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Abstract: This study aims to investigate bidirectional risk spillovers between the Chinese and other
Asian stock markets. To achieve this, we construct a dynamic Copula-EVT-CoVaR model based on
11 Asian stock indexes from 1 January 2007 to 31 December 2021. The findings show that, firstly,
synchronicity exists between the Chinese stock market and other Asian stock markets, creating
conditions for risk contagion. Secondly, the Chinese stock market exhibits a strong risk spillover to
other Asian stock markets with time-varying and heterogeneous characteristics. Additionally, the
risk spillover displays an asymmetry, indicating that the intensity of risk spillover from other Asian
stock markets to the Chinese is weaker than that from the Chinese to other Asian stock markets.
Finally, the Chinese stock market generated significant extreme risk spillovers to other Asian stock
markets during the 2007–2009 global financial crisis, the European debt crisis, the 2015–2016 Chinese
stock market crash, and the China–US trade war. However, during the COVID-19 pandemic, the
risk spillover intensity of the Chinese stock market was weaker, and it acted as the recipient of
risk from other Asian stock markets. The originality of this study is reflected in proposing a novel
dynamic copula-EVT-CoVaR model and incorporating multiple crises into an analytical framework to
examine bidirectional risk spillover effects. These findings can help Asian countries (regions) adopt
effective supervision to deal with cross-border risk spillovers and assist Asian stock market investors
in optimizing portfolio strategies.

Keywords: Asian stock markets; risk spillover; dynamic copula; CoVaR; COVID-19 pandemic

1. Introduction

Along with the deepening of economic globalization and financial markets’ integra-
tion, the risk contagion effect among international financial markets has been gradually
enhanced, which shows a more complicated dependence structure and risk spillover (Fang
et al. 2021; Ren et al. 2022; Tan et al. 2022). This may lead to localized risk events that
rapidly affect the stability of global financial markets, thereby triggering systemic crises
(Ellis et al. 2022). For example, the US subprime mortgage crisis not only caused a sharp
decline in the American economy with a stock plunge but also aroused extreme fluctuations
in global stock markets. In early 2020, the COVID-19 pandemic increased global economic
uncertainty and downward pressure in the post-crisis period; combined with risk spillover
effects, global stock markets plummeted one after another, and market liquidity nearly
dried up.

Meanwhile, with the rapid development of the Asian economy, Asian stock markets
have occupied an increasingly important position in the world’s financial markets. As
the world’s second-largest economy, China has increasingly close financial ties with other
Asian countries (regions) and plays an increasingly important role in Asian stock markets
(Caporale et al. 2022). On the one hand, the greater openness of China’s capital market has
promoted the integration of Asian financial markets, and, on the other hand, it has also
created conditions for risk contagion and spillover between the stock markets. Specifically,
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as an emerging market, the Chinese stock market exhibits significant herding behavior,
which is apt to cause turbulence in other stock markets (Wang et al. 2022b). For instance,
the Chinese stock market crashed in June 2015, and the extreme price movements caused
by it aroused the linkage of Asian stock markets, which in turn caused severe losses in
Asian stock markets.

Figure 1 illustrates the temporal evolution of Chinese and other Asian stock market
indices. Overall, Asian stock markets exhibit strong co-movement. During the 2007–
2009 global financial crisis, Asian stock markets experienced dramatic fluctuations that
initially rose and then fell. Moreover, Asian stock markets experienced sharp declines
during the COVID-19 outbreak, highlighting the characteristic of synchronicity. The strong
co-movement of stock markets lays the groundwork for risk transmission (Chopra and
Mehta 2022). As an emerging financial market with excessive speculation, the Chinese
stock market significantly impacts the smooth functioning of the other stock markets,
posing challenges to financial risk management (Zuo et al. 2023). Particularly in the
context of the COVID-19 pandemic, investigating the dependence and risk spillover effects
between Chinese and other Asian stock markets is critical to preventing risk contagion and
maintaining financial market stability.
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The COVID-19 epidemic differs from ordinary diseases because its suddenness un-
precedentedly impacted the global financial market (Belaid et al. 2023; Karamti and Bel-
hassine 2022; Wang et al. 2022a). Due to a lack of understanding of epidemic-related
information, investors have become more pessimistic and inclined to adopt conservative
investment strategies. This risk aversion spreads across multiple stock markets, affecting
market expectations in other countries and causing most investors to exhibit the herding
effect. Ultimately, this phenomenon leads to a significant increase in dependence and risk
spillover effects between stock markets in various countries. Furthermore, Asian stock
markets exhibit high volatility and are particularly susceptible to major international events
(Mishra and Mishra 2021). Therefore, focusing on the impact of emergencies on Asian
stock markets is of practical significance for comprehensively understanding extreme risk
spillovers and conducting effective risk measurement.
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This paper provides several noteworthy contributions to understanding interdepen-
dencies and risk spillovers among Asian stock markets. Firstly, we examine the dynamic
dependence between Chinese and 10 other Asian stock markets and find that synchronicity
and risk contagion exist between them. Secondly, we quantify bidirectional risk spillovers
between Chinese and other Asian stock markets, providing a rigorous analytical framework
to understand how financial risks are transmitted between these stock markets. Thirdly, this
study investigates the impact of emergencies on risk spillovers, including the 2007–2009
global financial crisis, the European debt crisis, the 2015–2016 Chinese stock market crash,
the China–US trade war, and the COVID-19 pandemic. Finally, in terms of econometric
methods, we combine the dynamic copula-CoVaR model with EVT to more effectively
capture the time-varying, non-linear, and fat-tail characteristics of risk spillovers.

The rest of this paper is organized as follows: Section 2 provides the literature review;
Section 3 presents the methods and materials; Section 4 shows the empirical results, along
with the robustness diagnosis; Section 5 provides the discussion; and Section 6 concludes
the paper.

2. Literature Review

Effectively measuring the risk spillovers of financial markets has become an important
subject in modern financial analysis. The conditional value-at-risk (CoVaR) approach
proposed by Adrian and Brunnermeier (2011) has been widely used in the study of risk
spillovers because it can accurately measure the risk faced by one financial market when
other financial markets are in distress (Usman et al. 2023; Yao and Li 2023). Currently,
there are three main methods for calculating CoVaR. Firstly, the CoVaR is calculated based
on the quantile regression approach. Xu et al. (2021) applied the quantile regression
method to CoVaR and took the Chinese banking industry as the research object, finding
that banks with high leverage and small size exhibit stronger risk spillover effects. Secondly,
CoVaR is calculated in combination with the multivariate GARCH models. Abuzayed et al.
(2021) measured the systemic risk spillovers in global stock markets during the COVID-19
pandemic through the DCC-GARCH-CoVaR model and showed that developed stock
markets in North America and Europe have a higher intensity of extreme risk transmission
and reception to global stock markets than Asian stock markets. In addition, Zhu (2022)
used the DCC-BEKK-GARCH-CoVaR model to calculate the risk spillovers from shadow
banks to Chinese commercial banks. Thirdly, the copula model is used to measure CoVaR.
Karadag and Golbasi Simsek (2023) utilized the Copula-CoVaR method to investigate
risk spillovers between BRICS stock markets. The findings indicated that the Chinese
stock market was the least affected by other BRICS countries after the COVID-19 outbreak.
Additionally, Mo et al. (2023) and Hanif et al. (2023) argue that combining the copula model
with CoVaR can more accurately quantify financial risk spillovers.

It is worth noting that non-linear dependence is prevalent between financial markets,
which makes risk spillovers often show complex non-linear relationships. Compared with
the other two methods, the copula model can more flexibly describe the non-linear depen-
dence between financial markets and focuses on the characterization of the tail dependence
structure (Liu et al. 2023a). The further introduction of time-varying parameters captures
dynamic changes in dependence relationships, thereby improving the accuracy of risk
spillover measures (Wang and Xu 2022; Wu et al. 2021). Yao et al. (2024) examined the risk
spillovers among the Chinese mainland, Hong Kong, and London stock markets using a
dynamic copula-CoVaR model and found that implementing the Shanghai–Hong Kong
and Shanghai–London Stock Connections enhanced the spillovers between these markets.
Additionally, extreme value theory (EVT) modeling for extreme data helps to deal with the
problem of fat tails in risk measures (Alishavandi et al. 2023; Okou and Amar 2023). Zhao
et al. (2023) showed that introducing the EVT model into Copula-CoVaR can effectively
measure extreme risk spillovers between financial markets.

Research on the risk spillover effects of China’s stock market has increased in recent
years (Yadav et al. 2023; Zhong and Liu 2021; Zhou et al. 2023). Wang and Xiao (2023)
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found that China has significant risk spillover effects on East Asian stock markets, but
this risk spillover effect is weaker during periods of high volatility. Jiang et al. (2021)
found that multiple developed countries such as the United States, Britain, and Japan
have significant risk spillover effects on the Chinese stock market, and regulatory agencies
must monitor multiple markets simultaneously. Sun et al. (2023) identified a risk linkage
between China and APEC stock markets, and China’s capital market liberalization reform
has strengthened this connection. Furthermore, Zhang et al. (2022) explored the spillover
paths of the European, American, and East Asian stock markets using a vine-copula model,
confirming that risks from European and American stock markets are transmitted to China
through Japan and Hong Kong. Similarly, Du et al. (2023) found that Hong Kong’s risk
spillover effects on the Chinese stock market are on the rise, but there are no direct spillovers
between the Chinese and US stock markets.

As an external shock, the COVID-19 pandemic has dramatically impacted the eco-
nomic landscape. Yilanci and Pata (2023) found that COVID-19 had a limited impact on
the exchange rates and sovereign bonds of India and Brazil, while significantly impacting
their stock prices. Subsequently, Cheng et al. (2021) and Aloui et al. (2022) respectively
examined China’s risk spillovers to the G7 and BRICS stock markets and found that China’s
dependence and risk spillovers to both G7 and BRICS stock markets significantly increased
during the COVID-19 pandemic. Moreover, Liu et al. (2022) used the GARCH-BEKK
model to build an interaction network and found that the COVID-19 outbreak increased
the volatility spillovers of the Chinese stock market, and it weakened rapidly in the middle
and late stages of the pandemic. In contrast, through the TVP-VAR-connectedness method,
Tan et al. (2022) argued that China’s spillover effects on developed countries significantly
increased in the post-COVID-19 era.

To sum up, the academic community has achieved fruitful results in describing the risk
spillover effects of the Chinese stock market. However, most of the literature focuses on
China’s unidirectional risk spillovers to other stock markets, with fewer sample countries
(regions) being selected when the research pertains to Asian stock markets. Moreover, the
existing research primarily concentrates on the impact of a single crisis on risk spillovers,
rarely incorporating several crises into an analytical framework. Additionally, most of the
literature uses the basic copula model for analysis and seldom optimizes the model.

3. Methods and Materials
3.1. Methods

Since financial time series generally have the autocorrelation, conditional heteroscedas-
ticity, and leverage effect, this paper establishes an AR(1)-GJR-GARCH(1,1) model for each
stock return series to fit its marginal distribution. The model is defined as:

rt = φ0 + φ1rt−1 + εt (1)

εt =
√

htzt, zt ∼ skew–t(υ, λ) (2)

ht = ω + αε2
t−1 + γdt−1ε2

t−1 + βht−1 (3)

where rt is the stock return at time t, and φ0 and φ1 are the autoregressive parameters.
The term ht is the conditional variance, εt is the random error, and zt is the standardized
residuals following a skew-t distribution1. The ω is a constant, ε2

t−1 and ht−1 are the ARCH
and GARCH components, with α and β being the parameters, respectively. α, β > 0
ensures the positivity of the conditional variance, and α + β < 1 means that the GARCH
model is stationary. dt−1 = 1 if εt−1 < 0, and 0 otherwise. The parameter γ captures the
leverage effects.

The marginal distribution combined with EVT can more effectively describe the
extreme market risk. Moreover, the peaks over threshold (POT) model focuses on the
distribution Fµ(y) in which z (the random variable corresponding to zt) exceeds the thresh-
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old, fully considering extreme data, and is widely used. Fµ(y) is the conditional excess
distribution function expressed as:

Fµ(y) = P(z − µ ≤ y|z > µ) =
F(µ + y)− F(µ)

1 − F(µ)
, 0 ≤ y ≤ zF − µ (4)

where µ denotes the threshold, and y = z − µ and zF are the excess values and the right
endpoint of the distribution, respectively. According to Balkema and De Haan (1974)
and Pickands (1975), as the threshold µ is gradually increased, Fµ(y) will converge to
the generalized Pareto distribution (GPD). Therefore, this paper adopts GPD to fit the
lower and upper tail distribution of the standardized residual zt and uses an empirical
cumulative distribution function to fit the middle part. Finally, the distribution function of
the standardized residual series is defined as:

F(z)


NµL

N

(
1 + ξL

µL−zt
βL

)−1
ξL i f zt < µL

Φ(zt) i f µL ≤ zt ≤ µU

1 − NµU
N

(
1 + ξU

µU−zt
βU

) −1
ξU i f zt > µU

(5)

where ξ, β, µL and µU indicate the shape, scale, and lower and upper thresholds, respec-
tively. N is the total number of samples, and Nµ is the number of samples that exceed
the thresholds. zt = εt/

√
ht is the standardized residuals filtered by the AR(1)-GJR-

GARCH(1,1) model, and Φ(zt) is the empirical distribution function.
The copula function can link the marginal distribution of two variables to obtain its

two-dimensional joint distribution function, so it can describe the non-linear dependence
and tail dependence between different variables. According to Sklar (1959), there exists a
copula function C : [0, 1]2 → [0, 1] such that:

F(x1, x2) = C(F1(x1), F2(x2)) (6)

Therefore, the joint density function can be derived from Equation (6):

f (x1, x2) = c(F1(x1), F2(x2)) f1(x1) f2(x2) (7)

where c(u, v) and fn(xn) are the density functions for the copula and the marginal distri-
bution function Fn(xn), respectively. In order to obtain the dynamic CoVaR, according to
Engle (2002) and Patton (2006), this paper adopts four different dynamic copula models to
fit the dynamic dependence structure between the Chinese and other Asian stock markets,
and, then, based on the Akaike information criterion (AIC), the optimal model is selected
as the DCC-T copula given by:

Qt =
(
1 − α − β

)
Q + αzt−1z′t−1 + βQt−1 (8)

zt−1 =
(

t−1
υ (ut−1), t−1

υ (vt−1)
)

(9)

Rt =
∼
Q

−1

t Qt
∼
Q

−1

t (10)
∼
Qt = diag(Qt)

− 1
2 Qtdiag(Qt)

− 1
2 (11)

where α, β ≥ 0 denotes the estimated parameters, and α + β < 1 is required to ensure the
stationarity and positive definiteness of Qt. Q is the sample (unconditional) covariance
matrix of the standardized residuals zt, and Rt is the dynamic conditional correlation
matrix. ut and vt are series obeying U(0, 1) obtained by performing probability integral
transformation on the standardized residuals. t−1

υ denotes the inverse T-distribution with
υ degree of freedom. In addition, the specifications and estimation methods for DCC-



J. Risk Financial Manag. 2024, 17, 110 6 of 18

Gaussian copula, TVP-Clayton copula, and TVP-SJC copula can be found in the work of
Vogiatzoglou (2010).

According to Abuzayed et al. (2021), VaR is calculated as follows:

VaRi
q,t = Φ−1(q)σi

t (12)

where σi
t is the standard deviation series estimated by the marginal model, and Φ−1(q) is

the quantile function that obeys the normal distribution at a 1 − q confidence level. Since
VaR only represents the expected value when there is no spillover, this paper adopts the
CoVaR to calculate the risk spillovers between the stock markets according to Adrian and
Brunnermeier (2011) and Girardi and Ergün (2013) given by:

Pr
(

rj
t ≤ CoVaRj|i,q

t

∣∣∣ri
t ≤ VaRi,q

t

)
= q (13)

Equation (13) indicates that, at the 1 − q confidence level when stock market i is
at extreme risk VaRi,q

t , the conditional risk that stock market j may suffer is CoVaRj|i,q
t .

Meanwhile, according to Adrian and Brunnermeier (2016), ∆CoVaRj|i,q
t is the risk spillover

value of the stock market i to stock market j, defined by:

∆CoVaRj|i,q
t = CoVaRj|i,q

t − CoVaRj|i,50%
t (14)

Further, ∆CoVaR is dimensionless processed to obtain %CoVaR, which can more
effectively reflect the risk spillover intensity between stock markets, as follows:

%CoVaRj|i,q
t =

(
∆CoVaRj|i,q

t /VaRj,q
t

)
× 100% (15)

According to Girardi and Ergün (2013), the CoVaRj|i,q
t has a closed-form distribution

defined as:
CoVaRj|i,q

t = Φ−1(q)σj
t

√
1 − R2

t + Φ−1(q)Rtσ
j
t (16)

where Rt is the dynamic conditional correlation matrix based on the DCC-T copula model,
σ

j
t is the standard deviation series, and q is a confidence level equal to 5%.

Given that Φ−1(50%) = 0, then ∆CoVaRj|i,q
t at each time point can be simplified as:

∆CoVaRj|i,q
t = Φ−1(q)Rtσ

j
t (17)

Finally, %CoVaRj|i,q
t can be calculated according to Equation (15).

3.2. Materials

In order to study the risk spillovers between the Chinese and Asian stock markets,
this paper selects the stock market indexes of 11 Asian countries (regions) as the research
objects, based on data availability. The selected stock market indexes are as follows:
Shanghai and Shenzhen 300 Index (China), Hang Seng Index (Hong Kong), Nikkei 225
Index (Japan), TSEC weighted index (Taiwan), KOSPI Composite Index (South Korea), S&P
BSE SENSEX (India), Straits Time Index (Singapore), FTSE Bursa Malaysia KLCI (Malaysia),
Jakarta Composite Index (Indonesia), Stock Exchange of Thailand Index (Thailand), and
Philippines Stock Exchange Index (Philippines). The data are sourced from Investing.com
and Yahoo Finance, covering 1 January 2007 to 31 December 2021. Moreover, the stock
return series are calculated by rt = (lnPt − lnPt−1)·100 where Pt is the daily close price at
time t.

Table 1 provides the descriptive statistics of the stock return series. The standard
deviation of Chinese stock returns is higher than other Asian stock markets, indicating that
the Chinese stock market is more volatile. Furthermore, the skewness, kurtosis, and Jarque–
Bera values confirm that all series exhibit sharp peaks, fat tails, and non-normality. This
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characteristic suggests that these markets are particularly vulnerable to extreme risk events.
The Jarque–Bera statistic significantly rejects the null hypothesis of normal distribution at
the 1% level, meaning that all series are non-normal distributions. The Q test significantly
rejects the null hypothesis of white noise, indicating that all series are autocorrelated.
Finally, the Q2 and ARCH tests support that all series have ARCH effects at the 1% level,
namely conditional heteroskedasticity effects. Additionally, Table 2 reports unit root tests
for the stock return series. The ADF and PP statistics significantly reject the null hypothesis
of the unit root processes at the 1% level, meaning that all series are stationary processes.

Table 1. Descriptive statistics for stock return series.

Mean Max Min SD Skewness Kurtosis Jarque–Bera Q (20) Q2 (20) ARCH (20)

China 0.0245 8.9309 −9.6952 1.7557 −0.5194 6.8901 2389.859 *** 48.1407 *** 1613.1 *** 490.6073 ***
Hong Kong 0.0041 13.4068 −13.582 1.5362 −0.0734 11.9814 11,884.4645 *** 40.4111 *** 4020.4 *** 984.0395 ***

Taiwan 0.0234 6.5246 −9.1898 1.1951 −0.5938 8.5784 4807.5102 *** 63.0925 *** 1686.5 *** 518.094 ***
Japan 0.0147 13.2346 −12.7154 1.5561 −0.5664 11.5293 10,626.679 *** 50.2902 *** 3795.5 *** 878.0004 ***

South Korea 0.0215 11.2844 −11.172 1.2906 −0.5848 12.647 13,877.7495 *** 33.4104 ** 3760.9 *** 897.7375 ***
India 0.0414 15.99 −14.1017 1.466 −0.3205 15.6961 23,237.1053 *** 60.0673 *** 1809.7 *** 506.9752 ***

Singapore 0.0009 8.8659 −10.628 1.1515 −0.3154 13.0023 14761.1008 *** 40.133 *** 3790.4 *** 900.9655 ***
Malaysia 0.0093 6.6263 −9.9785 0.7983 −0.7541 15.6559 23,500.4608 *** 44.6039 *** 588.3 *** 276.4585 ***
Thailand 0.0274 7.6531 −11.4871 1.2536 −1.1348 15.3527 22,530.4176 *** 90.1281 *** 2105.6 *** 641.9362 ***
Indonesia 0.0375 9.7042 −11.306 1.3469 −0.5082 11.4056 10,218.3681 *** 52.9503 *** 1924.2 *** 601.404 ***

Philippines 0.0259 9.3653 −14.3224 1.374 −1.0326 14.805 20,544.1125 *** 72.9788 *** 950.0 *** 395.0907 ***

Notes: Jarque–Bera denotes normal distribution test. Q (20) and Q2 (20) are the Ljung–Box test for autocorrelation
in return series and squared residual series up to the 20th order. The ARCH (20) is the Lagrange Multiplier test
for conditional heteroscedasticity up to the 20th order. *** and ** denote significance at the 1% and 5% levels,
respectively.

Table 2. Unit root tests for stock return series.

China HK Taiwan Japan SK India Singapore Malaysia Thailand Indonesia Philippines

ADF −58.0998
***

−60.9688
***

−57.6113
***

−60.6196
***

−59.0452
***

−56.4758
***

−59.0382
***

−55.2963
***

−57.9864
***

−53.9687
*** −55.3225 ***

PP −58.1134
***

−61.0541
***

−57.6576
***

−60.7685
***

−59.0956
***

−56.4843
***

−59.1131
***

−55.4702
***

−58.1201
***

−53.9002
*** −55.2828 ***

Notes: ADF and PP represent the Augmented Dickey–Fuller and the Phillips–Perron unit root test, respectively.
HK and SK represent Hong Kong and South Korea, respectively. *** denotes significance at the 1% level.

4. Empirical Results

This study employs the dynamic Copula-EVT-CoVaR model to quantify bidirectional
risk spillovers between Chinese and other Asian stock markets, and implements it using
MATLAB (R2021a) software. The model consists of three parts: the marginal model, copula
model, and CoVaR model. The sample covers 11 Asian stock markets from 1 January 2007
to 31 December 2021, with the selected markets listed in Section 3.2. These markets are
more representative and have roughly the same trading hours. Therefore, there is no need
to address non-synchronous trading problems. Additionally, the sample interval includes
multiple crisis events from the 2007–2009 global financial crisis to the COVID-19 pandemic.

4.1. Marginal Model Results

Since the return series have autocorrelation and conditional heteroscedasticity, and
considering the underlying leverage effects, the AR(1)-GJR-GARCH(1,1) model is used
to fit the marginal models. Meanwhile, since the return series distribution shows the
characteristics of skewed and fat-tailed, this paper assumes that the residual series obeys
a skew-t distribution. The estimation results of the marginal model are shown in Table 3.
The parameters α are significant, indicating that each stock market is sensitive to recent
information and has strong volatility characteristics. The parameters β are significant and
close to 1, suggesting that each stock market has a high volatility persistence. Additionally,
α + β < 1, implying that the GARCH process is stationary. The parameters γ are greater
than 0 and significant at the 1% level2, which means there are asymmetric volatility and
leverage effects in stock markets. Meanwhile, the bad news has a more significant impact
on volatility than the good news, reflecting that price falls have a more significant impetus
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on the Asian stock markets. Both the degrees of freedom parameter υ and skewness
parameters λ are significant at the 1% level, implying that the skew-t model can well fit the
distribution features of the residual series. The p-values of the Q2 and ARCH tests indicate
no ARCH effect in the standardized residuals.

Table 3. Parameters of marginal models based on AR(1)-GJR-GARCH(1,1)-skew-t model.

φ0 φ1 ω α β γ υ λ Q2 (20) ARCH (20)

China 0.0396 ** 0.0018 0.0102 ** 0.0577 *** 0.9415 *** - 5.2309 *** −0.0557 *** 26.0676 26.2258
(0.019) (0.016) (0.004) (0.009) (0.009) (0.449) (0.019) [0.1636] [0.1585]

Hong Kong 0.0123 −0.0061 0.0262 *** 0.0241 *** 0.9222 *** 0.0791 *** 7.1126 *** −0.0831 *** 22.3854 23.2104
(0.018) (0.014) (0.009) (0.007) (0.014) (0.019) (0.829) (0.020) [0.3200] [0.2786]

Taiwan 0.0355 ** 0.0169 0.0159 * 0.0150 * 0.9287 *** 0.0817 ** 5.5818 *** −0.1252 *** 12.8785 12.4395
(0.015) (0.019) (0.009) (0.009) (0.028) (0.032) (0.529) (0.022) [0.8825] [0.9001]

Japan 0.0290 −0.0334 * 0.0761 *** 0.0277 ** 0.8485 *** 0.1798 *** 6.4476 *** −0.0907 *** 9.3406 9.4787
(0.020) (0.018) (0.017) (0.012) (0.020) (0.033) (0.733) (0.022) [0.9786] [0.9767]

South Korea 0.0156 −0.0148 0.0220 ** 0.0290 *** 0.9027 *** 0.1038 *** 5.9915 *** −0.1376 *** 14.9509 14.9554
(0.014) (0.018) (0.009) (0.010) (0.023) (0.032) (0.605) (0.021) [0.7792] [0.7790]

India 0.0412 ** 0.0576 *** 0.0264 *** 0.0172 ** 0.8971 *** 0.1438 *** 6.1881 *** −0.0682 *** 18.1630 17.2615
(0.016) (0.017) (0.005) (0.007) (0.012) (0.023) (0.641) (0.025) [0.5767] [0.6359]

Singapore 0.0101 −0.0085 0.0089 *** 0.0239 *** 0.9233 *** 0.0893 *** 6.6428 *** −0.0697 *** 20.9474 21.7568
(0.013) (0.013) (0.003) (0.009) (0.012) (0.015) (0.711) (0.024) [0.4002] [0.3539]

Malaysia 0.0048 0.0440 ** 0.0071 *** 0.0555 *** 0.9019 *** 0.0679 *** 5.4710 *** −0.0874 *** 10.9969 10.7983
(0.010) (0.018) (0.002) (0.014) (0.018) (0.018) (0.499) (0.023) [0.9463] [0.9513]

Thailand 0.0366 ** 0.0143 0.0119 *** 0.0577 *** 0.8979 *** 0.0839 *** 5.3787 *** −0.0765 *** 13.6191 13.1968
(0.014) (0.019) (0.004) (0.010) (0.013) (0.020) (0.492) (0.023) [0.8493] [0.8688]

Indonesia 0.0305 * −0.0097 0.0290 ** 0.0472 *** 0.8836 *** 0.1146 *** 4.8478 *** −0.1302 *** 7.7680 8.2169
(0.017) (0.010) (0.014) (0.016) (0.032) (0.033) (0.399) (0.023) [0.9933] [0.9903]

Philippines 0.0186 0.0373 ** 0.0771 *** 0.0480 *** 0.8429 *** 0.1263 *** 5.9507 *** −0.0751 *** 10.6846 10.5426
(0.021) (0.018) (0.021) (0.016) (0.029) (0.029) (0.613) (0.025) [0.9540] [0.9572]

Notes: φ0 and φ1 are the estimated parameters of the AR(1) model. ω, α, β, and γ are the estimated parameters of
the GJR-GARCH(1,1) model. υ and λ are the freedom and skewness parameters of the skew-t distribution. Q2 (20)
is the Ljung–Box test for autocorrelation in the squared standardized residuals up to the 20th order. The ARCH
(20) is the Lagrange Multiplier test for conditional heteroscedasticity up to the 20th order. The standard errors are
reported in parentheses, and p-values are reported in square brackets. - denotes that this parameter does not exist
in the model. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Table 4 provides the results of the BDS test. BDS statistics cannot reject the null hypoth-
esis of i.i.d at the 1% level, meaning that all series obey i.i.d. Therefore, the standardized
residuals satisfy the conditions for establishing the EVT model, and the EVT model can be
used to estimate the extreme value distribution.

Table 4. BDS test results.

China HK Taiwan Japan SK India Singapore Malaysia Thailand Indonesia Philippines

statistics 0.8 −0.1602 0.0298 0.4324 −0.5969 −0.9755 0.17 1.0462 −0.9846 0.2626 −0.5092
p-values 0.4237 0.8728 0.9762 0.6654 0.5506 0.3293 0.865 0.2955 0.3248 0.7928 0.6106

Notes: BDS is the Brock–Dechert–Scheinkman test for independently and identically distributed (i.i.d) series. HK
and SK represent Hong Kong and South Korea, respectively.

According to the extreme value theory, this paper adopts the POT model to fit the tails
of the standardized residuals for capturing the extreme risks that occur in the stock markets.
The POT model requires a threshold to be set in advance, and setting the threshold too
high will cause the variance of the GPD fitting result to be large, and the threshold set too
low will cause the bias of the GPD fitting result to be large. Therefore, this paper selects
10% exceedances as the threshold by referring to the extant literature (Allen et al. 2013;
Chavez-Demoulin et al. 2005; DuMouchel 1983; Wang et al. 2010).

From Table 5, most of the lower tail shape parameters ξL are larger than the upper
tail shape parameters ξU , and the absolute values of the lower tail thresholds µL are larger
than the upper tail thresholds µU , which shows that extreme events triggered by price
decline are not only more numerous but also more intense. Therefore, this paper mainly
focuses on the down-tail risk between stock markets. Figure 2 presents the upper-tail
and lower-tail GPD fitting results for the Chinese stock market3. It can be seen that the
fitted generalized Pareto cumulative distribution functions are very close to the empirical
cumulative distribution functions, which indicates that GPD can accurately describe the
fat-tailed characteristics of the standardized residuals and then effectively capture the risk
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status of each stock market under extreme events. Finally, the p-values of the KS test show
that all new residual series obey (0, 1) uniform distribution, which satisfies the conditions
for establishing the copula model.

Table 5. Tail threshold and GPD parameter estimation results.

Lower Tail Upper Tail KS
p-ValueµL ξL βL µU ξU βU

China −1.1925 0.1197 0.6378 1.1901 0.0084 0.5358 0.7914
Hong Kong −1.2798 0.0355 0.5904 1.2120 −0.0397 0.5493 0.7733

Taiwan −1.2394 0.0974 0.6759 1.1681 0.0052 0.4698 0.7131
Japan −1.2722 0.0564 0.6328 1.2193 −0.0444 0.4925 0.8831

South Korea −1.2369 −0.0314 0.7724 1.1922 −0.0734 0.5045 0.8388
India −1.2243 0.0897 0.6050 1.1901 0.1395 0.4512 0.7500

Singapore −1.2500 0.0496 0.6090 1.2047 0.0754 0.4689 0.8242
Malaysia −1.1972 0.0813 0.6533 1.1808 0.0679 0.5022 0.8792
Thailand −1.2115 0.0831 0.6657 1.1747 −0.0032 0.5323 0.7641
Indonesia −1.1939 0.1370 0.6264 1.1410 0.1056 0.4782 0.7291

Philippines −1.2140 0.1766 0.5261 1.1819 0.0826 0.5275 0.7498

Notes: µ, ξ, and β are the threshold, shape, and scale parameters, respectively. KS is the Kolmogorov–Smirnov
test for the detection of a uniform distribution.
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4.2. Copula Model Results

This paper uses three static and four dynamic copula models to fit the dependence
structure between the Chinese and other Asian stock markets, and, according to the AIC
values in Table 6, the DCC-T copula model is selected as the optimal model4. The results of
the DCC-T copula model are shown in Table 7, and υ is significant at the 1% level, meaning
that the T-copula model is appropriate. α approaches 0, and β approaches 1, suggesting
that the dynamic dependence between the Chinese and other Asian stock markets has
strong persistence but is weakly influenced by past stock returns. In addition, α + β < 1,
which satisfies the constraints of the DCC model, indicating that the model is stationary. It
is also shown in Table 5 that the Kendall dependences are all positive values, indicating the
synchronicity between the Chinese and other Asian stock markets. That is, if an extreme
event occurs in the Chinese stock market, it could cause risk spillovers to other Asian stock
markets. China has the highest dependence on Hong Kong at 0.5628, which may be due to
more frequent trade and mutual investment between China and Hong Kong and China’s
strong control and influence over Hong Kong’s development (Jin 2018).
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Table 6. AIC values for the static and dynamic copula models.

T Clayton SJC DCC-
Gaussian DCC-T TVP-

Clayton TVP-SJC

Hong Kong −1356.6493 −1145.8794 −1323.1527 −1412.3080 −1421.0471 −1199.7068 −1368.6927
Taiwan −497.5774 −459.4803 −511.2854 −510.6142 −533.6454 −486.7947 −533.2840
Japan −343.3495 −310.6624 −340.6391 −353.8943 −360.4527 −326.2321 −358.0471

South Korea −485.0022 −459.8002 −494.4181 −496.8128 −516.2737 −479.8628 −511.6025
India −238.0040 −206.9195 −241.7906 −236.0555 −241.6525 −204.0055 −246.1028

Singapore −473.1127 −456.4884 −492.1070 −495.1291 −513.6206 −481.4896 −496.2846
Malaysia −231.8815 −213.3022 −238.3358 −238.8721 −248.1335 −211.3077 −238.7798
Thailand −245.9778 −213.0603 −245.3992 −230.6017 −255.7786 −209.8041 −246.8518
Indonesia −295.9596 −277.5796 −302.8352 −291.5680 −308.3636 −278.0434 −303.5722

Philippines −86.7413 −86.4480 −93.5557 −96.8564 −111.4114 −101.8417 −118.6742

Note: T, Clayton, and SJC represent three static copula models, and DCC-Gaussian, DCC-T, TVP-Clayton, and
TVP-SJC are dynamic copula models based on DCC or TVP methods. The bold indicates the minimum Akaike
Information Criterion (AIC) value among the different copula models.

Table 7. Estimated parameters of DCC-T-copula models.

1 
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 𝝊ഥ 𝜶ഥ 𝜷ഥ 
 

1 
 

 𝝊ഥ 𝜶ഥ 𝜷ഥ 
 

Kendall

Hong Kong 19.4103 *** 0.0136 *** 0.9842 *** 0.5628
(6.138) (0.004) (0.005) [0.0875]

Taiwan 11.6043 *** 0.0125 * 0.9814 *** 0.3627
(2.719) (0.007) (0.013) [0.0911]

Japan 19.7869 *** 0.0111 0.9810 *** 0.3036
(5.943) (0.009) (0.023) [0.0771]

South Korea 12.1023 *** 0.0416 *** 0.8864 *** 0.3479
(2.677) (0.012) (0.041) [0.0957]

India 20.0587 *** 0.0173 ** 0.9055 *** 0.2570
(6.331) (0.008) (0.047) [0.0423]

Singapore 12.2519 *** 0.0214 *** 0.9642 *** 0.3474
(2.986) (0.006) (0.012) [0.1070]

Malaysia 16.3026 *** 0.0127 * 0.9737 *** 0.2515
(5.462) (0.007) (0.021) [0.0721]

Thailand 10.1254 *** 0.0089 ** 0.9806 *** 0.2519
(2.139) (0.004) (0.011) [0.0619]

Indonesia 13.0804 *** 0.0072 * 0.9872 *** 0.2802
(3.202) (0.004) (0.010) [0.0666]

Philippines 12.7293 *** 0.0157 ** 0.9216 *** 0.1929
(3.080) (0.008) (0.042) [0.0454]

Note: α and β are the estimated parameters of the DCC model, and υ is the degrees of freedom parameter for
T-copula. Kendall is the average of the dynamic Kendall coefficients for evaluating dependence structures. The
standard errors are reported in parentheses and standard deviations are reported in square brackets. ***, **, and *
denote significance at the 1%, 5%, and 10% levels, respectively.

Figure 3 illustrates that the dynamic dependence of Chinese and other Asian stock
markets has significant time-varying characteristics. According with Liu (2020), Chopra
and Mehta (2022), and Li et al. (2022), this paper divides crisis events into the global
financial crisis (2007–2009), the European debt crisis (2009–2012), the Chinese stock market
crash (2015–2016), the China–US trade war (2018–2019), and the COVID-19 pandemic
(2020–2021). During the 2007–2009 global financial crisis and the European debt crisis,
Chinese and other Asian stock markets maintained a strong dependence. However, during
the 2015–2016 Chinese stock market crash, the China–US trade war, and the COVID-
19 pandemic, dynamic dependence experienced abnormal volatility, showing that the
dependence dropped sharply and then rose rapidly.
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4.3. Risk Spillover Results

Table 8 presents measures of risk spillovers for Chinese and Asian stock markets at the
5% quantile. On average, the CoVaR values for each stock market are smaller than the VaR
values, indicating that the VaR method underestimates the risk spillover effects between
the stock markets.5 ∆CoVaR is negative, indicating a positive risk spillover between the
stock markets; that is, when any one of the stock markets falls into extreme risk, other stock
markets will also face greater risks. Meanwhile, considering the significant difference in
VaR values between stock markets, this paper focuses on analyzing the %CoVaR obtained
after normalization, which more intuitively shows the risk spillover intensity between the
Chinese and other Asian stock markets.

Firstly, the risk spillovers from China to other Asian stock markets are heterogeneous,
in order from strong to weak: Hong Kong, Malaysia, Singapore, Taiwan, South Korea,
Thailand, Indonesia, Japan, India, and the Philippines. Specifically, China has the strongest
risk spillover intensity to the Hong Kong stock market at 69.05%. China’s risk spillovers
to Malaysia and Singapore among the five ASEAN countries are the strongest at 59.86%
and 59.71%, respectively, but the weakest to the Philippines at 26.79%. This result may be
because China is Malaysia’s largest source of investment and had been Malaysia’s largest
trading partner for 13 continuous years by 2021. In addition, since 2013, Singapore has been
China’s largest foreign investor, and China has been Singapore’s largest trading partner.
The risk spillover intensity of China to the Philippine stock market is the weakest, which
may be because the limited resources of the Philippines make China’s investment in it
relatively unusual, so the scope of the capital impact is negligible.
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Table 8. Average risk spillovers between the Chinese and Asian stock markets.

VaR CoVaR ∆CoVaR %CoVaR

China→Hong Kong −2.2496 −3.3292 −1.4907 0.6905
China→Taiwan −1.7702 −2.5811 −0.9461 0.5607
China→Japan −2.3101 −3.0182 −0.8315 0.3809

China→South Korea −1.8661 −2.663 −0.937 0.5326
China→India −2.0497 −2.6738 −0.6998 0.3735

China→Singapore −1.6345 −2.4445 −0.9408 0.5971
China→Malaysia −1.1983 −1.8486 −0.6978 0.5986
China→Thailand −1.8268 −2.4434 −0.6876 0.4122
China→Indonesia −2.0045 −2.6846 −0.7719 0.4086

China→Philippines −2.0454 −2.536 −0.5353 0.2679
Hong Kong→China −2.6971 −3.4671 −1.2735 0.5107

Taiwan→China −2.6971 −3.1318 −0.6545 0.2651
Japan→China −2.6971 −3.2991 −0.722 0.2875

South Korea→China −2.6971 −3.1786 −0.681 0.2688
India→China −2.6971 −3.1452 −0.5426 0.2074

Singapore→China −2.6971 −3.0704 −0.6106 0.2336
Malaysia→China −2.6971 −2.8881 −0.3195 0.1222
Thailand→China −2.6971 −3.117 −0.4877 0.1866
Indonesia→China −2.6971 −3.195 −0.5842 0.2235

Philippines→China −2.6971 −3.0665 −0.4117 0.1633
Note: This paper focuses on the lower-tail risk between stock markets, namely, the risk spillover effect at the 5%
quantile.

The risk spillover intensity from China to Taiwan and South Korea is also relatively
strong at 56.07% and 53.26%, respectively. This can be explained by economic fundamentals.
China is the largest trading partner and the largest source of trade surplus for Taiwan and
South Korea, and when China’s economy downturns, it will lead to a drop in foreign trade,
which can negatively impact the economic situation of Taiwan and South Korea, and the
stock markets, as a macroeconomic barometer, generally will trend downward as well.
Finally, the risk spillover intensity of China to Japan and India is relatively weak at 38.09%
and 37.35%, respectively. It may be that Japan is a developed economy, and its economic
structure is quite different from that of China, which does not satisfy the economic cycle
synchronicity, thus slowing down the risk spillovers between stock markets. In addition,
geopolitical tensions between China and India in recent years have led to a decline in trade
ties, which has weakened the intensity of risk spillovers from the Chinese stock market.

Secondly, there are bidirectional risk spillovers between Chinese and other Asian
stock markets, showing asymmetric risk spillovers; that is, the risk spillover intensity
of other Asian stock markets to the Chinese is weaker than that of the Chinese to other
Asian stock markets. This may be because the Chinese market is relatively closed, and the
capital account has not been fully opened. Although financial liberalization has achieved
certain results, there are still many problems, such as strict capital account controls and
limited openness in the financial sector, which have led to relatively little participation by
foreign investors in the Chinese stock market, thus limiting the free flow of capital and the
short-term impact of hot money, which in turn has improved China’s ability to resist risk
spillovers. In addition, the Chinese stock market implements a strict price limit system,
which can limit stock market turbulence caused by external shocks to a certain extent.

Finally, according to Figure 4, the risk spillovers between the Chinese and other
Asian stock markets are time-varying and fat-tailed. Specifically, the Chinese stock market
generated significant extreme risk spillovers to other Asian stock markets during the 2007–
2009 global financial crisis, the European debt crisis, the 2015–2016 Chinese stock market
crash, and the China–US trade war. This may be because investors often rely on heuristics
to make decisions when faced with emergencies, and this irrational behavior is amplified by
herding effects, causing negative shocks to other countries’ stock markets, thus generating
extreme risk spillovers. However, during the COVID-19 pandemic, the risk spillover
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intensity of the Chinese stock market was weaker, and it was the risk recipient of the Asian
stock markets. This means that, although China was the first country to have a large-scale
outbreak of COVID-19, the extreme risks in the stock market during the pandemic were not
caused by China, but rather China was the country that suffered the severest risk spillovers
from the crisis.
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In addition, natural disasters can also generate extreme risk spillovers to the stock
markets, such as the 2011 earthquake in Japan. Japan also generated extreme risk spillovers
to the Chinese stock market during the 2016 Brexit referendum. This may be because the
yen gained popularity as a safe haven during the Brexit referendum, resulting in a sharp
appreciation of the yen and pressure on exports, which in turn caused the stock markets to
plunge and generate the risk spillover effect. Finally, China and South Korea had negative
%CoVaR during the 2017 Sade event, suggesting that risk absorption existed between the
two countries.

4.4. Robustness Diagnosis

From Table 4, the AIC values of the optimal and the suboptimal copula models are
similar. Therefore, without losing generality, this paper uses the suboptimal copula model
to check the results, as shown in the Appendix A (Table A1 and Figure A1)6. Figure 4 is
similar to Figure 3, so empirical results are robust and can accurately measure risk spillovers
between the Chinese and Asian stock markets.

5. Discussion

The results of the dynamic dependence analysis show that the dependence between
the Chinese and other Asian stock markets increased rapidly after the crisis event. This
observation indicates a high level of synchronicity between the Chinese and other Asian
stock markets, consistent with the findings of Zaidi and Rupeika-Apoga (2021). This
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synchronicity creates conditions for risk contagion, whereby risks originating in one region
can quickly spread to other regions, exacerbating instability across the entire market.

The results of risk spillovers indicate that China is relatively less affected by other
Asian stock markets. China has implemented strict capital controls. These controls have
restricted the free flow of capital and the short-term impact of hot money, thereby improving
China’s ability to resist risk spillovers. In contrast, other countries may have more open
economic systems, freer markets, and less government intervention. Consequently, they
cannot control risk spillovers as effectively as China.

Additionally, China’s risk spillovers to other Asian stock markets are strong, highlight-
ing its importance as Asia’s largest economy. Specifically, the risk spillover intensity from
China to the Hong Kong stock market is the strongest, which is consistent with the results
of Xiao (2020). This phenomenon could be attributed to the higher degree of financial
market integration between China and Hong Kong. Many companies are listed in both
China and Hong Kong together. This makes the Hong Kong stock market more susceptible
to economic and policy shocks emanating from China. Furthermore, risk spillovers from
China to Japan and India are relatively weak, possibly due to differences in economic
structures or ongoing geopolitical tensions.

Finally, China had significant extreme risk spillovers to other Asian stock markets
during the 2007–2009 global financial crisis, the European debt crisis, the 2015–2016 Chinese
stock market crash, and the China–US trade war. However, amid the COVID-19 pandemic,
the Chinese stock market suffered strong risk spillovers from other stock markets and was
a risk recipient. Additionally, Liu et al. (2023b) pointed out that the COVID-19 pandemic
had a significant negative impact on the Chinese stock market, particularly impacting
labor-intensive state-owned firms. Overall, the direction and intensity of risk transmission
between China and other Asian stock markets may vary across different emergencies.
Therefore, regulatory agencies must consider the dynamic nature of risk spillovers when
formulating risk prevention strategies.

6. Conclusions
6.1. Conclusions and Policy Implications

This paper investigates bidirectional risk spillovers between Chinese and Asian stock
markets by constructing a dynamic copula-EVT-CoVaR model. The main conclusions
are as follows: Firstly, synchronicity exists between the Chinese and other Asian stock
markets, providing conditions for risk contagion. Secondly, the risk spillovers from the
Chinese to other Asian stock markets are heterogeneous, in order from strong to weak:
Hong Kong, Malaysia, Singapore, Taiwan, South Korea, Thailand, Indonesia, Japan, India,
and the Philippines. Meanwhile, the risk spillover has an asymmetry, which means that the
risk spillover intensity of other Asian stock markets to the Chinese is weaker than that of
Chinese to other Asian stock markets. Finally, during the 2007–2009 global financial crisis,
the European debt crisis, the 2015–2016 Chinese stock market crash, and the China–US
trade war, China created a significant extreme risk spillover for other Asian stock markets.
However, during the COVID-19 pandemic, the risk spillover intensity of the Chinese stock
market was weaker, and it was the risk recipient of the Asian stock markets.

The Chinese stock market exhibits strong risk spillovers to other Asian stock markets,
with the most significant spillovers observed in the Hong Kong stock market. Therefore,
financial regulatory agencies in Asian stock markets such as Malaysia, Singapore, Taiwan,
and South Korea must not only supervise cross-border capital flows from China but also be
wary of Hong Kong as a potential channel for transmitting risks. While the current stringent
capital controls in China contribute to mitigating risk spillovers from other countries, this
should not be considered a long-term solution. The Chinese stock market should further
open up the financial market and attract more foreign investors to increase market liquidity
and activity, thereby improving its ability to withstand external shocks. Moreover, the
Chinese stock market, as a recipient of risk during the COVID-19 pandemic, should be
vigilant against risk spillovers from other Asian stock markets that are dominated by
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the Indian market. Compared with other Asian stock markets, Chinese investors may
consider increasing portfolio weightings with Japanese, Indian, or Philippine stock markets
to achieve risk diversification and optimize returns amid potential market volatility.

6.2. Limitations and Future Research Recommendations

Although this paper makes contributions to the existing literature, it still has some
limitations. First, this study focuses on the aggregate level of the stock market and does
not deeply explore the potential heterogeneous spillovers among various stock industries.
Second, this study does not decompose the risk spillover effects from a frequency domain
perspective. Therefore, future research can introduce a wavelet transform to examine the
impact of risk spillovers in the short and long term. Third, although CoVaR can measure
risk spillovers between two variables, it is necessary to construct a risk spillover network
to investigate the risk transmission direction and spillover mechanism in complex financial
systems.
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Appendix A

Table A1. Estimated parameters of the suboptimal copula models.

Model

1 
 

𝝎ഥ𝑳 𝜶ഥ𝑳 𝜷ഥ𝑳 𝝎ഥ𝑼 𝜶ഥ𝑼 𝜷ഥ𝑼 
 

1 
 

𝝎ഥ𝑳 𝜶ഥ𝑳 𝜷ഥ𝑳 𝝎ഥ𝑼 𝜶ഥ𝑼 𝜷ഥ𝑼 
 

1 
 

𝝎ഥ𝑳 𝜶ഥ𝑳 𝜷ഥ𝑳 𝝎ഥ𝑼 𝜶ഥ𝑼 𝜷ഥ𝑼 
 

1 
 

𝝎ഥ𝑳 𝜶ഥ𝑳 𝜷ഥ𝑳 𝝎ഥ𝑼 𝜶ഥ𝑼 𝜷ഥ𝑼 
 

1 
 

𝝎ഥ𝑳 𝜶ഥ𝑳 𝜷ഥ𝑳 𝝎ഥ𝑼 𝜶ഥ𝑼 𝜷ഥ𝑼 
 

1 
 

𝝎ഥ𝑳 𝜶ഥ𝑳 𝜷ഥ𝑳 𝝎ഥ𝑼 𝜶ഥ𝑼 𝜷ഥ𝑼 
 

1 
 

 𝝊ഥ 𝜶ഥ 𝜷ഥ 
 

1 
 

 𝝊ഥ 𝜶ഥ 𝜷ഥ 
 Hong Kong DCC-Gaussian - - - - - - 0.0145 *** 0.9825 ***

(0.004) (0.006)
Taiwan TVP-SJC 0.7250 −7.0520

*** −0.5377 0.8000 −10.0000 0.0752 - -
(0.543) (2.547) (0.409) (0.985) (7.179) (0.755)

Japan TVP-SJC 0.1231 *** −0.5705
*** 0.9746 *** −0.8562 −9.9998 −0.5462 - -

(0.037) (0.171) (0.008) (2.064) (8.660) (0.426)
South Korea TVP-SJC 0.6935 −6.0411

*** −0.3243 0.6762 −9.4605 ** 0.2312 - -
(0.487) (2.160) (0.243) (0.631) (3.804) (0.314)

India TVP-SJC −2.6189
*** −0.0461 −0.6515 *** 1.0991 *** −6.7035 *** 0.7574 *** - -

(0.917) (3.763) (0.242) (0.381) (1.977) (0.066)
Singapore TVP-SJC 0.0379 −5.2209 −0.9527 *** −1.9171 −9.9998 −0.9978 *** - -

(1.292) (4.136) (0.057) (4.406) (17.562) (0.010)
Malaysia DCC-Gaussian - - - - - - 0.0123 * 0.9735 ***

(0.007) (0.022)
Thailand TVP-SJC 0.1507 ** −1.0471 * 0.9069 *** −1.9173 −1.4408 0.1177 - -

(0.075) (0.555) (0.086) (2.348) (3.130) (0.550)
Indonesia TVP-SJC −0.0674 −8.4142 ** −0.9554 *** −2.7839 −8.3967 −0.9126 *** - -

(0.860) (3.417) (0.027) (2.919) (9.814) (0.128)
Philippines TVP-SJC 0.1017 −1.6277 * 0.7873 *** −3.2370 −9.2955 −0.1378 - -

(0.208) (0.947) (0.138) (6.443) (13.859) (0.451)

Note: The parameters ωL, αL, βL, ωU , αU and βU correspond to the parameters of the lower and upper tails of the
TVP-SJC copula model. α and β are the estimated parameters of the DCC-Gaussian copula model. The standard
errors are reported in parentheses. - denotes that this parameter does not exist in the model. ***, **, and * denote
significance at the 1%, 5%, and 10% levels, respectively.
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