θ1, . . . , θk) . In addition,
suppose that the corresponding assumptions hold for the parameter vector (θr+1, . . . , θk) when
r < k and that ˆ̂θr+1,n, . . . , ˆ̂θkn are consistent roots of the likelihood equations for (θr+1, . . . , θk)
under the null hypothesis. We consider the likelihood ratio statistic

lm(x, θ̂)

lm(x, ˆ̂θ)
(27)
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where ˆ̂θ = (θ1, . . . , θr, ˆ̂θr+1,n, . . . , ˆ̂θkn). Then under the null hypothesis H0, if

∆n = lm(x, θ̂)− lm(x, ˆ̂θ), (28)

the statistic 2∆n has a limiting χ2
r distribution.

More details on the proof of Theorem 8 are provided in (Lehmann 1999; Vuong 1989).

3.3. Asymptotic Test and Confidence Interval

The above results allow us to construct an asymptotically efficient estimator θ̂m =
(θ̂1m, . . . , θ̂km) of θ = (θ1, . . . , θk) such that

(θ̂1m − θ1, . . . , θ̂km − θk) (29)

has a joint multivariate limit distribution with mean (0, . . . , 0) and covariance matrix
I−1
m (θ) = (Jij). In particular, we have:

θ̂jm − θj
d→ N(0, Jjj) as m → +∞. (30)

One approach to constructing an asymptotically valid confidence interval for the
parameters is via the asymptotic distribution of the ML estimator (27). An approximate
(1 − α

2 ) confidence interval for θ̂jm can be written as follows:

θ̂jm ± z(
α

2
) ∗
√

Jjj as m → +∞, (31)

where z( α
2 ) is the α

2 quantile of the standard normal distribution.

3.4. Applications of the Log-Likelihood Estimator to the Normal Distribution

We suppose the sample data x =
(
xj
)

1≤j≤m are independent observations and have

a normal distribution (Mensah et al. 2023) with parameter V(µ, σ2), that is, y ∼ N (µ, σ2);
then, the density is

f (y|V) = (2πσ2)−
1
2 exp

(
− (y − µ)2

2σ2

)
. (32)

The log-likelihood function in (20) becomes

lm(x|V) =
m

∑
j=1

log( f (xj|V)) = −m
2

log(2πσ2)− 1
2σ2

m

∑
j=1

(xj − µ)2. (33)

The first-order derivatives of the log-likelihood function with respect to µ and σ2

in (20) become

I′m(X, V) =

( dlm(x,V)
dµ

dlm(x,V)
dσ2

)
=

(
1

σ2 ∑m
j=1(xj − µ)

1
2σ4 ∑m

j=1(xj − µ)2 − m
2σ2 .

)
(34)

By setting I′m(X, V) = 0, we have

µ̂ =
1
m

m

∑
j=1

xj σ̂2 =
1
m

m

∑
j=1

(xj − µ̂)2. (35)

The second-order derivative of the log-likelihood function with respect to µ and σ2

in (20) becomes
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I′′m(X, V) =

 d2lm(x,V)
dµ2

dlm(x,V)
dµdσ2

dlm(x,V)
dσ2dµ

d2lm(x,V)
(dσ2)2


=

 − m
σ2 −∑m

j=1(xj−µ)

σ4

−∑m
j=1(xj−µ)

2σ4 − 1
σ6 ∑m

j=1(xj − µ)2 + m
2σ4 .

 (36)

Refer to (Casella and Berger 2024) for more details.
We have the Fisher information matrix and the inverse:

Im(V) = −E
(

I′′m(X, V)
)
=

(
m
σ2 0
0 m

2σ4 ,

)
I−1
m (V) =

(
σ2

m 0
0 2σ4

m

)
. (37)

Corollary 2. The limiting distribution of the MLE is given by:(
µ̂
σ̂2

)
d→ N

((
µ
σ2

)
,

(
σ2

m 0
0 2σ4

m

))
, as m → +∞. (38)

The proof of Corollary 2 comes from Theorem 7, Equation (26).

4. Fitting Tempered Stable Distribution to Cryptocurrencies: Bitcoin (BTC)
and Ethereum
4.1. Data Summaries

Bitcoin was the first cryptocurrency created in 2009 by Satoshi Nakamoto. The idea
behind Bitcoin was to create a peer-to-peer electronic payment system that allows online
payments to be sent directly from one party to another without going through a financial
institution (Nakamoto 2008). Since its inception, Bitcoin has grown in popularity and
adoption and is now viewed as a viable legal tender in some countries. Bitcoin is currently
used more as an investment tool, a risk-diversified tool, and less as a medium of exchange,
a store of value, or a unit of account (Nzokem and Maposa 2024).

Bitcoin (BTC) and Ethereum (ETH) prices were extracted from CoinMarketCap. The
period spans from 28 April 2013 to 4 July 2024 for Bitcoin and from 7 August 2015 to 4 July
2024 for Ethereum.

The daily price dynamics are provided in Figure 1. The prices have an increasing
trend, even after having major significant increases and decreases over the studied pe-
riod. Figure 1a,b show that Bitcoin outperforms Ethereum, which is the second-largest
cryptocurrency by market capitalization after Bitcoin.

Jan 01,14 Jan 01,16 Jan 01,18 Jan 01,20 Jan 01,22 Jan 01,24
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(a) Bitcoin (BTC) daily price
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Time Series Plot:

(b) Ethereum (ETH) daily price
Figure 1. Daily price.

Let m be the number of observations and Sj be the daily observed price on the day tj
with j = 1, . . . , m. The daily return (yj) is computed as follows:
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yj = log(Sj/Sj−1) j = 2, . . . , m. (39)

As shown in Figure 2a,b, the daily return reaches the lowest level (−46% for Bitcoin
and −55% for Ethereum) in the first quarter of 2020 amid the coronavirus pandemic and
massive disruptions in the global economy. Nine values were identified as outliers and
removed from the dataset to avoid a negative impact on the GTS model estimation and the
empirical statistics.
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(b) Daily Ethereum return

Figure 2. Daily return.

4.2. Multidimensional Estimation Results for Cryptocurrencies

The results of the GTS parameter estimation are summarized in Table 1 for Bitcoin
and Table 2 for Ethereum data. The brackets are the asymptotic standard errors computed
using the inverse of the Hessian matrix built in (20). The ML estimate of µ is negative
for both Bitcoin and Ethereum, while others are positive, as expected in the literature.
The asymptotic standard error for µ is quite large and suggests that µ is not statistically
significant at 5%.

Table 1. Maximum-likelihood GTS parameter estimation for Bitcoin.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

µ −0.121571 (0.375) −0.32 7.5 × 10−01 −0.856 0.613
β+ 0.315548 (0.136) 2.33 2.0 × 10−02 0.050 0.581
β− 0.406563 (0.117) 3.48 4.9 × 10−04 0.178 0.635
α+ 0.747714 (0.047) 15.76 6.2 × 10−56 0.655 0.841
α− 0.544565 (0.037) 14.56 4.8 × 10−48 0.471 0.618
λ+ 0.246530 (0.036) 6.91 4.9 × 10−12 0.177 0.316
λ− 0.174772 (0.026) 6.69 2.2 × 10−11 0.124 0.226

Log(ML) −10,606
AIC 21,227
BIK 21,271

GBM

µ 0.151997 (0.060) 2.51 1.2 × 10−02 0.033 0.271
σ 3.865132 (0.330) 11.69 7.2 × 10−32 3.217 4.513

Log(ML) −11,313
AIC 22,630
BIK 22,638

The log-likelihood, Akaike’s information Criteria (AIC), and Bayesian information
criteria (BIK) statistics show that the GTS distribution with seven parameters performs
better than the two-parameter normal distribution (GBM). A comprehensive and detailed
examination of the statistical significance of the results will be carried out in Section 6.

Table 1 summarizes the estimation results for Bitcoin returns. The skewness parame-
ters (λ+, λ−) are statistically significant at 5%. The difference is positive and statistically
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significant, which proves that the Bitcoin return is asymmetric and skewed to the left.
The process intensity parameters (α+, α−) are statistically significant at 5%. Similarly, the
difference is positive and statistically significant, showing that the Bitcoin is more likely
to produce positive returns than negative ones. The index of stability parameters (β+,
β−) are both statistically significant at 5%. However, the difference is positive but not
statistically significant.

The GTS distribution with β = β+ = β−, called the Kobol distribution, was fitted
to the Bitcoin data as well, and the estimation results are presented in Appendix B.1. As
shown in Table A6, all the parameters are statistically significant at 5%, and have the
expected positive sign. However, the likelihood ratio test in Table 6 shows that the GTS
distribution in Table 1 is not significantly different from the Kobol distribution as the
p-value (69.6%) is large. Refer to (Boyarchenko and Levendorskii 2002) for more details on
the Kobol distribution.

As shown in Table 2, the parameters for Ethereum returns data are statistically sig-
nificant at 5%, except µ and β−. The difference (λ+ − λ−) in skewness parameters is
negative and not statistically significant, showing that the Ethereum return is asymmetric
and skewed to the right. Similarly, the difference (α+ − α−) in the intensity parameters is
positive and not statistically significant, as shown the confidence interval. Contrary to the
Bitcoin return, the Ethereum return has a larger process intensity, which provides evidence
that Ethereum has a lower level of peakedness and a higher level of thickness.

Table 2. Maximum-likelihood GTS parameter estimation for Ethereum.

Model Param Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

µ −0.4854 (1.008) −0.48 6.3 × 10−01 −2.461 1.491
β+ 0.3904 (0.164) 2.38 1.7 × 10−02 0.069 0.712
β− 0.4045 (0.210) 1.93 5.4 × 10−02 −0.007 0.816
α+ 0.9582 (0.106) 9.01 1.1 × 10−19 0.750 1.167
α− 0.8005 (0.110) 7.25 4.2 × 10−13 0.584 1.017
λ+ 0.1667 (0.029) 5.72 1.1 × 10−08 0.110 0.224
λ− 0.1708 (0.036) 4.71 2.5 × 10−06 0.110 0.242

Log(ML) −9552
AIC 19,119
BIK 19,162

GBM

µ 0.267284 (0.091) 2.93 3.4 × 10−03 0.088 0.446
σ 5.205539 (0.672) 7.74 1.0 × 10−14 3.887 6.524

Log(ML) −9960
AIC 19,925
BIK 19,933

We consider the following constraints λ = λ+ = λ− and β = β+ = β−, which are
the Carr–Geman–Madan–Yor (CGMY) distribution, also called the Classical Tempered
Stable Distribution. The CGMY distribution was fitted as well, and the estimation results
are presented in Appendix B.2. As shown in Table A8, all the parameters are statistically
significant at 5%, and have the expected positive sign. However, the likelihood ratio test in
Table 6 shows, with a high p-value (35.3%), that the GTS distribution is not significantly
different from the CGMY distribution, and the null hypothesis cannot be rejected. Refer to
(Carr et al. 2003; Rachev et al. 2011) for more details on the CGMY distribution.

Tables 1 and 2 summarize the last row of Tables A1 and A2, respectively, in Appendix A.1,
which describes the convergence process of the GTS parameter for Bitcoin and Ethereum
data. The convergence process was obtained using the Newton–Raphson iteration al-
gorithm (23). Each row has eleven columns made of the iteration number, the seven
parameters µ, β+, β−, α+, α−, λ+, λ−, and three statistical indicators, the log-likelihood
(Log(ML)), the norm of the partial derivatives (|| dLog(ML)

dV ||), and the maximum value of
the eigenvalues (MaxEigenValue). The statistical indicators aim at checking if the two
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necessary and sufficient conditions described in (22) are all met. Log(ML) displays the
value of the Naperian logarithm of the likelihood function L(x, V), as described in (20);
|| dLog(ML)

dV || displays the value of the norm of the first derivatives ( dl(x,V)
dVj

) described in (21);
and MaxEigenValue displays the maximum value of the seven eigenvalues generated by

the Hessian matrix ( d2l(x,V)
dVkdVj

), as described in (21).
Similarly, Tables A7 and A9 describe the convergence process of the Kobol distribution

parameter for Bitcoin returns and the CGMY distribution parameter for Ethereum returns.
GTS parameter estimations in Tables 1 and 2 are used to evaluate the impact of each

parameter on the GTS probability density function. As shown in Figures 3 and 4, the effect
of the GTS parameters on the probability density function has the same patterns on Bitcoin
and Ethereum returns. However, the magnitudes are different. As shown in Figure 3a,b, β−
(α− ) has a higher effect on the probability density function (pdf) than β+ (α+). However,
λ− and λ+ in both graphs seem symmetric and have the same impact.

(a) Vj = β+, Vj = β− (b) Vj = α+, Vj = α− (c) Vj = λ+, Vj = λ−

Figure 3.
d f (x,V)

dVj

f (x,V)
: Effect of parameters on the GTS probability density (Bitcoin returns).

(a) Vj = β+, Vj = β− (b) Vj = α+, Vj = α− (c) Vj = λ+, Vj = λ−

Figure 4.
d f (x,V)

dVj

f (x,V)
: Effect of parameters on the GTS probability density (Ethereum returns).

4.3. Evaluation of the Method of Moments

The method of moments estimates the parameters of the GTS distribution by equating
empirical moments and the theoretical moments of the GTS distribution. We empirically
estimate the kth moments (mk = E(xk)), based on sample data x =

(
xj
)

1≤j≤m as follows:

m̂k =
1
M

m

∑
j=1

xk
j for k = 1, . . . , 7. (40)

On the other side, the cumulants (κk) in Theorem 4 can be related to the moment of the
GTS distribution by the following relationship (Poloskov 2021; Rota and Shen 2000; Smith
1995):
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mk = E(xk) =
k−1

∑
j=1

(
k − 1
j − 1

)
κjmk−j + κk for k = 1, . . . , 7. (41)

The method of moments estimator for V = (µ, β+, β−, α+, α−, λ+, λ−) is defined as
the solution to the following system of equations:

m̂k = mk for k = 1, . . . , 7. (42)

The system of Equation (42) is often not analytically solvable. For the conditions of
existence and uniqueness of the solution, refer to (Küchler and Tappe 2013).

The maximum-likelihood GTS parameter estimations in Tables 1 and 2 are used to
evaluate the system of equations in (42). As shown in Table 3, the solution of the maximum-
likelihood method satisfies to a certain extent the equations for the first four moments: m̂1,
m̂2, m̂3, m̂4 in the system (42). The seventh-moment equation has the highest relative error:
89.9% for Bitcoin (BTC) and 68.3% for Ethereum. Therefore, the maximum likelihood GTS
parameter estimation is not the same as the GTS parameter estimation from the method
of moments.

In addition to the method of moments estimations, the lower relative errors in Table 3
show that empirical and theoretical standard deviation (σ), skewness, and kurtosis seem
to be consistent for Bitcoin and Ethereum. The empirical and theoretical statistics show
that the average Ethereum daily return is greater and more volatile than the Bitcoin daily
returns. Both assets are thicker than the normal distribution. However, the daily return of
Bitcoin is skewed to the left, whereas the daily return of Ethereum is skewed to the right.

Table 3. Evaluation of the method of moments.

Bitcoin BTC Ethereum

Empirical(1) Theoretical(2) (1)−(2)
2

Empirical(1) Theoretical(2) (1)−(2)
2

Sample size 4083 3246
m̂1 0.152 0.152 0.0% 0.267 0.267 0.0%
m̂2 14.960 15.020 0.4% 27.161 27.388 0.8%
m̂3 −11.320 −15.640 27.6% 55.363 57.867 4.3%
m̂4 2033 2256 9.8% 5267 6307 16.5%
m̂5 −5823 −15,480 62.3% 22,368 32518 31.2%
m̂6 670,695 1,123,215 40.2% 2,114,788 4,361,562 51.5%
m̂7 −1,997,196 −19,777,988 89.9% 12,411,809 39,253,001 68.3%
Standard deviation 1 3.865 3.873 0.2% 5.206 5.226 0.4%
Skewness 2 −0.314 −0.387 18.8% 0.238 0.252 5.2%
Kurtosis 3 9.154 10.082 9.2% 7.112 8.385 15.2%
Max value 28.052 29.013
Min value −26.620 −29.174
1 σ =

√
κ2; 2 Skewness is estimated as κ3

κ3/2
2

; 3 Kurtosis is estimated as 3 + κ4
κ2

2
; κ1, κ2 and κ2 are defined in (13).

5. Fitting Tempered Stable Distribution to Traditional Indices: S&P 500 and SPY EFT
5.1. Data Summaries

The Standard & Poor’s 500 Composite Stock Price Index, also known as the S&P 500,
is a stock index that tracks the share prices of 500 of the largest public companies with
stocks listed on the New York Stock Exchange (NYSE) and the Nasdaq in the United States.
It was introduced in 1957 and is often treated as a proxy for describing the overall health of
the stock market or the United States (US) economy. The SPDR S&P 500 ETF (SPY), also
known as the SPY ETF, is an Exchange-Traded Fund (ETF) that tracks the performance of
the S&P 500. SPY ETF provides a mutual fund’s diversification, the stock’s flexibility, and
lower trading fees. The data were extracted from Yahoo Finance. The historical prices span
from 04 January 2010 to 22 July 2024 and were adjusted for splits and dividends.

The daily price dynamics are provided in Figure 5. Prices have an increasing trend,
even after being temporally disrupted in the first quarter of 2020 by the coronavirus
pandemic. The S&P 500 is priced in thousands of US dollars, whereas the SPY ETF is in
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hundreds of US dollars. The SPY ETF is cheaper and provides all the attributes of the S&P
500 index, as shown in Figure 5a,b.
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(a) S&P 500 Daily Price
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(b) SPY EFT Daily Price

Figure 5. Daily price.

Let the number of observations be m and the daily observed price be Sj on day tj with
j = 1, . . . , m; t1 is the first observation date (04 January 2010) and tm is the last observation
date (22 July 2024). The daily return, yj, is computed as in (43):

yj = log(Sj/Sj−1) j = 2, . . . , m. (43)

The SPY ETF aims to mirror the performance of the S&P 500. Figure 6a,b look similar,
which is consistent with the goal of the SPY ETF. As shown in Figure 6a,b, the daily return
reaches the lowest level (−12.7% for the S&P 500 and −11.5% for the SPY ETF) in the first
quarter of 2020 amid the coronavirus pandemic and massive disruptions in the global
economy. Nine values were identified as outliers and removed from the dataset to avoid a
negative impact on GTS model estimation and the empirical statistics.
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(b) Daily SPY ETF return

Figure 6. Daily return.

5.2. Multidimensional Estimation Results for Traditional Indices

The estimation results are provided in Table 4 for S&P 500 return data and Table 5
for SPY EFT return data. As previously, the log-likelihood, AIC, and BIK statistics suggest
that the GTS distribution with seven parameters performs better than the two-parameter
normal distribution (GBM).

As shown in both Tables 4 and 5, the ML estimate of µ is negative, while the others are
positive, as expected in the literature. The asymptotic standard error for µ, β+ and β− are
pretty large and result in µ, β+ and β− not being significantly different from zero.
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Table 4. Maximum-likelihood GTS parameter estimation for S&P 500 index.

Model Param Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

µ −0.249408 (0.208) −1.20 2.3 × 10−01 −0.658 0.159
β+ 0.328624 (0.308) 1.07 2.9 × 10−01 −0.275 0.932
β− 0.088640 (0.176) 0.50 6.1 × 10−01 −0.256 0.433
α+ 0.792426 (0.350) 2.26 2.4 × 10−02 0.106 1.479
α− 0.542250 (0.107) 5.09 3.6 × 10−07 0.333 0.751
λ+ 1.279743 (0.348) 3.68 2.4 × 10−04 0.597 1.962
λ− 0.937133 (0.144) 6.50 8.0 × 10−11 0.655 1.220

Log(ML) −4920
AIC 9851
BIK 9898

GBM

µ 0.044875 (0.018) 2.51 1.2 × 10−02 0.010 0.080
σ 1.081676 (0.027) 39.53 0.000 1.028 1.135

Log(ML) −5330
AIC 10,665
BIK 10,677

However, other parameters have larger t-statistics (|z| > 2) and are statistically signifi-
cant at 5%. Except for the index of stability parameters (β+, β−), the estimation results for
the S&P 500 and SPY ETF indexes show that the difference in skewness parameters (λ+,
λ−) and intensity parameters (α+, α−) are positive but are not statistically significant.

The hypothesis with β+ = β− = 0 was considered by fitting the S&P 500 and SPY
ETF indexes to the bilateral Gamma distribution. The estimation results are summarized in
Appendices C.1 and C.2. As shown in Tables A10 and A12, the skewness parameters (λ+,
λ−) are positive and statistically significant, and the difference (λ+ − λ−) is also positive
and statistically significant, which proves that the S&P 500 and SPY ETF returns are skewed
to the left. We have the same statistical features for the intensity parameters (α+, α−),
and both indexes are more likely to produce positive returns than negative returns. Refer
to (Küchler and Tappe 2008; Nzokem 2021a) for more details on the bilateral Gamma
distribution.

Table 5. Maximum-likelihood GTS parameter estimation for SPY EFT data.

Model Param Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

µ −0.260643 (0.135) −1.94 5.3 × 10−02 −0.524 0.003
β+ 0.340880 (0.189) 1.80 7.1 × 10−02 −0.030 0.711
β− 0.022212 (0.212) 0.10 9.2 × 10−01 −0.393 0.437
α+ 0.787757 (0.225) 3.50 4.6 × 10−04 0.347 1.229
α− 0.597110 (0.141) 4.22 2.4 × 10−05 0.320 0.874
λ+ 1.288555 (0.226) 5.70 1.2 × 10−08 0.846 1.731
λ− 1.014353 (0.177) 5.74 9.4 × 10−09 0.668 1.361

Log(ML) −4893
AIC 9800
BIK 9843

GBM

µ 0.054344 (0.017) 3.13 1.8 × 10−03 0.020 0.088
σ 1.050217 (0.026) 40.71 0.000 1.000 1.101

Log(ML) −54,275
AIC 10,554
BIK 10,566

The likelihood ratio test in Table 6 shows that, even with non-statistically significant
parameters, the GTS distribution fits significantly better than the bilateral Gamma distri-
bution for both the S&P 500 and SPY ETF indexes. Contrary to the AIC statistics, the BIK
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statistics do not provide the same information. A comprehensive and detailed examination
of the statistical significance of the results is carried out in Section 6.

Tables 4 and 5 summarize the last row of Tables A3 and A4, respectively, in Appendix A.1,
which describes the convergence process of the GTS parameter for S&P 500 index, and
SPY ETF return data. The convergence process was obtained using the Newton–Raphson
iteration algorithm (23). Each row has eleven columns made of the iteration number;
the seven parameters µ, β+, β−, α+, α−, λ+, λ−; and three statistical indicators, the log-
likelihood (Log(ML)), the norm of the partial derivatives (|| dLog(ML)

dV ||), and the maximum
value of the eigenvalues (MaxEigenValue). The statistical indicators aim at checking if the
two necessary and sufficient conditions described in (22) are all met. Log(ML) displays
the value of the Naperian logarithm of the likelihood function L(x, V), as described in
(20); || dLog(ML)

dV || displays the value of the norm of the first derivatives ( dl(x,V)
dVj

) described in
Equation (21); and MaxEigenValue displays the maximum value of the seven eigenvalues

generated by the Hessian matrix ( d2l(x,V)
dVkdVj

), as described in (21).
Similarly, Tables A11 and A13 describe the convergence process of the bilateral Gamma

distribution parameter for S&P 500 index and SPY ETF return data.
The GTS parameter estimations in Tables 4 and 5 were used to evaluate the impact of

the parameters on the GTS probability density function. As shown in Figures 7 and 8, the
effect of the GTS parameters on the probability density function generated by the S&P 500
and SPY ETF have the same patterns. However, the magnitudes are different. As shown
in Figure 7a,b on the S&P 500 return data, β+ (α+ ) has a higher effect on the probability
density function than β− (α−). However, λ− and λ+ in Figure 7c are symmetric and have
the same impact.

(a) Vj = β+, Vj = β− (b) Vj = α+, Vj = α− (c) Vj = λ+, Vj = λ−

Figure 7.
d f (x,V)

dVj

f (x,V)
: Effect of parameters on the GTS probability density (S&P 500 index).

(a) Vj = β+, Vj = β− (b) Vj = α+, Vj = α− (c) Vj = λ+, Vj = λ−

Figure 8.
d f (x,V)

dVj

f (x,V)
: Effect of parameters on the GTS probability density (SPY EFT).
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Table 6. Likelihood ratio test statistic and p-value.

GTS GTS Variants χ2-Value df p-Value

Log(ML) −10,606.73 −10,606.81 0.1525 1 0.6962
Bitcoin AIC 21,227.47 21,225.62

BIK 21,271.67 21,263.51

Log(ML) −9552.86 −9553.90 2.0810 2 0.3533
Ethereum AIC 19,119.72 19,117.81

BIK 19,162.32 19,148.23

Log(ML) −4920.52 −4924.62 8.1828 2 0.0167
S&P 500 AIC 9851.06 9859.24

BIK 9898.49 9890.26

Log(ML) −4893.21 −4898.67 10.9234 2 0.0042
SPY ETF AIC 9800.42 9807.34

BIK 9843.84 9838.36

5.3. Evaluation of the Methods of Moments

The maximum-likelihood GTS parameter estimations in Tables 4 and 5 are used to
evaluate the system of equations in (42). As shown in Table 7, the solution of the maximum-
likelihood method satisfies to a certain extent the equations (42) for the following first four
moments: m̂1, m̂2, m̂4, m̂5. As for Bitcoin and Ethereum, the seventh-moment equation has
the highest relative error: 53.3% for S&P 500 index and −85.9% for SPY ETF. Therefore, the
maximum-likelihood GTS parameter estimation is not the GTS parameter estimation from
the method of moments.

In addition to the moment estimations in Table 7, the empirical and theoretical standard
deviation (σ), skewness, and kurtosis are consistent with lower relative errors for both S&P
500 and SPY ETF. The empirical and theoretical statistics show that both assets are skewed
to the left and also thicker than the normal distribution.

Table 7. Evaluation of the methods of moments.

S&P 500 Index SPY ETF

Empirical(1) Theoretical(2) (1)−(2)
2

Empirical(1) Theoretical(2) (1)−(2)
2

Sample size 3656 3655
m̂1 0.045 0.045 −0.5% 0.054 0.054 0.0%
m̂2 1.069 1.083 −1.3% 1.053 1.044 0.8%
m̂3 −0.447 −0.341 31.2% −0.214 −0.351 −39.0%
m̂4 8.371 9.764 −14.3% 8.197 7.691 6.6%
m̂5 −16.386 −11.128 47.3% −3.969 −12.717 −68.8%
m̂6 193.563 247.811 −21.9% 157.645 162.048 −2.7%
m̂7 −840.097 −547.882 53.3% −85.003 −602.447 −85.9%
Standard deviation 1 1.082 1.033 4.7% 1.050 1.021 2.9%
Skewness 2 −0.432 −0.535 −19.2% −0.358 −0.490 −26.9%
Kurtosis 3 8.413 7.435 13.1% 7.495 7.177 4.4%
Max value 6.797 6.501
Min value −7.901 −6.734
1 σ =

√
κ2; 2 Skewness is estimated as κ3

κ3/2
2

; 3 Kurtosis is estimated as 3 + κ4
κ2

2
; κ1, κ2 and κ2 are defined in (13).

6. Goodness-of-Fit Analysis
6.1. Kolmogorov–Smirnov (KS) Analysis

Given the sample of daily return {y1, y2 . . . ym} of size m and the empirical cumu-
lative distribution function, Fm(x), for each index, the Kolmogorov–Smirnov (KS) test is
performed under the null hypothesis, H0, that the sample {y1, y2 . . . ym} comes from the
GTS distribution, F(x). The cumulative distribution function of the theoretical distribution,
F(x), needs to be computed. The density function, f (x), does not have a closed form, the
same for the cumulative function, F(x), in (45). However, we know the closed form of
the Fourier of the density function, F [ f ], and the relationship in (46) provides the Fourier
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of the cumulative distribution function, F [F]. The GTS distribution function, F(x), was
computed from the inverse of the Fourier of the cumulative distribution, F [F], in (47):

Y ∼ GTS(µ, β+, β−, α+, α−, λ+, f λ−) (44)

F(x) =
∫ x

−∞
f (t)dt f is the density function of Y (45)

F [F](x) =
F [ f ](x)

ix
+ πF [ f ](0)δ(x) (46)

F(x) =
1

2π

∫ +∞

−∞

F [ f ](y)
iy

eixy dy +
1
2

(47)

See Appendix A in (Nzokem 2021a) for (46) proof.
The two-sided KS goodness-of-fit statistic (Dm) is defined as follows:

Dm = sup
x

|F(x)− Fm(x)|, (48)

where m is the sample size, Fm(x)denotes the empirical cumulative distribution of {y1, y2 . . . ym}.
The distribution of Kolmogorov’s goodness-of-fit measure Dm has been studied exten-

sively in the literature. It was shown (Massey 1951) that the Dm distribution is independent
of the theoretical distribution, F(x), under the null hypothesis, H0. The discrete, mixed,
and discontinuous distributions case has also been studied (Dimitrova et al. 2020). Under
the null hypothesis, H0, that the sample {y1, y2 . . . ym} of size m comes from the hypothe-
sized continuous distribution, it was shown (An 1933) that the asymptotic statistic

√
nDn

converges to the Kolmogorov distribution.
The limiting form for the distribution function of Kolmogorov’s goodness-of-fit mea-

sure Dm is

lim
m→+∞

Pr(
√

mDm ≤ x) = 1 − 2
+∞

∑
k=1

(−1)k−1e−2k2x2
=

√
2π

x

+∞

∑
k=1

e−
(2k−1)2π2

8x2 . (49)

The first representation was given in (An 1933), and the second came from a standard
relation for theta functions (Marsaglia et al. 2003).

As shown in Figure 9, the asymptotic statistic,
√

nDn, is a positively skewed distribu-
tion with a mean and a standard deviation (Marsaglia et al. 2003) as follows.

µ =

√
π

2
log(2) ∼ 0.8687, σ =

√
π2

12
− µ2 ∼ 0.2603. (50)
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Figure 9. Asymptotic statistic (
√

mDm) probability density function (PDF).
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At a 5% risk level, the risk threshold is d = 1.3581 and represents the area in the
shaded area under the probability density function.

The p-value of the test statistic, Dm, is computed based on (49) as follows:

p_value = Pr(Dm > D̂m|H0) = 1 − Pr(
√

mDm ≤
√

mD̂m). (51)

A p-value is defined as the probability that values are even more extreme or more in
the tail than our test statistic. A small p-value leads to a rejection of the null hypothesis, H0,
because the test statistic, Dm, is already extreme. We reject the hypothesis if the p-value is
less than our level of significance, which we take to be equal to 0.05.

D̂m is a realization value of the KS estimator Dm computed from the sample {y1, y2 . . . ym}.
D̂m is estimated (Krysicki et al. 1999) as follows:

D̂m = Max( sup
0≤j≤P

|F(xj)− Fm(xj)|, sup
1≤j≤P

|F(xj)− Fm(xj−1)|). (52)

The following computations were performed for Bitcoin (BTC) data, and the quantity
D̂m was obtained:

sup
0≤j≤P

|F(xj)− Fm(xj)| = 0.01300

sup
1≤j≤P

|F(xj)− Fm(xj−1)| = 0.00538

D̂m = 0.01300

p_value = prob(
√

mDm > 0.6903|H0) = 49.48%.

(53)

For each index, KS statistics (D̂m) and associated p-values were computed and sum-
marized in Table 8, along with the index sample size, m.

Table 8. Kolmogorov–Smirnov statistics and p-values.

GTS GBN GTS Variants Sample Size

Index D̂m
√

mD̂m p-Value D̂m
√

mD̂m p-Value D̂m
√

mD̂m p-Value m

Bicoin BTC 0.013 0.830 0.494 0.106 6.803 0.000 0.014 1 0.863 0.445 4083
Ethereum 0.012 0.721 0.674 0.092 5.249 0.000 0.013 2 0.749 0.627 3246
S&P 500 0.012 0.750 0.627 0.091 5.550 0.000 0.014 3 0.897 0.395 3656
SPY ETF 0.014 0.869 0.436 0.089 5.438 0.000 0.016 3 1.010 0.258 3655

1 Kobol distribution (β = β− = β+); 2 Carr–Geman–Madan–Yor (CGMY) distributions (β = β− = β+;
α = α− = α+); 3 bilateral Gamma distribution (β− = β+ = 0).

The asymptotic statistics,
√

nDn, produced from the two-parameter geometric Brow-
nian motion (GBM) hypothesis, have high values and show that the GBM hypothesis is
always rejected. On the other hand, the high p-values generated by the asymptotic statistics
suggest insufficient evidence to reject the assumption that the data were randomly sampled
from a GTS. The same observations work for the GTS variants: the Kobol, CGMY, and
bilateral Gamma distributions. In addition, as shown the p-value indicator in Table 8, the
GTS distribution outperforms the bilateral Gamma distribution for the S&P 500 and SPY
ETF indexes. However, the Kobol and CGMY distributions, respectively, for Bitcoin and
Ethereum have almost the same performance as the GTS distribution.

6.2. Anderson–Darling Test Analysis

The Anderson–Darling test (Anderson 2008) is a goodness-of-fit test that allows the
control of the hypothesis that the distribution of a random variable observed in a sample
follows a certain theoretical distribution. The Anderson–Darling statistic belongs to the
class of quadratic EDF statistics (Stephens 1974) based on the empirical distribution function.
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The quadratic EDF statistics measure the distance between the hypothesized distribution
(F(x)) and empirical distribution. It is defined as

m
∫ +∞

−∞
(Fm(x)− F(x))2w(x) dFx, (54)

where m is the number of elements in the sample, w(x) is a weighting function, and Fm(x)
is the empirical distribution function defined on the sample of size m.

When the weighting function is w(x) = 1, the statistic (54) is the Cramér—Von
Mises statistic, while the Anderson–Darling statistic is obtained by choosing the weighting
function w(x) = F(x)(1 − F(x)). Compared with the Cramér–Von Mises statistic, the
Anderson–Darling statistic places more weight on the tails of the distribution.

The Anderson–Darling statistic is

A2
m = m

∫ +∞

−∞

(Fm(x)− F(x))
F(x)(1 − F(x))

dF(x). (55)

It can be shown that the asymptotic distribution of the Anderson–Darling statistic, A2
m,

is independent of the theoretical distribution under the null hypothesis. The asymptotic
distribution (Lewis 1961; Marsaglia and Marsaglia 2004) is defined as follows:

G(x) = lim
m→∞

Pr
[

A2
m < x

]
=

+∞

∑
j=0

aj(xbj)
− 1

2 exp(−
bj

x
)
∫ +∞

0
f j(y)exp(−y2)dy

f j(y) = exp

(
1
8

xbj

y2x + bj

)
, aj =

(−1)j(2)
1
2 (4j + 1)Γ(j + 1

2 )

j!

bj =
1
2
(4j + 1)2π2.

(56)

As shown in Figure 10, the asymptotic distribution of the Anderson–Darling statistic (A2
m)

is a positively skewed distribution with a mean and a standard deviation (Anderson 2011) as
follows

µ = 1, σ =

√
2
3
(π2 − 9) ∼ 0.761. (57)
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Figure 10. Asymptotic Anderson–Darling statistic (A2
m) probability density function (PDF).
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At a 5% risk level, the risk threshold is d = 2.4941 and represents the area in the
shaded area under the probability density function.

The p-value of the test statistic, A2
m, is defined as follows:

p − value = prob(A2
m > Â2

m|H0) = 1 − G(Â2
m). (58)

In order to compute the Anderson–Darling statistic, A2
m, in (55), the sample of daily

return {y1, y2 . . . ym} of size m is arranged in ascending order: y(1) < y(2) < · · · < y(m).
The Anderson–Darling statistic (Lewis 1961) then becomes

A2
m = −m − 1

m

m

∑
j=1

[
(2j − 1)log(F(y(j))) + (2(n − j) + 1)log(F(y(j)))

]
. (59)

For each index, the Anderson–Darling statistic (59) is computed, along with the p-
value statistic. Table 9 shows the KS statistics (A2

m) and p-values for the GTS, GBM, and
GTS variant distributions. While the two-parameter GBM hypothesis is always rejected,
the GTS hypothesis is accepted and yields a very high p-value.

Table 9. Anderson–Darling statistics and p-values.

GTS GBN GTS Variants Sample Size

Index Â2
m p-Value Â2

m p-Value Â2
m p-Value m

Bicoin BTC 0.1098 0.9999 99.706 0.0000 0.1105 1 0.9999 4083
Ethereum 0.1018 0.9999 59.157 0.0001 0.2123 2 0.9866 3246
S&P 500 0.3007 0.9376 54.304 0.0001 0.5010 3 0.7458 3656
SPY ETF 0.3017 0.9368 51.516 0.0001 0.6684 3 0.5857 3655

1 Kobol distribution (β = β− = β+); 2 Carr–Geman–Madan–Yor (CGMY) distributions (β = β− = β+;
α = α− = α+); 3 bilateral Gamma distribution (β− = β+ = 0).

In addition, as shown by the p-value indicator in Table 9, the GTS distribution outper-
forms the bilateral Gamma distribution for the S&P 500 and SPY ETF indexes. However,
the Kobol and CGMY distributions for Bitcoin and Ethereum, respectively, have almost the
same performance as the GTS distribution.

6.3. Pearson’s Chi-Squared Test Analysis

Pearson’s chi-squared test (Schoutens 2003) counts the number of sample points
falling into certain intervals and compares them with the expected number under the null
hypothesis. Under the null hypothesis, H0, a random sample {y1, y2 . . . ym} comes from
the GTS distribution, which has seven parameters estimated in Section 5. Suppose that
m observations in the sample from a population are classified into K mutually exclusive
classes with respective observed numbers of observations Nj (for j = 1, 2, . . . , K), and a null
hypothesis gives the probability Πj = F(xj)− F(xj−1) (47) that an observation falls into
the jth class.

The following Pearson statistic calculates the value of the chi-squared goodness-of-
fit test:

χ2(K − 1 − p) =
K

∑
j=1

(
Nj − mΠj

)2

mΠj
. (60)

Under the null hypothesis assumption, as m goes to +∞, the limiting distribution
(Schoutens 2003) of the Pearson statistic (60) follows the χ2(K − 1 − p) distribution with
K − 1 − p degrees of freedom, and p is the number of estimated parameters.

Table 10 shows the Pearson chi-squared statistics (χ̂2(K − 1 − p)), p-values, and class
number for the GTS, GBM, and GTS variant distributions. While the two-parameter GBM
hypothesis is always rejected, the GTS hypothesis is accepted and yields a high p-value.
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Table 10. Pearson statistics and p-values.

GTS GBN GTS Variants Class Number

Index χ̂2(K − 8) p-Value χ̂2(K − 3) p-Value χ̂2(K − p − 1) p p-Value K

Bicoin BTC 12.234 0.508 1375 0.000 12.549 1 6 0.562 21
Ethereum 6.910 0.863 805 0.000 8.618 2 5 0.854 20
S&P 500 9.886 0.703 574 0.000 12.844 3 5 0.614 21
SPY ETF 13.955 0.377 605 0.000 18.228 3 5 0.251 21

1 Kobol distribution (β = β− = β+); 2 Carr–Geman–Madan–Yor (CGMY) distributions (β = β− = β+;
α = α− = α+); 3 bilateral Gamma distribution (β− = β+ = 0).

In addition, as shown by the p-value indicator in Table 10, the GTS distribution
outperforms the bilateral Gamma distribution for the S&P 500 and SPY ETF indexes.
However, the Kobol and CGMY distributions for Bitcoin and Ethereum, respectively, have
almost the same performance as the GTS distribution. For more details on the estimation of
the Pearson statistic inputs under the GTS distribution, refer to Table A5 in Appendix A.2.

7. Conclusions

This study provides a methodology for fitting the rich class of the seven-parameter GTS
distribution to financial data. Four historical prices were considered in the methodology
application: two heavy-tailed data (Bitcoin and Ethereum returns) and two peaked data
(S&P 500 and SPY ETF returns). The study used each historical data to fit the seven-
parameter GTS distribution to the underlying data return distribution. The advanced
fast FRFT scheme, based on the classic fast FRFT algorithm and the 11-point composite
Newton–Cotes rule, was used to perform the maximum-likelihood estimation of seven
parameters of the GTS distribution. The maximum likelihood estimate results show that,
for each index, the location parameter, µ, is negative, while the others are positive, as
expected in the literature. The statistical significance of the parameters was analyzed. The
non-statistical significance of the index of stability parameters (β+, β−) has led to the fitting
of the Kobol, CGMY, and bilateral Gamma distributions. The goodness of fit was assessed
through Kolmogorov–Smirnov, Anderson–Darling, and Pearson’s chi-squared statistics.
While the two-parameter GBM hypothesis is always rejected, the goodness-of-fit analysis
shows that the GTS distribution fits significantly the four historical data with a very high
p-value.

As a main limitation of the study, the applied methodology is computation-intensive,
and the researchers need good skills in computer programming. In future work, the
estimated parameter of the GTS distribution will be used in the Ornstein–Uhlenbeck-type
process to simulate the daily cumulative returns of financial assets.
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Appendix A

Appendix A.1. Iterative Maximum-Likelihood Estimation (MLE) Procedure

Table A1. Convergence of the GTS parameter for Bitcoin return data.

Iterations µ β+ β− α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.7369246 0.4613783 0.2671787 0.8100173 0.5173470 0.2156289 0.1919378 −10609.058 282.6765666 3.6240151
2 −0.7977019 0.4654390 0.2169392 0.7846817 0.4905332 0.2164395 0.2049523 −10607.253 26.7522215 −1.6194299
3 −0.4455841 0.3884721 0.3213867 0.7758150 0.5193395 0.2340187 0.1883953 −10607.001 50.1355291 3.0916011
4 −0.7634445 0.4521878 0.2217702 0.7935129 0.4959371 0.2218253 0.2055181 −10607.210 4.8235882 −2.6390063
5 −0.4906746 0.4146531 0.3404176 0.7722729 0.5222110 0.2269202 0.1846457 −10607.059 67.6646338 9.0971871
6 −0.5515834 0.4434827 0.3335905 0.7724484 0.5190619 0.2197566 0.1853686 −10607.022 17.4476962 −0.4021102
7 −0.4914586 0.4327714 0.3503012 0.7686883 0.5235361 0.2216450 0.1826269 −10606.991 16.2838831 −0.1781480
8 −0.2900908 0.3885350 0.3956186 0.7563357 0.5370260 0.2300772 0.1754994 −10606.864 12.0116477 −2.4090216
9 −0.2752698 0.3832660 0.3969704 0.7555456 0.5377367 0.2312224 0.1753571 −10606.847 11.4457840 −2.5487401

10 −0.2609339 0.3780400 0.3982456 0.7547812 0.5384209 0.2323632 0.1752258 −10606.832 10.8628213 −2.6874876
11 −0.2085409 0.3576927 0.4025762 0.7519966 0.5408864 0.2368544 0.1748113 −10606.782 8.3600783 −3.4356438
12 −0.1970109 0.3528575 0.4034002 0.7513923 0.5414138 0.2379362 0.1747455 −10606.772 7.6818408 −3.6954428
13 −0.1761733 0.3436416 0.4046818 0.7503191 0.5423414 0.2400174 0.1746675 −10606.756 6.2516380 −4.2766527
14 −0.1668421 0.3392794 0.4051522 0.7498492 0.5427438 0.2410120 0.1746529 −10606.750 5.5002876 −4.5807361
15 −0.1581860 0.3350854 0.4055256 0.7494209 0.5431090 0.2419740 0.1746517 −10606.745 4.7262048 −4.8824015
16 −0.1501600 0.3310612 0.4058166 0.7490311 0.5434404 0.2429024 0.1746615 −10606.741 3.9306487 −5.1742197
17 −0.1209376 0.3159301 0.4066945 0.7476393 0.5446224 0.2464122 0.1747326 −10606.734 2.8592342 −6.2251311
18 −0.1216487 0.3155707 0.4064438 0.7477179 0.5445608 0.2465247 0.1747753 −10606.734 0.0014787 −6.2014232
19 −0.1215714 0.3155483 0.4064635 0.7477142 0.5445652 0.2465296 0.1747719 −10606.734 1.82 × 10−06 −6.2026532
20 −0.1215714 0.3155483 0.4064635 0.7477142 0.5445652 0.2465296 0.1747719 −10606.734 9.80 × 10−10 −6.2026530

Table A2. Convergence of the GTS parameter for Ethereum return data.

Iterations µ β+ β− α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.1215714 0.3155483 0.4064635 0.7477142 0.5445652 0.2465296 0.1747719 −9745.171 2673.428257 206.013602
2 −0.1724835 0.3319505 0.4091022 0.7364129 0.5479934 0.2227870 0.1684568 −9700.715 2388.609394 180.884105
3 −0.2041418 0.3384742 0.4118929 0.7338794 0.5531083 0.2083203 0.1632896 −9669.986 2139.267660 157.699659
4 −0.4006157 0.3530035 0.4393474 0.7513784 0.6172425 0.1135743 0.1221930 −9586.115 1471.570475 32.410140
5 −0.6485551 0.4493817 0.4404508 0.9247887 0.7210031 0.1412949 0.1482307 −9556.026 380.605737 56.584055
6 −0.6290525 0.4371402 0.4359516 0.9780784 0.7824777 0.1582340 0.1608694 −9553.005 24.905322 −0.719221
7 −0.5545412 0.3994778 0.3918188 0.9627486 0.7936571 0.1652438 0.1724287 −9552.866 5.834338 −0.847574
8 −0.4744837 0.3913982 0.4093404 0.9582366 0.8022858 0.1665103 0.1699928 −9552.862 2.963350 −0.933466
9 −0.4825586 0.3902160 0.4051365 0.9580755 0.8007651 0.1667400 0.1706850 −9552.862 0.214871 −0.931142

10 −0.4853678 0.3904369 0.4044899 0.9582486 0.8004799 0.1667119 0.1707853 −9552.862 0.004754 −0.931872
11 −0.4853800 0.3904362 0.4044846 0.9582487 0.8004779 0.1667121 0.1707862 −9552.862 2.96 × 10−07 −0.931836
12 −0.4853800 0.3904362 0.4044846 0.9582487 0.8004779 0.1667121 0.1707862 −9552.862 1.18 × 10−10 −0.931836
13 −0.4853800 0.3904362 0.4044846 0.9582487 0.8004779 0.1667121 0.1707862 −9552.862 1.27 × 10−11 −0.931836

Table A3. Convergence of the GTS parameter for S&P 500 return data.

Iterations µ β+ β− α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.2606426 0.34087979 0.02221141 0.78775729 0.59711061 1.28855513 1.01435308 −4921.0858 147.214541 −0.476265
2 −0.2747887 0.37848567 0.02517846 0.72538248 0.594628 1.22107935 1.01081205 −4920.9765 107.910271 −12.169518
3 −0.2852743 0.34562742 0.01628972 0.78353361 0.58024658 1.27423544 0.9888729 −4920.6236 23.70873 11.9588258
4 −0.2971254 0.37985815 0.05392593 0.74068472 0.55972179 1.22737986 0.96278568 −4920.5493 4.21443356 0.29705471
5 −0.3415082 0.42600675 0.0432239 0.69783497 0.56106365 1.18286494 0.966753 −4920.5722 37.0642417 −1.7903876
6 −0.2995817 0.40315129 0.12236507 0.7168274 0.522172 1.20383351 0.9117451 −4920.574 3.07232514 −0.7101089
7 −0.2944623 0.3977257 0.12218751 0.72174351 0.52260032 1.20899714 0.9121201 −4920.5701 2.63567879 −1.0187469
8 −0.2767429 0.37561063 0.11561097 0.7427615 0.52696799 1.23067384 0.91742165 −4920.5511 1.83311761 −2.1103436
9 −0.274204 0.37177939 0.11355883 0.74659763 0.52814335 1.2345524 0.91893546 −4920.5477 1.75839181 −2.177405

10 −0.2559812 0.34147926 0.09643312 0.77815581 0.53784221 1.26594249 0.93144448 −4920.5308 1.33811298 −2.6954121
11 −0.2496977 0.32954013 0.08928069 0.79125494 0.54186044 1.27868642 0.93662846 −4920.5291 0.79520373 −2.8166517
12 −0.2494237 0.32866495 0.08869445 0.79238161 0.54221561 1.27970094 0.93708759 −4920.5291 0.00166731 −2.6765739
13 −0.2494072 0.32862462 0.08864569 0.79242579 0.54224632 1.27974278 0.93712865 −4920.5291 0.00013552 −2.6768326
14 −0.2494082 0.32862428 0.08864047 0.79242619 0.54224944 1.27974312 0.93713293 −4920.5291 1.47 × 10−05 −2.6766945
15 −0.2494083 0.32862424 0.08863992 0.79242624 0.54224977 1.27974315 0.93713338 −4920.5291 1.57 × 10−06 −2.67668
16 −0.2494083 0.32862424 0.08863985 0.79242624 0.54224981 1.27974316 0.93713344 −4920.5291 1.89 × 10−09 −2.6766783
17 −0.2494083 0.32862424 0.08863985 0.79242624 0.54224981 1.27974316 0.93713344 −4920.5291 2.09 × 10−10 −2.6766783
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Table A4. Convergence of the GTS parameter for SPY EFT return data.

Iterations µ β+ β− α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.0518661 0.1161846 0.2186548 1.04269292 0.52712574 1.52244991 0.91168779 −4894.2279 14.7801725 −6.5141947
2 −0.1102477 0.18491276 0.17478472 0.94756655 0.52844271 1.4399315 0.91415148 −4893.8278 29.8166141 −1.9290981
3 −0.2094204 0.29377592 0.0891446 0.84029122 0.56054563 1.34797271 0.96500981 −4893.3554 16.9940095 4.33892902
4 −0.1985564 0.29758208 0.13230013 0.83156167 0.53656079 1.33833078 0.93230856 −4893.4206 10.9048744 1.04588745
5 −0.078883 0.25939922 0.39611543 0.84865673 0.40365522 1.35595932 0.7410936 −4895.8806 241.028178 94.6293224
6 −0.0753571 0.26704857 0.33754158 0.84120908 0.45446164 1.3452823 0.80751063 −4894.3899 25.1995505 −2.805571
7 −0.196642 0.31624372 0.20068543 0.80509106 0.50322368 1.30837612 0.88967028 −4893.888 140.257551 34.770691
8 −0.1898283 0.3045047 0.15900291 0.81380451 0.52672075 1.31341912 0.91775259 −4893.4694 6.29433991 −4.6080872
9 −0.2275214 0.32940996 0.10770535 0.79340215 0.55020025 1.29360449 0.95260474 −4893.3049 7.34361008 −8.1891832

10 −0.2726283 0.34972465 0.01601222 0.78061523 0.59736004 1.28153304 1.01757433 −4893.2192 14.0784211 −3.6408772
11 −0.2499816 0.32645286 0.01851524 0.80217301 0.60018154 1.30243672 1.01792703 −4893.2125 6.27794755 −4.6455546
12 −0.2575953 0.33832596 0.02643321 0.79008383 0.59450637 1.29085215 1.01101001 −4893.208 1.23298227 −6.8035318
13 −0.2607071 0.34052644 0.02075252 0.78817075 0.59805376 1.28895161 1.01555438 −4893.2076 0.07363298 −6.71708
14 −0.2606368 0.34088815 0.02227012 0.78774693 0.59707082 1.28854532 1.01430383 −4893.2076 0.00156771 −6.6908109
15 −0.2606432 0.34087911 0.02220633 0.78775813 0.59711397 1.28855593 1.01435731 −4893.2076 0.00010164 −6.6915902
16 −0.2606426 0.34087985 0.02221188 0.78775721 0.5971103 1.28855506 1.01435268 −4893.2076 8.45 × 10−06 −6.6915177
17 −0.2606426 0.34087979 0.02221141 0.78775729 0.59711061 1.28855513 1.01435308 −4893.2076 7.21 × 10−07 −6.6915239

Appendix A.2. Pearson Statistic Inputs

Table A5. Observed versus expected statistics under GTS distribution.

Bitcoin Ethereum sp500 SPY EFT

k x(k) n*Πk n(k) x(k) n*Πk n(k) x(k) n*Πk n(k) x(k) n*Πk n(k)

1 −18.988 7.512 8 −20.861 7.531 6 −4.341 10.264 12 −4.405 8.327 11

2 −17.080 4.144 7 −18.321 5.583 6 −3.935 5.456 5 −4.007 4.562 3

3 −15.172 6.603 7 −15.781 10.018 15 −3.529 8.442 7 −3.608 7.116 7

4 −13.264 10.678 9 −13.241 18.331 20 −3.123 13.138 15 −3.210 11.144 12

5 −11.356 17.586 13 −10.700 34.424 29 −2.717 20.588 20 −2.811 17.538 18

6 −9.448 29.661 32 −8.160 66.980 68 −2.311 32.543 30 −2.413 27.775 27

7 −7.540 51.657 47 −5.620 137.268 134 −1.905 52.023 48 −2.015 44.350 41

8 −5.632 94.188 107 −3.080 305.591 305 −1.499 84.479 89 −1.616 71.617 73

9 −3.724 184.486 168 −0.540 769.951 769 −1.093 140.406 147 −1.218 117.552 122

10 −1.816 411.503 419 2.000 965.210 966 −0.687 242.564 244 −0.819 198.101 186

11 0.092 1195.725 1186 4.540 458.955 466 −0.281 455.971 456 −0.421 351.660 348

12 2.000 1150.470 1159 7.080 219.873 222 0.126 896.809 896 −0.023 725.476 730

13 3.908 473.177 469 9.620 111.760 101 0.532 749.106 733 0.376 867.735 867

14 5.816 217.783 227 12.160 59.253 60 0.938 430.841 426 0.774 541.022 522

15 7.724 107.387 102 14.700 32.379 32 1.344 234.692 260 1.173 300.464 325

16 9.632 55.272 51 17.241 18.099 21 1.750 126.820 137 1.571 163.491 189

17 11.540 29.294 39 19.781 10.296 12 2.156 68.688 57 1.969 88.862 82

18 13.448 15.861 14 22.321 5.939 5 2.562 37.387 33 2.368 48.491 36

19 15.356 8.729 9 24.861 3.465 5 2.968 20.460 15 2.766 26.600 23

20 17.264 4.866 4 5.091 4 3.374 11.256 12 3.165 14.669 13

21 6.419 6 14.067 14 18.450 20

Appendix B

Appendix B.1. Bitcoin BTC: Kobol Distribution (β = β− = β+)

V(dx) =

(
α+

e−λ+x

x1+β
1x>0 + α−

e−λ− |x|

|x|1+β
1x<0

)
dx (A1)

Ψ(ξ) = µξi + Γ(−β)
[
α+((λ+ − iξ)β − λ+

β) + α−((λ− + iξ)β − λ−
β)
]

(A2)
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Table A6. Kobol maximum-likelihood estimation for Bitcoin return data.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

µ −0.292833 (0.126) −2.32 2.1 × 10−02 −0.541 −0.045
β 0.367074 (0.086) 4.27 1.9 × 10−05 0.199 0.535

α+ 0.755914 (0.047) 16.02 4.7 × 10−58 0.663 0.848
α− 0.535121 (0.034) 15.68 9.6 × 10−56 0.468 0.602
λ+ 0.235266 (0.027) 8.87 3.6 × 10−19 0.183 0.287
λ− 0.181602 (0.023) 7.94 9.8 × 10−16 0.137 0.226

Log(ML) −10,607
AIC 21,226
BIK 21,264

Table A7. Convergence of the Kobol parameter for Bitcoin return data.

Iterations µ β α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.1215714 0.3155483 0.7477142 0.5445652 0.2465296 0.17477186 −10614.93879 450.0556974 25.6678081
2 −0.255172 0.36516958 0.73215119 0.53194253 0.22955186 0.17909072 −10607.01058 51.74982347 −46.893383
3 −0.2912276 0.37096854 0.75410108 0.53529439 0.23387716 0.18070591 −10606.81236 1.484798964 −53.728563
4 −0.2922408 0.36574333 0.7559582 0.53508403 0.23560819 0.18189913 −10606.81041 0.258928464 −53.391237
5 −0.2928641 0.36714311 0.75591147 0.53512239 0.23524801 0.18158588 −10606.81025 0.01286122 −53.406734
6 −0.292837 0.36708319 0.75591382 0.53512107 0.23526357 0.18159941 −10606.81025 0.00174219 −53.40643
7 −0.2928328 0.36707373 0.75591419 0.53512086 0.23526603 0.18160154 −10606.81025 1.18 × 10−05 −53.406384
8 −0.2928328 0.36707379 0.75591419 0.53512086 0.23526602 0.18160153 −10606.81025 1.60 × 10−06 −53.406384
9 −0.2928328 0.36707379 0.75591419 0.53512086 0.23526601 0.18160153 −10606.81025 2.18 × 10−07 −53.406384

10 −0.2928328 0.36707379 0.75591419 0.53512086 0.23526601 0.18160153 −10606.81025 1.09 × 10−08 −53.406384

Appendix B.2. Ethereum: Carr–Geman–Madan–Yor (CGMY) Distributions

V(dx) =

(
α

e−λ+x

x1+β
1x>0 + α

e−λ− |x|

|x|1+β
1x<0

)
dx (A3)

Ψ(ξ) = µξi + αΓ(−β)
[
((λ+ − iξ)β − λ+

β) + ((λ− + iξ)β − λ−
β)
]

(A4)

Table A8. CGMY maximum-likelihood estimation for Ethereum return data.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

µ −0.147089 (0.079) −1.86 6.3 × 10−02 −0.302 −0.008
β 0.398418 (0.127) 3.12 1.8 × 10−03 0.148 0.649
α 0.887161 (0.058) 15.22 1.2 × 10−52 0.773 1.001

λ+ 0.155369 (0.023) 6.56 5.2 × 10−11 0.109 0.202
λ− 0.185991 (0.025) 7.29 2.9 × 10−13 0.136 0.236

Log(ML) −9554
AIC 19,118
BIK 19,149
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Table A9. Convergence of the CGMY parameter for Ethereum return data.

Iterations µ β α λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.48538 0.39043616 0.95824875 0.16671208 0.17078617 −9596.2658 1653.57149 −140.21456
2 −0.0545131 0.40148247 0.88205674 0.15875317 0.18060554 −9554.6834 80.0921993 −19.637869
3 −0.1479632 0.39049434 0.88271998 0.15631408 0.18704084 −9553.9065 3.84112398 −44.76325
4 −0.1465893 0.40345482 0.88868927 0.15450383 0.18507239 −9553.9036 0.4436942 −55.029934
5 −0.1472464 0.39683622 0.88667597 0.15564017 0.18628001 −9553.9026 0.14094418 −51.274906
6 −0.1470247 0.39907668 0.88736036 0.15525581 0.18587143 −9553.9025 0.05563606 −52.523819
7 −0.1471148 0.39816841 0.88708569 0.15541227 0.18603772 −9553.9025 0.02143506 −52.017698
8 −0.1470898 0.39842098 0.88716234 0.15536883 0.18599155 −9553.9025 0.00019543 −52.158334
9 −0.14709 0.39841855 0.88716161 0.15536924 0.18599199 −9553.9025 1.16 × 10−05 −52.156981
10 −0.14709 0.39841867 0.88716164 0.15536922 0.18599197 −9553.9025 1.78 × 10−06 −52.157046
11 −0.14709 0.39841869 0.88716165 0.15536922 0.18599197 −9553.9025 2.71 × 10−07 −52.157055
12 −0.14709 0.39841869 0.88716165 0.15536922 0.18599197 −9553.9025 4.14 × 10−08 −52.157057

Appendix C

Appendix C.1. S&P 500 Index: Bilateral Gamma (BG) Distribution (β− = β+ = 0)

V(dx) =

(
α+

e−λ+x

x
1x>0 + α−

e−λ− |x|

|x| 1x<0

)
dx (A5)

Ψ(ξ) = µξi − α+ log
(

1 − 1
λ+

iξ
)
− α− log

(
1 +

1
λ−

iξ
)

(A6)

Table A10. BG maximum-likelihood estimation for S&P 500 return data.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

µ −0.031467 (0.010) −3.07 2.1 × 10−03 −0.052 −0.011
α+ 1.092741 (0.058) 18.98 2.6 × 10−80 0.980 1.206
α− 0.701784 (0.042) 16.80 2.3 × 10−63 0.620 0.784
λ+ 1.539690 (0.064) 22.82 3.1 × 10−115 1.407 1.672
λ− 1.110737 (0.050) 22.07 6.6 × 10−108 1.012 1.209

Log(ML) −4925
AIC 9859
BIK 9890

Table A11. Convergence of the BG parameter for S&P 500 return data.

Iterations µ α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 0 0.79242624 0.54224981 1.27974316 0.93713344 −4951.1439 1138.53458 −265.251
2 −0.0038447 0.93153413 0.64461254 1.41132138 1.05504868 −4931.7583 549.025405 −171.22804
3 −0.0103214 1.03062846 0.70198868 1.49426667 1.10555794 −4926.8412 286.215345 −126.18156
4 −0.0186317 1.07922912 0.71421996 1.53377391 1.11392285 −4925.393 135.694287 −113.12071
5 −0.0279475 1.09450205 0.70493092 1.54418172 1.10795103 −4924.7065 38.0551545 −116.58686
6 −0.0313951 1.09325663 0.70162581 1.54038766 1.10996346 −4924.621 1.54417452 −120.06271
7 −0.0314671 1.09274119 0.70178365 1.53969027 1.11073682 −4924.6205 0.02788236 −120.35435
8 −0.0314664 1.09276971 0.70182788 1.53971127 1.11079928 −4924.6205 0.00198685 −120.34482
9 −0.0314663 1.09277213 0.70183158 1.5397131 1.11080431 −4924.6205 0.00016039 −120.34394
10 −0.0314662 1.09277232 0.70183188 1.53971325 1.11080472 −4924.6205 1.29 × 10−05 −120.34387
11 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080475 −4924.6205 1.04 × 10−06 −120.34387
12 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080476 −4924.6205 8.43 × 10−08 −120.34387
13 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080476 −4924.6205 6.80 × 10−09 −120.34387
14 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080476 −4924.6205 5.63 × 10−10 −120.34387
15 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080476 −4924.6205 5.73 × 10−11 −120.34387

Appendix C.2. SPY ETF: Bilateral Gamma (BG) Distribution (β− = β+ = 0)

V(dx) =

(
α+

e−λ+x

x
1x>0 + α−

e−λ− |x|

|x| 1x<0

)
dx (A7)
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Ψ(ξ) = µξi − α+ log
(

1 − 1
λ+

iξ
)
− α− log

(
1 +

1
λ−

iξ
)

(A8)

Table A12. BG maximum-likelihood estimation for SPY EFT return data.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

µ 0.015048 (0.012) 1.28 2.0 × 10−01 −0.008 0.038
α+ 1.068239 (0.067) 16.02 8.6 × 10−58 0.938 1.199
α− 0.764449 (0.044) 17.33 3.0 × 10−67 0.678 0.851
λ+ 1.525718 (0.073) 20.98 1.1 × 10−97 1.383 1.668
λ− 1.156439 (0.052) 22.15 1.1 × 10−108 1.054 1.259

Log(ML) −4899
AIC 9807
BIK 9838

Table A13. Convergence of the BG parameter for SPY EFT return data

Iterations µ α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 0 0.78775729 0.59711061 1.28855513 1.01435308 −4918.7331 406.35365 −252.28104
2 0.02867773 0.97562263 0.67572827 1.46822249 0.97596762 −4908.5992 226.190986 −116.11753
3 0.02727407 1.05127517 0.78618306 1.51846501 1.17883595 −4899.0798 45.2281041 −96.788275
4 0.00834089 1.07692251 0.75226045 1.5348003 1.14577232 −4898.9955 131.637516 −107.77617
5 0.01126962 1.07242358 0.7568497 1.53011913 1.1494212 −4898.751 48.0005418 −103.03258
6 0.01386478 1.06933921 0.76167668 1.52688303 1.15363987 −4898.6763 11.3246873 −100.1483
7 0.01492745 1.06823047 0.76397541 1.52573245 1.15588409 −4898.6693 0.98802026 −99.171136
8 0.01504464 1.06821119 0.76439389 1.52569528 1.15636567 −4898.6693 0.02529683 −99.040575
9 0.01504742 1.06823539 0.76444163 1.5257152 1.15642976 −4898.6693 0.00300624 −99.030178
10 0.01504762 1.06823881 0.76444764 1.52571803 1.15643796 −4898.6693 0.00038489 −99.028926
11 0.01504764 1.06823925 0.76444841 1.52571839 1.15643901 −4898.6693 4.92 × 10−05 −99.028765
12 0.01504765 1.06823931 0.76444851 1.52571844 1.15643915 −4898.6693 6.30 × 10−06 −99.028745
13 0.01504765 1.06823932 0.76444852 1.52571845 1.15643917 −4898.6693 1.32 × 10−08 −99.028742
14 0.01504765 1.06823932 0.76444852 1.52571845 1.15643917 −4898.6693 1.69 × 10−09 −99.028742
15 0.01504765 1.06823932 0.76444852 1.52571845 1.15643917 −4898.6693 2.23 × 10−10 −99.028742
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